菱形练习题及答案
菱形练习题及答案

菱形练习题及答案一、菱形的定义和特征菱形是指具有四条边长度相等且相互平行的四边形。
其特征包括:1) 所有四个角都是直角;2) 对角线相等,且互相垂直。
在数学中,菱形常被用作练习几何图形的平面几何题目。
二、菱形练习题以下是一些菱形练习题,每个题目后附有解题答案,以帮助学生更好地理解和掌握菱形的性质。
1. 题目:菱形ABCD的对角线AC长度为8cm,角ADC的度数为60°,求菱形的面积。
解答:首先,由于对角线相等,可以得知BD的长度也为8cm。
由菱形的性质可知,对角线相互垂直,故角BDC的度数为90°。
于是,我们可以通过AD和BD的长度以及ADC的度数,计算出三角形ADC 的边长。
根据余弦定理,我们可以得到:AC² = AD² + DC² - 2 * AD * DC * cos(ADC)8² = AD² + AD² - 2 * AD * AD * cos(60°)64 = 2AD² - 2 * AD² * 0.564 = AD²得到 AD = 8cm,同理可得DC = 8cm。
因此,菱形ABCD的面积为1/2 * AD * DC = 1/2 * 8 * 8 = 32cm²。
2. 题目:菱形EFGH的对角线EF长度为10cm,角EFG的度数为120°,求菱形的周长。
解答:由菱形的性质可知,菱形的周长等于4倍对角线的长度。
因此,菱形EFGH的周长为4 * 10 = 40cm。
三、菱形练习题答案1. 菱形ABCD的面积为32cm²。
2. 菱形EFGH的周长为40cm。
通过以上两个练习题,我们可以巩固菱形的定义和性质,掌握计算菱形的面积和周长的方法。
总结:菱形作为一种常见的几何图形,在数学学习中经常出现。
通过练习菱形题目,我们可以巩固菱形的定义和特征,提高解题能力,并运用这些知识解决实际问题。
初三数学菱形的练习题及答案

初三数学菱形的练习题及答案菱形是初中数学中常见的图形之一,通过练习菱形的题目,学生可以巩固对菱形及其性质的认识,培养解决几何问题的能力。
本文将提供一些初三数学菱形的练习题及答案,帮助学生更好地理解和应用相关知识。
练习题一:根据给定条件,求菱形的周长和面积。
1.已知菱形的对角线长度分别为8cm和12cm,求菱形的周长和面积。
解答:求菱形的周长,需要知道菱形的所有边长。
根据菱形的性质,对角线相交于其垂直平分点,且对角线相等。
设菱形的一个对角线长度为d1=8cm,另一个对角线长度为d2=12cm。
根据性质可知,菱形的边长等于对角线长度的一半。
菱形的周长=4×菱形的边长=4×(d1/2)=4×(8/2)=4×4=16cm菱形的面积= (d1×d2)/2=(8×12)/2=96/2=48cm²所以,该菱形的周长为16cm,面积为48cm²。
练习题二:根据给定条件,判断是否为菱形。
2.在平面直角坐标系中,已知四个点的坐标依次为A(3, 0)、B(0, 2)、C(-3, 0)和D(0, -2),判断四边形ABCD是否为菱形。
解答:要判断四边形ABCD是否为菱形,需要验证以下两个条件:- 对角线互相垂直;- 对角线相等。
首先计算对角线的长度:AC = √((x2 - x1)² + (y2 - y1)²)= √((-3 - 3)² + (0 - 0)²)= √((-6)²)= √36= 6BD = √((x2 - x1)² + (y2 - y1)²)= √((0 - 0)² + (-2 - 2)²)= √((0)² + (-4)²)= √(0 + 16)= √16= 4由上述计算可知,AC=6,BD=4。
接下来验证两个条件:- 对角线互相垂直:计算斜率k1、k2,若k1*k2=-1则两对角线互相垂直。
菱形的性质与判定 填空题练习(含答案)

菱形的性质与判定填空题练习1、一个菱形的周长为52cm,一条对角线长为10cm,则其面积为cm2.2、已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为______________cm2.3、如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .4、如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为_______.5、如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB= .6、如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长.7、已知菱形的周长为 40 cm ,两条对角线之比为3:4,则菱形的面积为_________.8、如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH 的长等于 .9、如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是____________(写出一个即可).10、如图,菱形ABCD中,对角线AC交BD于O, E是CD的中点,且OE=2,则菱形ABCD的周长等于.11、如图,在菱形ABCD中,点E、F分别是BD、CD的中点,EF=6 cm,则AB=________cm.12、两对角线分别是6cm和8cm的菱形面积是 cm2,周长是 cm.13、如图,在RtΔABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= 时,平行四边形CDEB为菱形。
14、如图,在菱形ABCD中,∠B=60°,对角线BD=22,则点D到直线AB的距离DE= ,点D到直线BC的距离等于.15、如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为.16、如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是菱形.17、如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD.DA的中点,则四边形EFGH的周长等于 cm.18、如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于.19、如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .20、.如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为.21、如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= .22、如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.23、如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.24、在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.25、如图,已知菱形ABCD的对角线AC、BD的长分别为10cm,24cm,AE⊥BC于点E,则AE的长是cm.26、将矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角线BD上,得到菱形BEDF.若BC=6,则AB的长为.27、如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC 的长为.28、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.29、如图,在菱形ABCD中,∠BAD=80º,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于.30、如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2 cm,四边形OACB的面积为4 cm2.则OC的长为________cm.31、把两张宽为2 cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.32、如图,将两张长为9,宽为3的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的面积有最小值9,那么菱形面积的最大值是.33、如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.34、如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是.35、已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .36、如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.37、如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是_________.38、如图,在平面直角坐标系中有一菱形OABC且∠A=120°,点O、B在y轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3……,连续翻转2017次,则B2017的坐标为__ ______.39、如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.40、已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有_____________个;第2014个图形中直角三角形的个数有_____________个.参考答案1、答案为:120.2、答案为:243、答案为:1:2,.4、答案为:96.5、答案为:22.5°.6、答案为:16.7、答案为:96 cm 28、答案为:3;9、答案为:AB=AD(答案不唯一)10、答案为:1611、答案为:1212、答案为:24,20.13、答案为:1.4;14、答案为:11,11.15、答案为:4.8;16、答案为:AC=BD.17、答案为:16.18、答案为:3.5;19、答案为:2.4.20、答案为:50°.21、答案为:60°.22、答案为:(4,4);23、答案为:45;24、答案为:12.25、答案为:.26、答案为:2.27、答案为:6.28、答案为:2.5;29、答案为:60度30、答案为:431、答案为:菱形,432、答案为:15.33、答案为:2.34、答案为:.35、答案为:5.36、答案为:2.37、答案为:38、答案为:(1345.5,)39、答案为:()n﹣1.40、答案为:8, 4028。
2022年《菱形的判定3》专题练习(附答案)

2.6.2 菱形的判定要点感知1四条边__________的四边形是菱形.预习练习1-1 用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )图1-1 图2-1要点感知2 对角线__________的平行四边形是菱形.预习练习2-1如图,四边形ABCD的对角线AC,BD互相垂直,那么以下条件能判定四边形ABCD为菱形的条件是( )∥CD知识点1 四条边都相等的四边形是菱形1.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,假设∠C=100°,那么∠AED的大小是( )°°°°2.顺次连接矩形四边中点所形成的四边形是__________,学校的一块菱形花圃两对角线的长分别是6 m和8 m,那么这个花圃的面积为__________.3.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.知识点2 对角线互相垂直的平行四边形是菱形4.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________________(写出一个即可).5.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.6.如图,在三角形ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB,AC于点E,F,连接DE,DF.求证:四边形AEDF是菱形.7.如图,将△ABC沿BC方向平移得到△DCE,连接AD,以下条件中能够判定四边形ACED 为菱形的条件是( )A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°第7题图第9题图第10题图8.如图,在给定的一张平行四边形纸片上做一个菱形,甲、乙两人的作法如下:甲:连接AC,做AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,那么四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,那么四边形ABEF是菱形.根据两人的作法可判断( )A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误9.如图,菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,那么∠EOA=______.10.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出以下条件:①BE⊥EC;②BF∥CE;③AB=AC,从中选择一个条件使四边形BECF是菱形,你认为这个条件是__________(填序号).11.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.12.如图,△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证BE=CD;(2)假设AD⊥BC,试判断四边形BDFE的形状,并给出证明.13.如图,在四边形ABCD中,AB=AD,CB=CD,点E是CD上一点,BE交AC于点F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)假设AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案要点感知1 都相等预习练习1-1 B要点感知2 互相垂直预习练习2-1 B1.B2.菱形24 m23.证明:∵E,F分别是AB,BD的中点,∴EF=12 AD.同理可得:GH=12AD,GF=12BC,HE=12BC,又AD=BC,∴EF=GF=GH=HE.∴四边形EFGH是菱形.4.答案不唯一,如AB=AD或AB=BC或AC⊥BD等5.(1)证明:∵在△ADC和△ABC中,AD=AB,AC=AC,DC=BC,∴△ADC≌△ABC(SSS).∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵DC=BC,∠1=∠2,∴AC垂直平分BD.又∵OE=OC,∴四边形DEBC是平行四边形.∵AC⊥BD,∴四边形DEBC是菱形.6.证明:连接EF,交AD于点O,∵AD平分∠BAC,∴∠EAO=∠FAO.∵EF⊥AD,∴∠AOE=∠AOF=90°.在△AEO和△AFO中,∠EAO=∠FAO,AO=AO,∠AOE=∠AOF,∴△AEO≌△AFO(ASA).∴EO=FO.∵A点与D点重合,∴AO=DO.∴EF,AD相互平分,∴四边形AEDF是平行四边形.又EF⊥AD,∴平行四边形AEDF为菱形.7.B 8.C 9.25°10.③11.证明:∵AD∥BC,∴∠BAD+∠B=180°.∵∠BAD=∠BCD,∴∠BCD+∠B=180°.∴AB∥DC.∴四边形ABCD是平行四边形.∴∠B=∠D.∵AM=AN,AM⊥BC,AN⊥DC,∴Rt△ABM≌Rt△ADN.∴AB=AD.∴平行四边形ABCD是菱形.12.(1)证明:由题知AE=AD,AB=AC,∠BAC=∠EAD=α.∴∠BAC-∠BAD=∠EAD-∠BAD,即∠EAB=∠DAC.∴△EAB≌△DAC.∴BE=CD.(2)四边形BDFE是菱形.∵AB=AC,AD⊥BC,∴BD=CD.∵BE=CD,∴BE=BD.∵△EAB≌△DAC,∴∠EBF=∠C.∵∠ABC=∠C,∴∠EBF=∠ABC.∵BF=BF,∴△EBF≌△DBF.∴EF=DF.∵EF∥BC,∴∠EFB=∠FBD.∴∠EFB=∠EBF.∴EF=EB.∴BD=BE=EF=FD.∴四边形BDFE是菱形.13.(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS).∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2)∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠ECB+∠CBF=∠EFD+∠EDF=90°. ∴∠EFD=∠BCD.第1课时 二次根式及其化简1.化简12=____.2.2)23(-= .3.|)1(1|,22a a +--<化简时当得 . 4.假设三角形的三边a 、b 、c 满足a 2-4a +4+3-b =0,那么笫三边c 的取值范围是_____________.5.判断题(1)假设2a =a ,那么a 一定是正数.( ) (2)假设2a =-a ,那么a 一定是负数.( )(3)2)14.3(π-=π-3.14.( )(4)∵(-5)2=52,∴5)5(,55,5)5(2222-=-∴==-又.( )(5).57)75()75(2-=--=- ( )(6)当a >1时,|a -1|+221a a +-=2a -2.( )(7)假设x =1,那么2x -22)2(244--=+-x x x x =2x -(x -2)=x +2=1+2=3.( )(8)假设2)(xy =-xy ≠0,那么x 、y 异号.( ) (9)m <1时,(m -1)2)1(1-m =1.( )(10)122++x x =x +1.( ) (11)22)3(3-+=0.( ) (12)当m >3时,269m m +--m =-3.( )6.如果等式2x =-x 成立,那么x 的取值范围是________. 7.当x _______时,221x x +-=x -1.8.假设2)2(+-x =x +2,那么x __________. 9.假设m <0,那么|m |+______332=+m m .10.当)169()2(,22122+--<<x x x x 时=________. 11.假设x 与它的绝对值之和为零,那么_________2=x .12.当a _________时,|2a -3a |=-4a . 13.化简2π)310(-=________.14.假设a <0,那么化简4)1(2+-a a 的结果为________. 15.化简)5()5(2m m --的结果是________.16.当a _______时,2122-=a a . 17.假设a <-3时,那么|2-2)1(a +|等于________.。
菱形的性质专项练习30题(有答案)ok

菱形的性质专项练习30题(有答案)1.如图,菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC,交BD于E,垂足为H,已知CH=4,AH=8(1)求菱形的周长;(2)求OE的长度.2.如图,菱形ABCD中,两条对角线AC和BD相交于点O,AC=6cm,BD=8cm.(1)求菱形ABCD的面积;(2)求菱形ABCD的周长.3.如图,菱形对角线AC,BD相交于一点O,且AC=12cm,BD=16cm.求这个菱形的周长和面积.4.如图,已知菱形ABCD的边长是2cm,BAD=120°.(1)试说明:△ABC是等边三角形;(2)求菱形两条对角线的长.5.如图,菱形ABCD的两条对角线AC与BD相交于点O,AB=5,OA=3.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积.6.如图,菱形ABCD的周长为200cm,对角AC与BD交于点O,且AC=60cm,试求菱形ABCD的面积.7.已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.8.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.9.如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AC=6,BD=8,求线段OE的长.10.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:AM=DM;(2)若DF=2,求菱形ABCD的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.11.菱形ABCD中,∠B=60°,一块三角板的60°角的顶点绕点A转动,两边分别交BC、CD于点E、F.(1)说明△ABC、△ACD都是等边三角形.(2)判断△AEF的形状,说明理由?(3)如果AB=2,写出△CEF的周长的最小值.12.如图,O是菱形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE,CE交于点E.(1)求证:四边形OCED是矩形;(2)若菱形ABCD的周长为20,矩形OCED的周长为14,求菱形ABCD的面积.13.如图,点E、F分别在菱形ABCD的边BC、AD上,且AF=CE,∠BAE=25°,∠BCD=130°,求∠AFC的度数.14.如图,平行四边形ABCD中,AE是BC边上的高,AE是BC沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG:(2)若四边形ABFG是菱形,且AB:BC=2:3,求∠B的度数.15.如图,菱形ABCD中,AE⊥BC,垂足为点E,BE=CE,求∠BAD的度数.16.如图,已知一四边形菜地ABCD为菱形,点E,F分别位于边AB,BC上,AD=6,AE=5BE,BF=5CF,若△DEF 为等边三角形.(1)求∠A的度数;(2)求菱形ABCD的面积.17.如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC 与AM交于点Q,求证:P,D,Q三点共线.18.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,菱形ABCD的周长为20,求m的值.19.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.20.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.21.如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线于点F.(1)DE和BF相等吗?请说明理由.(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.22.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.若AE垂直平分BC,AF垂直平分CD.求证:(1)AE=AF;(2)△AEF为等边三角形.23.如图,在菱形ABCD中,过点A作AE⊥BC,垂足E为BC的中点,连接DE,F为DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,求DE和AF的长.24.如图,边长为a的菱形ABCD中,∠A=60°,过C任作直线分别交AB、AD的延长线于E、F,连接DE、BF 交于M,若△BEM和△DFM外接圆的半径分别是R1、R2,求证:R1•R2为定值,并求这个定值.25.如图,四边形ABCD为菱形,已知A(0,6),D(﹣8,0).(1)求点C的坐标;(2)设菱形ABCD对角线AC、BD相交于点E,求经过点E的反比例函数解析式.26.如图,菱形ABCD中,点P是AB的中点,延长DP交CB的延长线于E点.求证:BE=CD.27.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.28.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB.求证:∠APD=∠EBC.29.如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过D作DH⊥AE于H.(1)若AB=10,DH=6,求HE的长;(2)求证:AH=CE+EH.30.如图,已知点O在菱形ABCD内,过点O分别作OE⊥AB于E,OF⊥AD于F,且OE=OF.(1)求证:OB=OD;(2)把菱形换成矩形、平行四边形、等腰三角形,上述结论仍成立吗?(写出结论,不证明)参考答案:1.(1)设AB=x,则BC=x,BH=BC﹣CH=x﹣4,在Rt△ABH中,AH2+BH2=AB2,∴82+(x﹣4)2=x2,解得x=10,∴菱形周长为40.(2)∵AH=8,CH=4,∴AC==4,∴CO=AO=AC=2,∵BC=10,CO=2,∴BO==4∵∠BHE=∠BOC=90°,∠EBH=∠CBO,∴△BHE∽△BOC,∴,∴,∴EH=3,∴AE=AH﹣EH=8﹣3=5,∴OE==2.(1)菱形的对角线为AC=6cm,BD=8cm,则菱形的面积为AC•BD=×6×8=24cm2;(2)菱形对角线互相垂直平分,∴BO=OD=4cm,AO=OC=3cm,∴AB==5cm,故菱形的周长为20cm,答:菱形的周长为20cm,面积为24cm2.3.∵在菱形ABCD中,AC=12cm,BD=16cm,∴S菱形ABCD =×AC×BD=×12×16=96(cm2).∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=6cm,OB=BD=8cm,∴AB==10cm,∴菱形ABCD的周长为:4×10=40(cm).故这个菱形的周长为40cm,面积为96cm24.(1)∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC,∠BAC=∠BAD=60°,∴△ABC是等边三角形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∵∠BAC=60°,AB=2cm,∴∠ABO=30°,∴OA AB=1(cm),∴OD==(cm),∴AC=2OA=2cm,BD=2OD=2cm.5.(1)∵四边形ABCD是菱形,AB=5,∴菱形ABCD的周长等于5×4=20;(2)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,==4,∴AC=2OA=6,BD=2OB=8,∴S菱形ABCD=×AC×BD=×6×8=246.菱形周长为200cm,则AB=50cm,∵AC=60cm,∴AO=30cm,菱形对角线互相垂直,∴△AOB为直角三角形,在Rt△AOB中,BO==40cm,∴BD=2BO=80cm,∴菱形ABCD的面积为S=×60cm×80cm=2400cm2,答:菱形ABCD的面积为2400cm2.7.由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.8.四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形9.(1)四边形OCED是矩形.理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形;(2)在菱形ABCD中,∵AC=6,BD=8,∴OC=AC=×6=3,OD=BD=×8=4,∴CD===5,在矩形OCED中,OE=CD=510.1)证明:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,∵EM⊥AC,∴EM∥BD,∵E为AB的中点,∴M为AD的中点,∴AM=DM;(2)解:∵EB∥FD,EM∥BD,∴四边形FDBE是平行四边形,∴FD=BD,∵DF=2,∴BE=2,∴AB=2BE=2×2=4,∴菱形ABCD的周长=4AB=4×4=16;(3)设ME与AC的交点为G,相似三角形有:△AGE∽△AGM,△AGE∽△CGF,△AGM∽△CGF,△AEM∽△DFM,△ABC∽△ADC共5对.11.(1)∵菱形ABCD中,AB=BC,AD=CD,∠B=∠D=60°,∴△ABC和△ACD都是等边三角形.(2)∵∠B=∠ACD=60°,AB=AC,∴△ABC是等边三角形,∴∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF,又∠EAF=60°,∴△AEF是等边三角形;(3)∵EC+CF=BE+EC=BC=2,△AEF是等边三角形,∴EF=AE,∴△CEF的周长=2+AE,由“垂线段最短”,当AE⊥BC时,AE最短,AE=,∴△CEF的周长=2+12.(1)∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,∵AC,BD为菱形的对角线,∴AC⊥BD,即∠COD=90°,∴平行四边形OCED为矩形.(2)菱形ABCD的周长为20,则菱形的边长为5,即=5,矩形OCED的周长为14,则OC+OD=7,解题OC=3,OD=4,∴AC=6,BD=8,∴菱形的面积为×6×8=24.答:菱形ABCD的面积为2413.由菱形ABCD,得∠BAD=∠BCD=130°,∠BAE=25°,∴∠EAF=105°,又∵AF=CE,AD∥BC,∴四边形AECF是平行四边形,则∠AFC=180°﹣∠EAF=180°﹣105°=75°.14.(1)∵∠ABE=∠CDG,∠AEB=∠CGD,AE=CG,∴△ABE≌△CDG,∴BE=DG,(2)四边形ABFG是菱形,则BF=AB,∵AB:BC=2:3∴FC=AB,∵AE是BC沿BC方向平移,使点E与点C重合,得△GFC.∴BE=FC,∴AB=2BE,∴直角△ABE中,∠BAE=30°,∴∠ABE=60°15.∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵AE⊥BC,BE=CE,∴AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∴∠B=60°,又∵AD∥BC,∴∠BAD=180°﹣∠B=120°16.(1)如图,过E作AD,BC的垂线交AD和CB的延长线于H,G.∵AD∥CB,∴△BGE∽△AHE,∵AB=AD=6,∴AE=BF=5,CF﹣BE=1,令BG=x,GE=y,则EH=5y,AH=5x,在△FGE 中,,在△DEH 中,,根据EF=ED,BE=1,易得EF2=ED2,即有,解得,,∴tan∠A=,∴∠A=60°;(2)由以上求得知,EH=AEsin60°=,,故.17.连接PD,DQ,由已知∠PAC=120°,∠QCA=120°,∴△PAC∽△AMC,△AMC∽△ACQ.∴,.∴AC2=PA•QC,又AC=AD=DC.∴,又∠PAD=∠DCQ=60°,∴△PAD∽△DCQ,∴∠APD=∠CDQ.∴∠PDA+∠ADC+∠CDQ=180°,∴P,D,Q三点共线.18.∵菱形ABCD的周长为20,∴菱形的边长AB=5,由直角三角形的三边关系可得:AO2+BO2=25,又有根与系数的关系可得:AO+BO=2m﹣1,AO•BO=4(m﹣1),∴AO2+BO2=(AO+BO)2﹣2AO•BO=(2m﹣1)2﹣2×4(m﹣1)=25,整理得:4m2﹣12m+9=25,解得:m=4或﹣1(舍去).故m=419.∵四边形ABCD为菱形,∴AD=AB=CD=CB,∠B=∠D.又∵CE=CF,∴CD﹣CE=CB﹣CF,即DE=BF.∴△ADE≌△ABF.∴AE=AF20.菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE 的长为cm21.(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠AEG=∠BFG,在△AEG和△BFG 中,,∴△AEG≌△BFG(AAS),∴AE=BF,∵E是AD中点,∴AE=DE,∴DE=BF;(2)四边形AFBE是平行四边形.理由如下:∵四边形ABCD是菱形,∴AD∥BC,∴AE∥BF,又∵AE=BF,∴四边形AFBE是平行四边形22.(1)∵四边形ABCD是菱形,∴AB=CB=CD=AD,∠B=∠D,∵BE=DF∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD.∴AB=AC=AD,∴AB=AD=BC=CD=AC,∴∠B=60°,∴∠BCD=120°,∴∠EAF=60°,∴△AEF为等边三角形.23.(1)证明:∵∠B+∠C=180°,∠AFE+∠AFD=180°,∠AFE=∠B,∴∠C=∠AFD.∵AD∥BC,∴∠ADF=∠DEC.∵AD=DC,∴△ADF∽△DEC.(2)解:∵AB=4,E为BC的中点,∴BE=2,AE=,DE=.∵△ADF∽△DEC,∴.∴AF=.24.△BEC∽△DCF,∴.∴△BED∽△DBF.∴∠BED=∠DBM.∴∠BME=∠BDM+∠DBM=∠BDM+∠BED=∠ABD= 60°.∴由正弦定理得:2R1=,2R2=.∴R1•R2=•==.25.(1)∵A(0,6),D(﹣8,0),∴OA=6,OD=8,∴由勾股定理可得AD=10,∵四边形ABCD为菱形∴CD=AD=10,∴OC=2,∴C(2,0),(2)∵A(0,6)C(2,0),∴E(1,3),设经过点E 的反比例函数解析式为,将E(1,3)代入求得k=3∴反比例函数解析式为:26.∵点P是AB的中点,∴AP=BP,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠A=∠PBE,∵在△ADP和△BEP中,,∴△ADP≌△BEP(ASA),∴BE=AD,∵AD=CD,∴BE=CD27.(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.28.∵四边形ABCD是菱形,∴BC=CD,AC平分∠BCD,在△BCE和△DCE 中,,∴△BCE≌△DCE(SAS),∴∠EBC=∠EDC,又AB∥DC,∴∠APD=∠EDC,∴∠EBC=∠APD29.(1)∵四边形ABCD是菱形,∴AD=AB=10,∵DH⊥AE,∴∠AHD=90°,在Rt△ADH中,AH===8,∵∠E=∠B,∴AE=AB=10,∴HE=AE﹣AH=10﹣8=2;证明:(2)过点D作DF⊥BC的延长线于点F,连接DE,∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,AD=CD,∴∠1=∠B,∠2=∠3,∵∠B=∠2,∴∠1=∠3,∵DH⊥AE,DF⊥CF,∴∠4=∠F,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,DH=DF,∴在Rt△DEH和Rt△DEF中,,∴Rt△DEH≌Rt△DEF(HL),∴EH=EF,∵CF=CE+EF,∴AH=CE+EH30.(1)证明:连接OA、AC、BD,∵OE⊥AB,OF⊥AD,且OE=OF,∴∠BAO=∠DAO,∵菱形ABCD,∴AC⊥BD,MB=MD,∠BAC=∠DAC,∴O在AC上,∴OB=OD.(2)解:矩形和平行四边形时,结论不成立,等腰三角形时,结论成立,因为:矩形和平行四边形的对角线不一定平分对角,而等腰三角形的三线合一性质,能得出结论成立菱形的性质--11。
八年级数学《菱形》练习题含答案

八年级数学《菱形》练习题随堂演练一、填空题1.菱形的对角线长为24和10,则菱形的边长为 ,周长为 .2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角为 , , , .3.菱形的两条对角线分别为3和7,则菱形的面积为 .4.已知在菱形ABCD 中,E ,F 是BC ,CD 上的点,且AE =EF =AF =AB ,则∠B= .5.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .6.已知菱形的面积等于80cm 2,高等于8cm ,则菱形的周长为 .7.已知菱形ABCD 中AE ⊥BC ,垂足E ,F 分别为BC ,CD 的中点,那么∠EAF 的度数为 .8.顺次连结菱形各边的中点,所得的四边形为 形.二、选择题1.能够判定一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线相等且对角相等C .对角线互相垂直D .两组对角分别相等且一条对角线平分一组对角2.菱形ABCD ,若∠A:∠B =2:1,∠CAD 的平分线AE 和边CD 之间的关系是( )A .相等B .互相垂直且不平分C .互相平分且不垂直D .垂直且平分3.已知菱形ABCD 的周长为40cm ,BD=34AC ,则菱形的面积为( ) A .96cm 2 B .94cm 2 C .92cm 2 D .90cm 24.菱形的周长等于高的8倍,则这个菱形较大内角是( )A .60°B .90°C .120°D .150°5.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .邻边相等的四边形为菱形7.矩形具有而菱形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直8.菱形的对角线把它分成全等的直角三角形的个数是( )A .4个B .3个C .2个D .1个三、解答题1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。
菱形的判定练习题及其详解

菱形的判定01基础题知识点1有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是(C)A.AB=CD B.AD=BCC.AB=BC D.AC=BD第1题图第2题图2.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED 为菱形的是(B)A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°3.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.∴∠FAD=∠EDA.∵AD是∠BAC的平分线,∴∠EAD=∠FAD.∴∠EDA=∠EAD.∴AE=ED.∴四边形AEDF是菱形.知识点2对角线互相垂直的平行四边形是菱形4.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件BO=DO(答案不唯一),使四边形ABCD成为菱形.(只需添加一个即可)5.(2017·岳阳)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD.求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO.∵AC⊥BD,∴AC垂直平分BD.∴AB=AD.∴四边形ABCD为菱形.知识点3四条边相等的四边形是菱形6.(2016·大庆)下列说法正确的是(D)A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形7.(2017·宁夏)在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B 落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.证明:∵AB∥DM,∴∠BAM=∠AMD.由折叠性质得:∠CAB=∠CAD,AB=AD,BM=DM.∴∠DAM=∠AMD.∴DA=DM=AB=BM.∴四边形ABMD是菱形.02中档题8.(2017·聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是(D)A .AB =ACB .AD =BDC .BE ⊥ACD .BE 平分∠ABC9.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是(B )A .矩形B .菱形C .一般的四边形D .平行四边形第9题图 第10题图10.(2016·兰州)如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,则四边形OCED 的面积为(A)A .2 3B .4C .4 3D .811.(2016·沈阳)如图,△ABC ≌△ABD ,点E 在边AB 上,CE ∥BD ,连接DE. 求证:(1)∠CEB =∠CBE ;(2)四边形BCED 是菱形.证明:(1)∵△ABC ≌△ABD ,∴∠ABC =∠ABD.∵CE ∥BD ,∴∠CEB =∠ABD.∴∠CEB =∠CBE.(2)∵△ABC ≌△ABD ,∴BC =BD.由(1)得∠CEB =∠CBE ,∴CE =CB.∴CE =BD.又∵CE ∥BD ,∴四边形BCED 是平行四边形.又∵BC =BD ,∴四边形BCED 是菱形.12.(2016·聊城)如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF ∥BC ,连接DE 并延长交AF 于点F ,连接FC.求证:四边形ADCF 是菱形.证明:∵AF ∥CD ,∴∠AFE =∠CDE.在△AFE 和△CDE 中,⎩⎨⎧∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AFE ≌△CDE(AAS ).∴AF =CD.∵AF ∥CD ,∴四边形ADCF 是平行四边形.∵点E 是AC 的中点,AC =2AB ,∴AE =AB.∵AD 平分∠BAC ,∴∠EAD =∠BAD.又∵AD =AD ,∴△AED ≌△ABD(SAS ).∴∠AED =∠B =90°,即DF ⊥AC.∴四边形ADCF 是菱形.03 综合题13.如图,在四边形ABCD 中,AB ∥CD ,AB ≠CD ,BD =AC.(1)求证:AD =BC ;(2)若E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,求证:线段EF 与线段GH 互相垂直平分.证明:(1)延长DC 至K ,使CK =AB.连接BK.∵AB ∥ CK ,∴四边形ABKC 是平行四边形.∴AC ∥ BK.∴∠ACD =∠K.∵BD =AC ,AC =BK ,∴BD =BK.∴∠BDC =∠K.∴∠ACD =∠BDC.在△ACD 和△BDC 中,⎩⎨⎧AC =BD ,∠ACD =∠BDC ,CD =DC ,∴△ACD ≌△BDC(SAS ).∴AD =BC.(2)分别连接EH ,HF ,FG 和GE. ∵E ,H 分别是AB ,BD 的中点, ∴EH 为△ABD 的中位线.∴EH =12AD. 同理:GF =12AD ,EG =12BC ,HF =12BC. 又由(1)知AD =BC ,∴EH =HF =FG =GE. ∴四边形EHFG 是菱形.∴线段EF 与线段GH 互相垂直平分.。
菱形的判定专项练习30题

菱形的判定专项练习30题(有答案)1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.(1)求证:四边形ABED是菱形;(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.求证:BC=2DN.3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若AB=12cm,求菱形AEDF的周长.4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:AF=DC;(2)若∠BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.(1)求证:四边形ADCE是菱形.(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形.9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.求证:(1)∠B=∠C;(2)▱ADFE是菱形.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB 于G.(1)求证:△AEG≌△AEC;(2)△CEF是否为等腰三角形,请证明你的结论;(3)四边形GECF是否为菱形,请证明你的结论.11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC 于F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.求证:四边形ANCM是菱形.17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF 是菱形吗?说明理由.19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF 为菱形.23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF 交AD于F.(1)求证:AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE 是菱形吗?请说明理由.25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF 交AC于O.(1)AC与EF互相平分吗?为什么?(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.矩形的判定专项练习30题参考答案:1.1)证明:∵点E为BC的中点,∴BE=CE=BC,∵BA=AD=DC=BC,∴AB=BE=ED=AD,∴四边形ABED是菱形;(2)解:过点D作DH⊥BC,垂足为H,∵CD=DE=CE,∴∠DEC=60°,∴∠DBE=30°,在Rt△BDH中,BD=4cm,∴DH=2cm,∵AF=DH,∴AF=2cm.2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN 3.(1)∵D,E分别是BC,AB的中点,∴DE∥AC且DE=AF=AC.同理DF∥AB且DF=AE=AB.又∵AB=AC,∴DE=DF=AF=AE,∴四边形AEDF是菱形.(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF的周长为4×6=24cm.4.(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.5.1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠1=∠2,在△AEF和△DEC 中,∴△AFE≌△DCE(AAS),∴AF=DC;(2)证明:∵D是BC的中点,∴DB=CD=BC,∵AF=CD,∴AF=DB,∵AF∥BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D为BC中点,∴AD=CB=DB,∴四边形AFBD是菱形.6.∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,∴△ABC≌△ABF,且∠BAC=∠BAF=30°,∴∠FAC=60°,∴AD=DC=AC,又∵△ABC≌△EFC,∴CA=CE,又∵∠ECF=60°,∴AC=EC=AE,∴AD=DC=CE=AE,∴四边形ADCE是菱形;(2)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,∴四边形ABCG是矩形8.在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形9.(1)∵在▱ADFE中,AD∥EF,∴∠EHC=∠B(两直线平行,同位角相等).∵EH=EC(已知),∴∠EHC=∠C(等边对等角),∴∠B=∠C(等量代换);(2)∵DE∥BC(已知),∴∠AED=∠C,∠ADE=∠B.∵∠B=∠C,∴∠AED=∠ADE,∴AD=AE,∴▱ADFE是菱形.10.1)证明:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL);(2)解:△CEF是等腰三角形.理由如下:∵CD是AB边上的高,∴CD⊥AB.又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA.又由(1)知,Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,即△CEF是等腰三角形;(3)解:四边形GECF是菱形.理由如下:∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,∴GE=EC=FC.又∵EG∥CD,即GE∥FC,∴四边形GECFR是菱形.11.∵D、E、F分别是△ABC三边的中点,∴DE AC,EF AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.12.∵M、E、分别为AD、BD、的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M.F是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形13.∵AE平分∠BAD,∴∠BAE=∠DAE,…(1分)在△BAE和△DAE中,∵,∴△BAE≌△DAE(SAS)…(2分)∴BE=DE,…(3分)∵AD∥BC,∴∠DAE=∠AEB,…(4分)∴∠BAE=∠AEB,∴AB=BE,…(5分)∴AB=BE=DE=AD,…(6分)∴四边形ABED是菱形.14.∵AB=AC,M、O、N分别是AB、BC、CA 的中点,∴AM=AB=AC=AN,M0∥AC,NO∥AB,且MO=AC=AN,NO=AB=AM(三角形中位线定理),∴AM=MO=AN=NO,∴四边形AMON是菱形(四条边都相等的四边形是菱形)15.证法一:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,EF⊥BC,∴AD∥EF,即AG∥EF,AE∥GF,∴四边形AEFG是平行四边形,∵AE=EF,∴平行四边形AEFG是菱形.证法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE 平分∠ACB,∴AD∥EF,∠4=∠5,AE=EF,∵∠1=180°﹣90°﹣∠4,∠2=180°﹣90°﹣∠5,∴∠1=∠2,∵AD∥EF,∴∠2=∠3,∴∠1=∠3,∴AG=AE,∵AE=EF,∴AG=EF,∵AG∥EF,∴四边形AGFE是平行四边形,∵AE=EF,∴平行四边形AGFE是菱形.16.∵CD∥AB,∴∠FMC=∠FAN,∴∠NAE=∠MCF(等角的余角相等),在△CFM和△AEN中,,∴△CFM≌△AEN(ASA),∴CM=AN,∴四边形ANCM为平行四边形,在△ADM和△CFM中,,∴△ADM≌△CFM(AAS),∴AM=CF,∴四边形ANCM是菱形17.四边形BMDN是菱形.∵AM∥BC,∴∠AMB=∠MBN,∵BM∥FN∴∠MBN=∠BNF,∴∠AMB=∠BNF,又∵∠A=∠F=90°,AB=BF,∴△ABM≌△BFN,∴BM=BN,同理,△EMD≌△CND,∴DM=DN,∵ED=BF=AB,∠E=∠A=90°,∠AMB=∠EMD,∴△ABM≌△EDM,∴BM=DM,∴MB=MD=DN=BN,∴四边形BMDN是菱形18.如图,由于DE∥AC,DF∥AB,所以四边形AEDF为平行四边形.∵DE∥AC,∴∠3=∠2,又∠1=∠2,∴∠1=∠3,∴AE=DE,∴平行四边形AEDF为菱形.19.∵EF是BD的垂直平分线,∴EB=ED,∴∠EBD=∠EDB.∵BD是△ABC的角平分线,∴∠EBD=∠FBD.∴∠FBD=∠EDB,∴ED∥BF.同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.20.方法一:∵AE∥FC.∴∠EAC=∠FCA.(2分)又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.(5分)∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.(8分)∴AF=AE,CF=CE,又∵EA=EC,∴AF=AE=CE=CF.∴四边形AFCE为菱形.(10分)方法二:同方法一,证得△AOE≌△COF.(5分)∴AE=CF.∴四边形AFCE是平行四边形.(8分)又∵EF是AC的垂直平分线,∴EA=EC,∴四边形AFCE是菱形.(10分)方法三:同方法二,证得四边形AFCE是平行四边形.(8分)又EF⊥AC,(9分)∴四边形AFCE为菱形21.(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(5分)(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD =EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为5622.∵四边形ABCD是平行四边形,∴AF∥BE,又∵EF∥AB,∴四边形ABEF为平行四边形,∵AE平分∠BAF,∴∠BAE=∠FAE,∵∠FAE=∠BEA,∴∠BAE=∠BEA,∴BA=BE,∴平行四边形ABEF为菱形23.(1)证明:在矩形ABCD中,∵AB∥CD,∴∠BAC=∠DCA,又∠CAE=∠ACE,∠ACF=∠CAF,∴∠EAC=∠FCA.∴AE∥CF.∴四边形AECF为平行四边形,又∠CAE=∠ACE,∴AE=EC.∴▱AECF为菱形.(2)设BE=x,则EC=AE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2.解之得x=3,所以EC=5,即S菱形AECF=EC×AB=5×4=20.24.四边形AFCE是菱形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴=,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形25.(1)AC与EF互相平分,连接CE,AF,∵平行四边形ABCD,∴AB∥CD,AB=CD,又∵BE=DF,∴AB+BE=CD+DF,∴AE=CF,∴AE∥CF,AE=CF,∴四边形AECF是平行四边形,∴AC与EF互相平分;(2)条件:EF⊥AC,∵EF⊥AC,又∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.26.∵AB=DC AC=BD BC=CB,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴BE=CE,又∵∠BEC的平分线是EF,∴EO是中线(三线合一),∴BO=CO,∴四边形BFCE是平行四边形(对角线互相平分),又∵BE=CE,∴四边形BFCE是菱形.27.(1)证明:∵CF∥BE,∴∠EBD=∠FCD,D是BC边的中点,则BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF.(2)如图所示,由(1)可得CF=BE,又CF∥BE,所以四边形BECF是平行四边形;(3)△ABC是等腰三角形,即AB=AC,理由:当AB=AC时,则有AD⊥BC,又(2)中四边形为平行四边形,所以可判定其为菱形.28.(1)∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)要使得平行四边形ACEF为菱形,则AC=CE 即可,∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,又∵∠BED=∠DEC,∴∠EAC=∠ECA,∴AE=EC,又EB=EC,∴AE=EC=EB,∵CE=AB,∴AC=AB即可,在Rt△ABC中,∠ACB=90°,∴当∠B=30°时,AB=2AC,故∠B=30°时,四边形ACEF为菱形.29.∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO即EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形30.1)解:OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;(2)解:当∠ACB=90°,点O在AC的中点时,∵OE=OF,∴四边形AECF是正方形;(3)答:不可能.解:如图所示,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形练习题及答案一.菱形的定义:有一组邻边相等的平行四边形叫做菱形.二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。
.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。
三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; .四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;.对角线互相垂直平分的四边形是菱形。
四.菱形的面积:等于两条对角线乘积的一半.,周长=边长的4倍复习:1.如图,在△ABC中,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF?DC,连接CF.求证:D是BC的中点;若AB?AC,试猜测四边形ADCF 的形状,并证明.解答:证明:AF∥BC,??AFE??DBE.∵E是AD的中点,?AE?DE.又?AEF??DEB,?△AEF≌△DEB.?AF?DB.∵AF?DC,?DB?DC.解:四边形ADCF是矩形,证明:∵AF∥DC,AF?DC,?四边形ADCF是平行四边形.∵AB?AC,D是BC的中点,?AD?BC.即?ADC?90.?四边形ADCF是矩形.菱形例题讲解:1.已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.解答:四边形AEDF是菱形,∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.2.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=DE,∴∠EDB=∠EBD, ∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD ,∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.3.如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB,求证:四边形EFCD是菱形;设CD=4,求D、F两点间的距离.解答:证明:∵△ABC与△CDE都是等边三角形,∴ED=CD=CE.∵EF∥AB∴∠EFC=∠ACB=∠FEC=60°,∴EF=FC=EC ∴四边形EFCD是菱形.解:连接DF,与CE相交于点G,由CD=4,可知CG=2,∴ ∴.4.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.证明:∵AE∥FC.∴∠EAC=∠FCA.又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.∵EF是AC的垂直平分线.∴四边形AFCE为菱形5.在中,E,F分别为边AB,CD的中点,连接DE,BF,BD.求证:△ADE≌△CBF.若AD?BD,则四边形BFDE是什么特殊四边形?请证明你的结论.解:在平行四边形ABCD中,∠A=∠C,AD=CB,AB=CD.∵E,F分别为AB,CD的中点∴AE=CF , ?△AED≌△CF若AD⊥BD,则四边形BFDE是菱形.证明:AD?BD,?△ABD是Rt△,且AB是斜边,E是AB的中点,?DE?1AB?BE.由题意可EB∥DF且EB?DF,?四边形BFDE是平行四边形,?四边形BFDE是菱形.实战演练1.一菱形周长是20cm,两条对角线的比是4∶3,则这菱形的面积是 A.12cm2B.24cm C.48cm2D.96cm2 2.如图,已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为_____7cm__________.分析:连EB,∵EF垂直平分BD,∴ED=EB,设AE=x,则DE=EB=,AE2+AB2=BE2,即:x2+32=2,解得:x=/83.如图,在菱形ABCD中,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=4.如图,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为___㎝2.5.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,若∠ADC=130°,则∠AOE的大小为6.如图,已知四边形1+第4题7.在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD 的面积为8.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是.9.已知菱形ABCD的两条对角线相交于点O,若AB =,∠BDC =0?,则菱形的面积为10.在四边形ABCD中,给出四个条件:①AB=CD,②AD∥BC,③AC⊥BD,④AC平分∠BAD,由其中三个条件推出四边形ABCD是菱形,你认为这三个条件是①③④或②③④ .11.如图,已知在□ABCD中,AD=2AB,E、F在直线AB 上,CE与AD交与点M, DF与CB交与点N,且AE=AB=BF,求证:CE⊥DF.证明:连接MN,∵□ABCD, ?AB=DC, 又∵AB=AE, ?AE=DC??AEM??CDM,?M为AD的中点. 又∵AD=2AB, ?CD=DM?CDMN是棱形,所以CE⊥DF.12.如图所示,△ABC中,∠ACB=90°,∠ABC的平分线BD?交AC于点D,CH⊥AB于H,且交BD于点F,DE⊥AB 于E,四边形CDEF是菱形吗?请说明理由.D解:解法一:四边形CDEF是菱形.理由:如图所示,BD平分∠ABC,?CD=DE,BHEA因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,??∠3=∠4.?CF=CD.?CF=DE.因为CF//DE.?所以四边形CDEF是平行四边形.所以□CDEF是菱形.13.如图所示,已知△ABC中,AB=AC,D是BC的中点,过点D?作DE⊥AB,DF⊥AC,垂足分别为E,F,再过E,F作EG⊥AC,FH⊥AB,垂足分别为G,H,且EG,?FH相交于点K,试说明EF和DK之间的关系. A解:EF与DK 互相垂直平分.理由:因为DE⊥AB,FH⊥AB,?DE∥FH.? ∵DF⊥AC,EG⊥AC,所以DF∥EG.?四边形DEKF是平行四边形.∵AB=AC,?∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,HG?△BDE≌△CDF,?DE=DF.?DEKF是菱形,?EF与DK互相垂直平分.点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,?要说明四边形DEKF是E菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可. BDC菱形性质练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,ND.M,N2.菱形的周长为4,一个内角为60°,则较短的对角线长为A.B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为A.1B. C.7.D.二.填空题25.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB 的距离OH= _________ .27.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为 cm.6题图题图题图题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为 _________ .9如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=10如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=10题图 12题13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C ﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在 _________ 点.13如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是. 14已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为cm.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是cm.217如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点,且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是 _________ .17题图19题图19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.三.解答题20.如图,四边形ABCD为菱形,已知A,B.求点D的坐标;求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC 交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求∠ABD的度数;求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE.证明:∠APD=∠CBE;若∠DAB=60°,试问P点运动到什么位置时,△ADP 的面积等于菱形ABCD面积的,为什么?25.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?分别求出菱形AQCP的周长、面积.菱形性质经典练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,ND.M,N2.菱形的周长为4,一个内角为60°,则较短的对角线长为A.B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为A.1B. C.7.D.二.填空题25.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB 的距离OH= _________ .27.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm.6题图题图题图题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________ 度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=10题图 12题13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为.12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C ﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是 _________ cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为.216.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是.17.如图,菱形ABCD的对角线的长分别为2和5,P 是对角线AC上任一点,且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是 _________ .17题图 18题图 19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________ .19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.三.解答题20.如图,四边形ABCD为菱形,已知A,B.求点D的坐标;求经过点C的反比例函数解析式.221.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC 交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求∠ABD的度数;求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长. 24.如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE.证明:∠APD=∠CBE;若∠DAB=60°,试问P点运动到什么位置时,△ADP 的面积等于菱形ABCD面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等.连接 _________ ;猜想: _________ = _________ ;证明:26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,N D.M,N 考点:菱形的性质;坐标与图形性质。