八年级数学矩形和菱形练习题拔高

合集下载

苏科版八年级数学下册矩形、菱形、正方形提高练习

苏科版八年级数学下册矩形、菱形、正方形提高练习

A B D C O E 特殊平行四边形提高训练 1、如图所示,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足E ,DE :AD=53,则下列结论正确的个数有 ①cm DE 3= ②cm BE 1= ③菱形的面积215cm ④cm BD 102=( )A . 1个B . 2个C . 3个D . 4个2、已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==, 5PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ED ⊥;④16APD APB S S ∆∆+=+;⑤46ABCD S =+正方形.其中正确结论的序号是( )A .①③④ B .①②⑤C .③④⑤D .①③⑤3、如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG>60°,现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )A .4B .3C .2D .14、边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB′C′D′,两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个风筝的面积是( )。

A .2-33 B .332 C .2-43 D .2 5、矩形ABCD 中,E 、F 、M 为AB 、BC 、CD 边上的点,且AB=6,BC=7,AE=3,DM=2,EF ⊥FM,则EM 的长为( )A .5B .25C .6D .266、如图,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为( )A .10°B .12.5°C .15°D .20°7、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK ∆的面积为( ):(A )10 (B )12 (C )14 (D )168、如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( ) A .1 B . C .4﹣2 D .3﹣49、如图,边长分别为4和8的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长交EG 于点T ,交FG 于点P ,则GT =( )A . B . C 2 D 110、已知菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( )A. 163B.16C. 83D.811、如图,已知菱形ABCD 的一个内角︒=∠80BAD ,对角线AC 、BD 相交于点O ,点E 在AB 上,且BO BE =,则EOA ∠= 度.(第6题图) (第7题图) (第8题图) (第9题图)(第11题图) (第1题图) A P E DCB (第2题图) (第3题图) (第4题图) (第5题图)C D A B E (第12题) (第13题) (第14题) (第15题) (第16题)E B C N M 12.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1, 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.13.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD = 2EC .其中正确结论的序号是 .14. 矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的B’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.15、如图,正方形ABCD 的边长是2,以正方形ABCD 的边AB 为边,在正方形内作等边三角形ABE ,P 为对角线AC 上的一点,则PD +PE 的最小值为_________16、如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .17、某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE 按如图1所示位置放置,现将Rt △AEF 绕A 点按逆时针方向旋转角α(0°<α<90°),如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)求证:AM =AN ;(2)当旋转角α=30°时,四边形ABPF 是什么样的特殊四边形?并说明理由.18、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB ≌△ENB ; ⑵ ①当M 点在何处时,AM +CM 的值最小; ②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.19、(1)如图1,在正方形ABCD 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC 延长线上一点,N 是M N P D C E B A 图1 M N P C B A 图21121∠DCP 的平分线上一点.若∠AMN =90°,求证:AM =MN .下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB 上截取AE =MC ,连ME .正方形ABCD 中,∠B =∠BCD =90°,AB =BC .∴∠NMC =180°—∠AMN -—∠AMB =180°—∠B —∠AMB =∠MAB =∠MAE .(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD ”改为“正三角形ABC ”(如图2),N 是∠ACP 的平分线上一点,则当∠AMN =60°时,结论AM=MN 是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD ”改为“正n 边形ABCD ……X ”,请你作出猜想:当∠AMN =°时,结论AM =MN 仍然成立.(直接写出答案,不需要证明)20、阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm ,AB =6cm .现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当点P 碰到BC 边,沿着与BC 边夹角为45°的方向作直线运动,当点P 碰到CD 边,再沿着与CD 边夹角为45°的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前与边相碰几次,P 点第一次与D 点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形A 1B 1CD .由轴对称的知识,发现P 2P 3=P 2E ,P 1A =P 1E . 请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前与边相碰______次;P 点从A 点出发到第一次与D 点重合时所经过的路径的总长是________cm ;(2)进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD >AB .动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上.若P 点第一次与B 点重合前与边相碰7次,则AB ∶AD 的值为________.。

初中八年级 矩形 拔高题 综合题 压轴题(含答案)

初中八年级 矩形 拔高题 综合题 压轴题(含答案)

初中八年级矩形拔高题综合题压轴题
(含答案)
题目一
题目描述
给定一个矩形的长和宽,求其面积和周长。

解答
假设矩形的长为$L$,宽为$W$,则矩形的面积$A$和周长$P$可以分别计算如下:
面积:$A=L\times W$
周长:$P=2\times(L+W)$
所以,矩形的面积为$A$,周长为$P$。

题目二
题目描述
给定一个矩形的面积和周长,求其长和宽。

解答
假设矩形的面积为$A$,周长为$P$,长为$L$,宽为$W$,那么可以列出如下方程:
面积:$A=L\times W$
周长:$P=2\times(L+W)$
根据上述方程,可以解得矩形的长和宽。

题目三
题目描述
给定一个矩形的长和宽,判断其是否为正方形。

解答
如果一个矩形的长和宽相等,则它是一个正方形。

题目四
题目描述
给定一个矩形的长和宽,求其对角线长度。

解答
假设矩形的长为$L$,宽为$W$,则矩形的对角线长度$D$可以计算如下:
对角线长度:$D=\sqrt{L^2+W^2}$
所以,矩形的对角线长度为$D$。

以上是初中八年级矩形拔高题综合题压轴题的内容。

希望对你有所帮助!。

浙教版杭州八年级下册期中期末复习拓展拔高题-菱形正方形-教用

浙教版杭州八年级下册期中期末复习拓展拔高题-菱形正方形-教用

菱形复习课前测:1.如图,在菱形ABCD中.(1)分别以C,D为圆心,大于CD长为半径作弧,两弧分别交于点E,F;(2)作直线EF交边CD于点M,且直线EF恰好经过点A;(3)连接BM.根据以上作图过程及所作图形,判断下列结论中错误的是()A.∠ABC=60°B.BC=2CMC.S△ABM=2S△ADM D.如果AB=2,那么BM=4【分析】如图,连接AC,证明△ABC,△ACD都是等边三角形即可解决问题.【解答】解:如图,连接AC.由作图可知,EF存在平分线段CD,∴AC=BD,∵四边形ABCD是菱形,∴AD=CD=AB=BC=AC,∴△ABC,△ACD都是等边三角形,∴∠ABC=60°,故A正确,∵BC=CD=2CM,故B正确,∵AB=CD=2DM,AB∥CD,∴AB=2DM,∴S△ABM=2S△ADM,故C正确,故选:D.【点评】本题考查作图﹣复杂作图,等边三角形的判定和性质,菱形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.(2020春•内江期末)下列性质中,菱形所具备而平行四边形却不一定具有的是()A.对角线互相平分B.对角线相等C.邻角相等D.邻边相等【分析】根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.【解析】菱形具备但平行四边形不一定具有的是邻边相等,故选:D.3.如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为.【分析】连接BE,BD,证明△BCD是等边三角形,证得∠ABE=∠CEB=90°,由折叠可得AF=EF,由EF2=BE2+BF2可求出答案.【解答】解:如图,连接BE,BD,∵四边形ABCD为菱形,∠A=60°,∴AB=3=BC=CD,∠A=60°=∠C,∴△BCD是等边三角形,∵E是CD中点,∴DE==CE,BE⊥CD,∠EBC=30°,∴BE=CE=,∵CD∥AB,∴∠ABE=∠CEB=90°,由折叠可得AF=EF,∵EF2=BE2+BF2,∴EF2=+(3﹣EF)2,∴EF=,故答案为:.【点评】本题考查了折叠的性质,菱形的性质,等边三角形的判定与性质,勾股定理,关键是添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度.【菱形性质和判定】例1:.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连接EG.若AE=1,AB=4,则EG=()A.2B.2C.3D.【分析】连接FG,利用菱形的性质和等边三角形的判定和性质得出AF=1,进而利用直角三角形的判定和边长关系解答即可.【解】解:连接FG,∵菱形ABCD,∠ADC=120°,∴∠A=60°,∠ABC=120°,∵点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,∴AE=AF,BF=BG,∴△AEF是等边三角形,∴∠AFE=60°,∵BF=BG,∴△BFG是等腰三角形,∴∠GFB=,∴∠EFG=180°﹣60°﹣30°=90°,∵BF=4﹣1=3,∴FG=2×,∴EG=,故选:B.【点评】此题考查菱形的性质,关键是利用菱形的性质和等边三角形的判定和性质得出AF解答.2..如图,菱形纸片ABCD的边长为2,∠BAC=60°,翻折∠B,∠D,使点B、D两点重合在对角线BD上一点P,EF,GH分别是折痕.设AE=x(0<x<2).(1)证明:AG=BE;(2)当0<x<2时,六边形AEFCHG周长的值是否会发生改变,请说明理由;(3)当0<x<2时,六边形AEFCHG的面积可能等于吗?如果能,求此时x的值;如果不能,请说明理由.【分析】(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D =60°,得到∠B=∠D=60°,于是得到结论;(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=2﹣=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.【解答】解:(1)∵翻折∠B,∠D,使点BD两点重合在对角线BD上一点P,∴BE=EP,BF=PF,∵BD平分∠ABC,∴BE=BF,∴四边形BFPE是菱形,同理,四边形DGPH是菱形,∴AB∥CD∥FG,BC∥EH∥AD,∴四边形AEPG为平行四边形,∴AG=EP=BE;(2)不变,∵AG=BE,四边形BEPF是菱形,∴BE=BF,AE=FC,∵∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠D=60°,∴△ABC是等边三角形,∴∠B=∠D=60°,∴EF=BE,GH=DG,∴六边形AEFCHG周长=AE+EF+FC+CH+GH+AG=3AB=6,故六边形AEFCHG周长的值不变;(3)能,理由:记AC与BD交于点O,∵AB=2,∠BAC=60°,∴∠ABD=30°,∴AO=1,BO=,∴S△ABC=2×=,∴S四边形ABCD=2,当六边形AEFCHG的面积等于时,S△BEF+S△DGH=2﹣=,∵BE=AG,∴AE=DG,∵DG=x,∴BE=2﹣x,设GH与BD交于点M,∴GM=x,∴S△DGH=x2,同理S△EFB=(2﹣x)2=x+x2,即x2+x2﹣x+=,解得:x1=1﹣,x2=1+,即当x=1﹣或x=1+时,六边形AEFCHG的面积可能等于.【点评】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.练习:1.如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为8,最小值为8,则菱形ABCD的边长为()A.4B.10C.12D.16【分析】过点C作CH⊥AB,交AB的延长线于H,由题意可得当点P与点A重合,点Q与点C重合时,PQ有最大值,即AC=8,当PQ⊥BC时,PQ有最小值,即直线AC,直线BD的距离为8,由面积法可求CH=8,由勾股定理可求解.【解答】解:如图,过点C作CH⊥AB,交AB的延长线于H,∵四边形ABCD是菱形,∴AD=AB=BC,∵点P,Q分别是菱形ABCD的边AD,BC上的两个动点,∴当点P与点A重合,点Q与点C重合时,PQ有最大值,即AC=8,当PQ⊥BC时,PQ有最小值,即直线AD,直线BC的距离为8,∵S菱形ABCD=AD×8=AB×CH,∴CH=8,∴AH===16,∵BC2=CH2+BH2,∴BC2=(16﹣BC)2+64,∴BC=10,故选:B.【点评】本题考查了菱形的性质,勾股定理,添加恰当辅助线构造直角三角形是本题的关键.2.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为4﹣或.【分析】连接AC交BD于O,由菱形的性质可得AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,可证四边形BEGF是菱形,可得∠ABG=30°,可得点B,点G,点D三点共线,由直角三角形性质可求BD=4,AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【解答】解:如图,连接AC交BD于O,∵菱形ABCD的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,∵EG∥BC,FG∥AB,∴四边形BEGF是平行四边形,又∵BE=BF,∴四边形BEGF是菱形,∴∠ABG=30°,∴点B,点G,点D三点共线,∵AC⊥BD,∠ABD=30°,∴AO=AB=2,BO=AO=2,∴BD=4,AC=4,同理可求BG=BE,若AD=DG'=4时,∴BG'=BD﹣DG'=4﹣4,∴BE'=4﹣,若AG''=G''D时,过点G''作G''H⊥AD于H,∴AH=HD=2,∵∠ADB=30°,G''H⊥AD,∴HG''=,DG''=2HG''=,∴BG''=BD﹣DG''=,∴BE''=,综上所述:BE为4﹣或.【点评】本题考查了菱形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.3.已知,如图1,四边形ABCD是一张菱形纸片,其中∠A=45°,把点A与点C分别折向点D,折痕分别为EG和FH,两条折痕的延长线交于点O.(1)请在图2中将图形补充完整.(2)求∠EOF的度数.(3)判断四边形DGOH也是菱形吗?请说明理由.【分析】(1)依照题意画出图形;(2)由菱形的性质可得AD=CD,∠A=∠C=45°,∠ADC=135°,由折叠的性质可得AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C =∠CDH=45°,由四边形的内角和定理可求解;(3)由题意可证GE∥DH,GD∥HF,可证四边形DGOH是平行四边形,由“ASA”可证△DEG≌△DFH,可得DG=DH,即可证四边形DGOH是菱形.【解答】解:(1)如图所示:(2)延长EG,FH交于点O,∵四边形ABCD是菱形,∠A=45°,∴AD=CD,∠A=∠C=45°,∠ADC=135°,∵把△AEG翻折,使得点A与点D重合,折痕为EG;把△CFH翻折,使得点C与点D 重合,折痕为FH,∴AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,∵∠EOF+∠OED+∠OFD+∠ADC=360°,∴∠EOF=360°﹣90°﹣90°﹣135°=45°;(3)∵∠ADC=135°,∠ADG=∠CDH=45°,∴∠GDC=∠ADH=90°,且GE⊥AD,HF⊥CD,∴GE∥DH,GD∥HF,∴四边形DGOH是平行四边形,∵AE=DE=AD,DF=FC=CD,AD=CD,∴DE=DF,且∠ADG=∠CDH=45°,∠DEG=∠DFH=90°,∴△DEG≌△DFH(ASA)∴DG=DH,∴四边形DGOH是菱形.【点评】本题考查了翻折变换,菱形的判定和性质,全等三角形的性质,灵活运用折叠的性质是本题的关键.4.如图,在△ABC中,AB=AC,延长中线AD到点E,作∠AEF=45°,点P从点E开始沿射线EF方向以cm/秒的速度运动,设运动时间为t秒(0<t<6).过点P作PQ⊥AE,垂足是点Q,连接BQ,CQ.若BC=4cm,DE=6cm,且当t=2时,四边形ABQC 是菱形.(1)求AB的长.(2)若四边形ABQC的一条对角线等于其中一边,求t的值.【分析】(1)根据题意,可以求得DQ和CD的长,从而可以得到CQ的长,再根据四边形ABQC是菱形,从而可以得到AB的长;(2)根据题意,利用分类讨论的方法,可以求得t的值,注意t的取值范围.【解答】解:(1)当t=2时,EQ=×2×sin45°=2,∵DE=6,∴DQ=4,∵AB=AC,AD是△ABC的中线,∴AD垂直平分BC,∴∠CDQ=90°,∵BC=4,∴CD=2,∴CQ=2,∵当t=2时,四边形ABQC是菱形,∴AB=CQ=2,即AB的长是2cm;(2)当BC=CQ时,∵BC=4,∴CQ=4,∵CD=2,∠CDQ=90°,∴DQ==2,∴EQ=DE﹣DQ=6﹣2,∵EQ=t×sin45°,解得,t=(6﹣2);当AB=AQ时,则AQ=2,∵AB=2,BD=2,∠ADB=90°,∴AD=4,∴DQ=AQ﹣AD=2﹣4,∴EQ=DE﹣DQ═6﹣(2﹣4)=10﹣2,∵EQ=t×sin45°,解得,t=10﹣2;当AB=BC时,不成立;当CQ=AQ时,∵CQ==,AQ=AD+DQ=4+(6﹣t)=10﹣t,∴=10﹣t,解得,t=7.5(舍去),综上所述,t的值是6﹣2或10﹣2.【点评】本题考查菱形的判定与性质、勾股定理、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,在菱形ABCD中,E为对角线BD上一点,且AE⊥AB,连接CE.(1)求证:∠ECB=90°;(2)若AE═ED=1时,求菱形的边长.【分析】(1)由菱形的性质可得AB=BC,∠ABD=∠CBD,由“SAS”可证△ABE≌△CBE,可得结论;(2)连接AC交BD于H,由菱形的性质可得AB=AD,AC⊥BD,BH=DH,AH=CH,由等腰三角形的性质和三角形内角和定理可求∠DAE=∠ADE=∠ABD=30°,利用直角三角形的性质可求解.【解答】证明:(1)∵AE⊥BA,∴∠BAE=90°,∵四边形ABCD是菱形,∴AB=BC,∠ABD=∠CBD,又∵BE=BE,∴△ABE≌△CBE(SAS),∴∠BAE=∠BCE=90°;(2)如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,BH=DH,AH=CH,∴∠ABD=∠ADB,∵AE═ED=1,∴∠DAE=∠EDA,∴∠DAE=∠ADE=∠ABD,∵∠DAE+∠ADE+∠BAE+∠ABD=180°,∴∠DAE=∠ADE=∠ABD=30°,∴BE=2AE=2,∴BD=BE+DE=3,∴BH=DH=,∵∠ABD=30°,AH⊥BD,∴AB=2AH,BH=AH,∴AH=,AB=2AH=,∴菱形的边长为.方法二,同理可求∠ABE=30°,∴BE=2AE=2,∴AB==.【点评】本题考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.【正方形性质和判定】课前练习1.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.【解析】对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.2.(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直【分析】根据正方形的性质以及菱形的性质即可判断.【解析】正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的对角线不一定相等,而正方形的对角线一定相等.故选:B.例1:.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为2的等边三角形,则正方形的边长是()A.B.+1C.+D.【分析】由“HL”可证Rt△ABE≌Rt△ADF,可得∠BAE=∠DAF=15°,作∠AEH=∠BAE=15°,交AB于H,由直角三角形的性质可得HE=2BE=AH,BH=BE,由勾股定理可求解.【解答】解:∵△AEF是边长为2的等边三角形,∴∠EAF=60°,AE=AF,∴∠BAE+∠DAF=30°,∵AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=15°,如图,作∠AEH=∠BAE=15°,交AB于H,∴∠BHE=30°,AH=HE,∴HE=2BE=AH,BH=BE,∴AB=(2+)BE,∵AE2=BE2+AB2,∴4=BE2+(2+)2×BE2,∴BE=(﹣1)=,∴AB=(2+)BE=,故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,练习:1.如图,正方形ABCD的边长为6,E是边AB的中点,F是边AD上的一个动点,EF=GF,且∠EFG=90°,则GB+GC的最小值为3.【分析】如图,取AD的中点M,连接GM,延长MG交BC的延长线于J,在AB上截取AN,使得AN=AF,连接FN.作点C关于GJ的对称点K,连接GK,BK.利用勾股定理求出BK的值即可解决问题.【解答】解:如图,取AD的中点M,连接GM,延长MG交BC的延长线于J,在AB 上截取AN,使得AN=AF,连接FN.作点C关于GJ的对称点K,连接GK,BK.∵四边形ABCD是正方形,∴AD=AB,∵AM=MD.AE=EB,∴AM=AE,∵AF=AN,∴FM=NE,∵∠A=∠GFE=90°,∴∠AFE+∠AEF=90°,∠AFE+∠GFM=90°,∴∠GFM=∠FEN,∵FG=FE,∴△FGM≌△EFN(SAS),∴∠GMF=∠ENF,∵∠ANF=∠AFN=45°,∴∠GMF=∠FNE=135°,∴∠DMG=45°,设MJ交CD于R,∵∠D=∠JCR=90°,∴∠DMR=∠DRM=∠CRJ=∠CJR=45°,∴DM=DR=CR=CJ=3,∵C,K关于MJ对称,∴KJ=CJ=2,∠MJK=∠MJC=45°,GC=GK,∴∠KJB=90°,∴BK===3,∵GC+GB=GK+GB≥BK,∴GC+GB≥3,∴GC+GB的最小值为3.故答案为3.【点评】本题考查正方形的性质,旋转变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最值问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,E为边AD上一动点,连接BE,CE,以CE为边向右侧作正方形CEFG.(1)若BE=5,则正方形CEFG的面积为17;(2)连接DF,DG,则△DFG面积的最小值为6.【分析】(1)利用勾股定理求出EC2即可解决问题.(2)连接DF,DG.设DE=x,则CE=,根据S△DEC+S△DFG=S正方形ECGF 根据函数关系式,利用二次函数的性质求解即可.【解答】解:(1)∵四边形ABCD是正方形,∴AB=AD=4,∠A=∠ADC=90°,∵BE=5,∴AE===3,∴DE=AD﹣AE=4﹣3=1,∴EC2=DE2+CD2=12+42=17,∴正方形CEFG的面积=EC2=17.故答案为17.(2)连接DF,DG.设DE=x,则CE=,∵S△DEC+S△DFG=S正方形ECGF,∴S△DFG=(x2+16)﹣×x×4=x2﹣2x+8=(x﹣2)2+6,∵>0,∴x=2时,△DFG的面积的最小值为6.故答案为6.【点评】本题考查了二次函数的性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.3.如图1,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE交对角线BD 于点G,GF⊥AE交BC于点F.(1)求证:AG=FG.(2)若AB=10,BF=4,求BG的长.(3)如图2,连接AF,EF,若AF=AE,求正方形ABCD与△CEF的面积之比.【分析】(1)由“SAS”可证△ABG≌△CBG,可得AG=CG,∠BAG=∠BCG,由四边形内角和定理可证∠BCG=∠GFC,可得GC=GF=AG;(2)过点G作GH⊥BC于H,利用勾股定理可求GH的长,即可求解;(3)在AB上截取BF=BN,连接NF,由“HL”可证Rt△ABF≌Rt△ADE,可得∠BAF =∠DAE=22.5°,BF=DE,可得FC=BF,即可求解.【解答】证明:(1)连接GC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠ABD=∠CBD=45°,又∵BG=BG,∴△ABG≌△CBG(SAS),∴AG=CG,∠BAG=∠BCG,∵∠ABC+∠BAG+∠AGF+∠BFG=360°,且∠ABC=∠AGF=90°,∴∠BAG+∠BFG=180°,∴∠BCG+∠BFG=180°,∵∠BFG+∠GFC=180°,∴∠BCG=∠GFC,∴GC=GF,∴AG=FG;(2)如图2,过点G作GH⊥BC于H,∵AB=10,BF=4,∴AF2=AB2+BF2=AG2+GF2,∴GF2=58,∵∠DBC=45°,GH⊥BC,∴BH=GH,BG=GH,∵GF2=GH2+FH2,∴58=GH2+(GH﹣4)2,∴GH=7,(负值舍去),∴BG=7;(3)如图,在AB上截取BF=BN,连接NF,∵AG=GF,AG⊥GF,∴∠EAF=45°,∵AE=AF,AB=AD,∴Rt△ABF≌Rt△ADE(HL),∴∠BAF=∠DAE=22.5°,BF=DE,∴CF=CE,∵BF=BN,∠ABC=90°,∴NF=BF,∠BNF=∠BFN=45°,∴∠BAF=∠AFN=22.5°,∴AN=NF=BF,∵AB=BC,∴BN+AN=BF+FC,∴FC=BF,∴BC=(+1)BF,∴正方形ABCD与△CEF的面积之比=BC2:FC2=3+2:1.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,直角三角形的性质等知识,添加恰当辅助线是本题的关键.4.如图,正方形ABCD边长为8,E,F分别是BC,CD上的点,且AE⊥BF.(1)求证:AE=BF.(2)若AF=10,求AE的长.【分析】(1)由正方形的性质可得∠ABC=90°=∠C,AB=BC,由余角的性质可得∠BAE=∠CBF,可证△ABE≌△BCF,可得AE=BF;(2)由勾股定理可求DF=6,可得FC=2,由勾股定理可求AE=BF=2.【解答】证明;(1)∵四边形ABCD是正方形,∴∠ABC=90°=∠C,AB=BC,∴∠ABF+∠CBF=90°,∵AE⊥BF,∴∠ABF+∠BAE=90°,∴∠BAE=∠CBF,∴△ABE≌△BCF(ASA),∴AE=BF;(2)∵AF=10,AD=8,∴DF===6,∴CF=8﹣6=2,∴BF===2,∴AE=2.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证明△ABE ≌△BCF是本题的关键.【课堂练习】1.如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则(1)AB的长为4.(2)PM+PN的最小值为2.【分析】(1)过点A作AG⊥BC,垂足为G,依据等腰三角形的性质可得到∠BAC=30°,设AB=x,则AG=,BC=x,然后依据三角形的面积公式列方程求解即可;(2)作点A关于BC的对称点A′,取CN=CN′,则PN=PN′,过点A′作A′D⊥AB,垂足为D,当N′、P、M在一条直线上且MN′⊥AB时,PN+PM有最小值,其最小值=MN′=DA′.【解答】解:(1)如图所示:过点A作AG⊥BC,垂足为G.∵AB=AC,∠BAC=120°,∴∠ABC=30°.设AB=x,则AG=,BG=x,则BC=x.∴BC•AG=•x•x=8,解得:x=4.∴AB的长为4.故答案为:4.(2)如图所示:作点A关于BC的对称点A′,取CN=CN′,则PN=PN′,过点A′作A′D⊥AB,垂足为D.当N′、P、M在一条直线上且MN′⊥AB时,PN+PM有最小值.最小值=MN′=DA′=AB=2.故答案为:2.【点评】本题主要考查的是翻折的性质、轴对称﹣最短路径、垂线段的性质,将PM+PN 的长度转化为A′D的长度是解题的关键.2.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是3.【分析】如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.【解答】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.【点评】本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图,平行四边形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC 于点F,且AE=DF.(1)求证:四边形ABCD是矩形.(2)若∠BAE:∠EAD=2:3,求∠EAO的度数.【分析】(1)证△AEO≌△DFO(AAS),得出OA=OD,则AC=BD,即可得出四边形ABCD是矩形.(2)由矩形的性质得出∠ABC=∠BAD=90°,OA=OB,则∠OAB=∠OBA,求出∠BAE=36°,则∠OBA=∠OAB=54°,即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AE⊥BD于点E,DF⊥AC于点F,∴∠AEO=∠DFO=90°,在△AEO和△DFO中,,∴△AEO≌△DFO(AAS),∴OA=OD,∴AC=BD,∴四边形ABCD是矩形.(2)解:由(1)得:四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OA=OB,∴∠OAB=∠OBA,∵∠BAE:∠EAD=2:3,∴∠BAE=36°,∴∠OBA=∠OAB=90°﹣36°=54°,∴∠EAO=∠OAB﹣∠BAE=54°﹣36°=18°.4.如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD 于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM =MN;②MP=;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④【分析】①正确.只要证明△AME≌△NMF即可;②正确.只要证明△AOM≌△MPN即可;③错误.只要证明∠ADQ≌△ABH,由此推出△ANQ≌△ANH即可;④正确.只要证明△AME≌△NMF,四边形EMFB是正方形即可解决问题;【解答】解:连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.∵四边形ABCD是正方形,∴AC⊥BD,AC=AD=2,OA=OC=,∠DBA=∠DBC=45°,∴ME=MF,∵∠MEB=∠MFB=∠EBF=90°,∴四边形EMFB是矩形,∵ME=MF,∴四边形EMFB是正方形,∴∠EMF=∠AMN=90°,∴∠AME=∠NMF,∵∠AEM=∠MFN=90°,∴△AME≌△NMF(ASA),∴AM=MN,故①正确,∵∠OAM+∠AMO=90°,∠AMO+∠NMP=90°,∴∠AMO=∠MNP,∵∠AOM=∠NPM=90°,∴△AOM≌△MPN(AAS),∴PM=OA=,故②正确,∵DQ=BH,AD=AB,∠ADQ=∠ABH=90°,∴∠ADQ≌△ABH(SAS),∴AQ=AH,∠QAD=∠BAH,∴∠BAH+∠BAQ=∠DAQ+∠BAQ=90°,∵AM=MN,∠AMN=90°,∴∠MAN=45°,∴∠NAQ=∠NAH=45°,∴△ANQ≌△ANH(SAS),∴NQ=NH=BN+BH=BN+DQ,∴△CNQ的周长=CN+CQ+BN+DQ=4,故③错误,∵BD+2BP=2BO+2BP=2AO+2BP=2PM+2BP,∴BD+2BP=2BM,故④正确.故选:C.【点评】本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.5.如图,在平行四边形ABCD中,点O是对角线BD的中点,过点O作线段EF,使点E 点F分别在边AD,BC上(不与四边形ABCD顶点重合),连接EB,EC.设ED=kAE,下列结论:①若k=1,则BE=CE;②若k=2,则△EFC与△OBE面积相等;③若△ABE≌△FEC,则EF⊥BD.其中正确的是()A.①B.②C.③D.②③【分析】①若k=1,则AE=DE,进而证明△ODE≌△OBF,得F为BC的中点,再根据EF不一定垂直BC,便可判断正误;②若k=2,则S△BEF=2S△EFC,因为OE=OF,△EFC与△OBE面积相等即可得证;③若△ABE≌△FEC,可证EC是∠BED的角平分线,若EF⊥BD,则EF是∠BED的角平分线,便可判断正误.【解答】解:①若k=1,则AE=DE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OED=∠OFB,∵OD=OB,∠DOE=∠BOF,∴△ODE≌△OBF(AAS),∴DE=BF,∵DE=AE=∴BF=,∵EF不一定垂直BC,∴BE不一定等于CE,故①错误;②∵△ODE≌△OBF,∴DE=BF,OE=OF,∵AD=BC,∴AE=CF,∵k=2,ED=kAE,∴BF=2CF,∴△BEF的面积=2×△EFC的面积,∵OE=OF,∴△BEF的面积=2×△OBE的面积,∴△EFC与△OBE面积相等,故②正确;③∵△ABE≌△FEC,∴BE=EC,∵BE不一定等于ED,∴EF不一定垂直BD,故③错误;综上所述,正确的是②,故选:B.6.如图,在平行四边形ABCD中,对角线AC,BD交于点O,BD=2AD,点E,F,G分别是OA,OB,CD的中点,EG交FD于点H.下列4个结论中说法正确的有()①ED⊥CA;②EF=EG;③FH=FD;④S△EFD=S△CED.A.①②B.①②③C.①③④D.①②③④【分析】由等腰三角形“三线合一”得ED⊥CA,根据三角形中位线定理可得EF=AB;由直角三角形斜边上中线等于斜边一半可得EG=CD,即可得EF=EG;连接FG,可证四边形DEFG是平行四边形,即可得FH=FD,由三角形中位线定理可证得S△OEF =S△AOB,进而可得S△EFD=S△OEF+S△ODE=S▱ABCD+S▱ABCD=S▱ABCD,证出得S△EFD=S△CEG.得出S△EFD=S△CED,即可得出结论.【解答】解:连接FG,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E、F、G分别是OA、OB、CD的中点,∴EF∥AB,EF=AB,∵∠CED=90°,CG=DG=CD,∴EG=CD,∴EF=EG,故②正确;∵EF∥CD,EF=DG,∴四边形DEFG是平行四边形,∴FH=DH,即FH=FD,故③正确;∵△OEF∽△OAB,∴S△OEF=S△AOB,∵S△AOB=S△AOD=S▱ABCD,S△ACD=S▱ABCD,∴S△OEF=S▱ABCD,∵AE=OE,∴S△ODE=S△AOD=S▱ABCD,∴S△EFD=S△OEF+S△ODE=S▱ABCD+S▱ABCD=S▱ABCD,∵=,∴CE=AC,∴S△CDE=S△ACD=S▱ABCD,∵CG=DG,∴S△CEG=S△CDE=S▱ABCD,∴S△EFD=S△CEG,∴S△EFD=S△CED,故④正确;故选:D.7.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)求证:AF∥CH.(2)若AB=2,AE=2,试求线段PH的长.(3)如图②,连接CP并延长交AD于点Q,若点H是BP的中点,试求的值.【分析】(1)证明△ABE≌△DAF(SAS),得出∠ABE=∠DAF,得出∠APB=90°,可得出结论;(2)根据三角形ABE的面积可求出AP=,证明△ABP≌△BCH(AAS),由全等三角形的性质得出BH=AP=,则PH=BP﹣BH=BP﹣AP,可求出答案;(3)证得∠CBP=∠CPB,∠QPE=∠QEP,可得出QE=QP=QA,在四边形QABC中,设QP=a,CP=b,则AB=BC=b,AQ=a,QC=a+b,由b2+(b﹣a)2=(a+b)2可得出a,b的关系式,则可求出答案.【解答】(1)证明:在正方形ABCD中,AB=DA,∠EAB=∠D=90°,又∵AE=DF,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,又∵∠DAF+∠F AB=∠EAB=90°,∴∠ABE+∠F AB=90°,∴∠APB=90°,∴AF⊥BE,又∵CH⊥BE,∴AF∥CH;(2)解:在正方形ABCD中,∠EAB=90°,AB=2,AE=2,∴BE===4,∵S△ABE=AB•AE=BE•AP,∴AP==,在Rt△ABP中,BP===3,∵∠APB=∠ABC=90°,∴∠ABP+∠HBC=90°,∠HCB+∠HBC=90°,∴∠ABP=∠HCB,∵CH⊥BE,∴∠HCB=90°,又∵AB=BC,∴△ABP≌△BCH(AAS),∴BH=AP=,∴PH=BP﹣BH=BP﹣AP=3﹣.(3)解:在正方形ABCD中,AB=BC,AD∥BC,∵CH⊥BP,PH=BH,∴CP=BC,∴∠CBP=∠CPB,∵∠CPB=∠QPE,∠CBP=∠QEP,∴∠QPE=∠QEP,在Rt△APE中,∠QAP=∠QP A,∴QE=QP=QA,在四边形QABC中,设QP=a,CP=b,则AB=BC=b,AQ=a,QC=a+b,∵DC2+DQ2=CQ2,∴b2+(b﹣a)2=(a+b)2,∴b2=4ab,即b=4a,∴=4.8.正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连接CE.(1)已知点F在线段BC上①若AB=BE,求∠DAE度数;②求证:CE=EF(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.【分析】(1)①先求得∠ABE的度数,然后依据等腰三角形的性质和三角形内角和定理求得∠BAE的度数,然后可求得∠DAE度数;②先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;(2)当点F在BC上时,过点E作MN⊥BC,垂足为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;当点F在CB的延长线上时,先根据题意画出图形,然后再证明EF=EC,然后再按照上述思路进行解答即可.【解答】解:(1)①∵ABCD为正方形,∴∠ABE=45°.又∵AB=BE,∴∠BAE=×(180°﹣45°)=67.5°.∴∠DAE=90°﹣67.5°=22.5°②证明:∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.(2)如下图所示:过点E作MN⊥BC,垂足为N,交AD于M.∵CE=EF,∴N是CF的中点.∵BC=2BF,∴=.又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED=DM=CN=.如下图所示:过点E作MN⊥BC,垂足为N,交AD于M.∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC=3,∴CN=,∴EN=BN=,∴DE=.综上所述,ED的长为或【点评】本题主要考查的是正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.9.如图,在线段AB的同侧作射线AC和BD,当AC∥BD时,若∠CAB与∠DBA的角平分线分别交射线BD,AC于点E,F,两条角平分线相交于点P,连接EF.(1)试判断四边形ABEF的形状并给予证明;(2)若AB=BF=2,在线段AE上取一点G,点G关于点P的对称点为点H,问线段AG的长为多少时?以F,G,B,H为顶点的四边形是正方形.【分析】(1)先根据角平分线的定义和平行线的性质证明AE⊥BF,AB=BE,由AC∥BD,根据一组对边平行且相等的四边形是平行四边形,由对角线互相垂直的平行四边形是菱形,可得结论;(2)由菱形的性质得到AF=AB,推出△ABF是等边三角形,得到∠BAF=60°,求得AP=,根据正方形的性质得到PG=PH=1,于是得到结论.【解答】解:(1)四边形ABEF是菱形,理由是:∵AE平分∠F AB,BF平分∠ABE,∴∠F AP=∠P AB=∠F AB,∠PBA=∠ABE,∵AC∥BD,∴∠F AB+∠ABE=180°,∠F AP=∠BEP,∴∠P AB+∠PBA=90°,∠BAP=∠PEB,∴∠APB=90°,AB=BE,∴AE⊥BF,∵∠F AP=∠BAP,∠APF=∠APB=90°,∴∠AFP=∠ABP,∴AF=AB=BE,∴四边形ABEF是菱形;(2)∵四边形ABEF是菱形,∴AF=AB,∵AB=BF=2,∴△ABF是等边三角形,∴∠BAF=60°,∴∠F AP=30°,∴AP=,∵以F,G,B,H为顶点的四边形是正方形,∴HG=BF=2,∴PG=PH=1,∵在线段AE上取一点G,点G关于点P的对称点为点H,∴点G在线段AP上或线段PE上,∴AG=﹣1或+1.∴线段AG的长为﹣1或+1,以F,G,B,H为顶点的四边形是正方形.【点评】本题考查了正方形的判定,菱形的判定和性质,角平分线的定义,对称的性质,正确的理解题意是解题的关键.9.如图,在正方形ABCD中,对角线AC上有一点E,连接BE,作EF⊥BE交AD于点F.过点E作直线CD的对称点G,连接CG,DG,EG.(1)求证:△BEC≌△DGC;(2)求证:四边形FEGD为平行四边形;(3)若AB=4,▱FEGD有可能成为菱形吗?如果可能,此时CE长;如果不可能,请说明理由.【分析】(1)由正方形的性质得出BC=CD,∠BCA=∠DCA=45°,AD∥DC,由轴对称的性质得出EC=GC,∠DCG=∠DCA=45°,EG⊥CD,得出∠BCE=∠DCG,即可得出△BEC≌△DGC;(2)证出EG∥DF∥BC,由平行线的性质得出∠EGC=∠GEC=∠ACB=45°,得出∠DGE=∠DGC﹣45°,由全等三角形的性质得出∠DGC=∠BEC,得出∠DGE+∠FEG =∠DGC﹣45°=180°,证出EF∥DG,即可得出结论;(3)过E作MN⊥AD于N,MN⊥BC于M,证明△BME≌△ENF得出BE=EF,由正方形的性质得出BE=DE,得出DE=EF,当四边形GD为菱形时,DF=EF,证出△DEF 是等边三角形,得出∠EBM=∠FEN=∠FED=30°,设CM=x,则EM=x,由直角三角形的性质得出BM=x,得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCA=∠DCA=45°,AD∥DC,∵点E与点G关于直线CD对称,∴EC=GC,∠DCG=∠DCA=45°,EG⊥CD,∴∠BCE=∠DCG,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS);(2)证明:∵EG⊥CD,AD⊥DC,AD∥BC,∴EG∥DF∥BC,∴∠EGC=∠GEC=∠ACB=45°,∴∠DGE=∠DGC﹣45°,∵BE⊥EF,∴∠FEG=360°﹣90°﹣45°﹣∠BEC=225°﹣∠BEC,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGE+∠FEG=∠DGC﹣45°=180°,∴EF∥DG,∴四边形FEGD为平行四边形;(3)解:过E作MN⊥AD于N,MN⊥BC于M,如图所示:则∠EBM+∠BEM=90°,∵EF⊥BE,∴∠BEM+∠FEN=90°,∴∠EBM=∠FEN,∵BM=AN,AN=EN,∴BM=EN,在△BME和△ENF中,,∴△BME≌△ENF(ASA),∴BE=EF,∵四边形ABCD是正方形,∴B、D关于AC对称,∴BE=DE,∴DE=EF,当四边形GD为菱形时,DF=EF,∴△DEF是等边三角形,∴∠EBM=∠FEN=∠FED=30°,设CM=x,则EM=x,∵∠EBM=30°,∴BM=x,∵四边形ABCD为正方形,AB=4,∴BC=BM+EM=(+1)x=4,解得:x=2(﹣1),∴CE=x=2﹣2.【点评】本题是四边形综合题目,考查了正方形的性质、轴对称的性质、全等三角形的判定和性质、平行四边形的判定、等边三角形的判定与性质、直角三角形的性质、平行线的性质等知识;本题综合性强,证明三角形全等是解题的关键.。

人教版八年级数学下《菱形》拔高练习

人教版八年级数学下《菱形》拔高练习

《菱形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有个()A.0B.1C.2D.32.(5分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A.(4,5)B.(5,4)C.(4,4)D.(5,3)3.(5分)如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE ∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP4.(5分)若菱形ABCD的对角线AC、BD的长分别是5cm、12cm,则菱形ABCD 的面积是()A.30 cm2B.36 cm2C.48 cm2D.60cm25.(5分)如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.2D.2二、填空题(本大题共5小题,共25.0分)6.(5分)菱形的两邻角之比为1:2,一条较短的对角线长为6cm,则另一条对角线长为,这个菱形的面积为.7.(5分)如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC 于点F,垂足为E,连接BF、DF,则∠DFC的度数是.8.(5分)如图,将△ABC沿射线BC方向平移得到△DCE,当△ABC满足条件时(填一个条件),能够判定四边形ACED为菱形.9.(5分)如图,在▱ABCD中,E,F分别是AB,CD中点.当▱ABCD满足时,四边形EHFG是菱形.10.(5分)如图所示,菱形ABCD的对角线的长分别为3和6,P是对角线AC 上任一点(点P不与点A.C重合),且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE ∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.12.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.13.(10分)如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形.14.(10分)如图,在△ABC中,点D、E分别是AB、AC的中点,连接BE,有BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若△ABC中BC=5,AC=12,求菱形BCFE的面积.15.(10分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.《菱形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有个()A.0B.1C.2D.3【分析】由在▱ABCD中,O为AC的中点,易证得四边形AFCE是平行四边形;然后由一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠CFO,∵O为AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,∴四边形AFCE是平行四边形;①∵OE=OA,∴AC=EF,∴四边形AFCE是矩形;故错误;②∵EF⊥AC,∴四边形AFCE是菱形;故正确;③∵AC⊥AB,AB∥CD,∴AC⊥CD,∵E为AD中点,∴AE=CE=AD,∴四边形AFCE是菱形;故正确.故选:C.【点评】此题考查了菱形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.首先证得四边形AFCE是平行四边形是解决问题的关键.2.(5分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A.(4,5)B.(5,4)C.(4,4)D.(5,3)【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故选:B.【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.3.(5分)如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE ∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP【分析】根据菱形的性质解答即可.【解答】解:∵四边形CDPE是菱形,∴∠DCP=∠ECP,∴CP平分∠ACB,故选:A.【点评】此题考查菱形的性质,关键是根据菱形的性质解答.4.(5分)若菱形ABCD的对角线AC、BD的长分别是5cm、12cm,则菱形ABCD 的面积是()A.30 cm2B.36 cm2C.48 cm2D.60cm2【分析】根据菱形的对角线的长度即可直接计算菱形ABCD的面积.【解答】解:∵菱形的对角线长AC、BD的长度分别为5cm、12cm.∴菱形ABCD的面积S=BD×AC=×5×12=30cm2.故选:A.【点评】本题考查了菱形对角线互相平分的性质,本题中菱形ABCD的面积等于对角线乘积的一半是解题的关键.5.(5分)如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.2D.2【分析】如图连接BD.首先证明△ADB是等边三角形,可得BD=4,再根据三角形的中位线定理即可解决问题.【解答】解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=4,∵∠A=60°,∴△ABD是等边三角形,∴BA=AD=4,∵PE=ED,PF=FB,∴EF=BD=2.故选:A.【点评】本题考查菱形的性质、三角形的中位线定理、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明△ADB是等边三角形.二、填空题(本大题共5小题,共25.0分)6.(5分)菱形的两邻角之比为1:2,一条较短的对角线长为6cm,则另一条对角线长为6cm,这个菱形的面积为18cm2.【分析】作出图形,根据菱形的邻角互补求出较小的内角为60°,从而判断出△ABC是等边三角形,再根据等边三角形的性质求出OB,然后根据菱形对角线互相平分可得BD=2OB,菱形的面积=×两对角线的乘积.【解答】解:如图,∵菱形的两邻角之比为1:2,∴较小的内角∠ABC=180°×=60°,∴△ABC是等边三角形,∴OB=×6=3cm,∴较长的对角线BD=2OB=2×3=6cm.∴菱形的面积=AC•BD=×6×6=18(cm2).故答案是:6cm;18cm2.【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记性质并求出△ABC是等边三角形是解题的关键,作出图形更形象直观.7.(5分)如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC 于点F,垂足为E,连接BF、DF,则∠DFC的度数是130°.【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;【解答】解:∵四边形ABCD是菱形,∴∠ACD=∠ACB=∠BCD=25°,∵EF垂直平分线段BC,∴FB=FC,∴∠FBC=∠FCB=25°,∴∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为:130°.【点评】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(5分)如图,将△ABC沿射线BC方向平移得到△DCE,当△ABC满足条件AC=BC时(填一个条件),能够判定四边形ACED为菱形.【分析】由题意可证四边形ACED是平行四边形,根据菱形的判定,可得满足条件.【解答】解:△ABC满足条件为AC=BC∵将△ABC沿射线BC方向平移得到△DCE∴AD=CE,AD∥CE∴四边形ACED是平行四边形∵AC=BC∴平行四边形ACED是菱形.故答案为AC=BC【点评】本题考查了菱形的判定,平移的性质,熟练运用平移的性质是本题的关键.9.(5分)如图,在▱ABCD中,E,F分别是AB,CD中点.当▱ABCD满足AB ⊥BC时,四边形EHFG是菱形.【分析】由题意可证四边形EHFG是平行四边形,△EBC≌△FCB,可得EC=BF,BH=CH,即可得EH=FH,则可证四边形EHFG是菱形.【解答】解:当▱ABCD满足AB⊥BC时,四边形EHFG是菱形.∵四边形ABCD是平行四边形,且AB⊥BC∴四边形ABCD是矩形∴∠ABC=∠DCB=90°,AB=CD,AB∥CD∵E是AB中点,F是CD中点,∴BE=CF=AE=DF∵BE=DF,AB∥CD∴ED∥BF同理可得:EC∥AF∴四边形EHFG是平行四边形.在△EBC与△FCB中,∵,∴△EBC≌△FCB(SAS)∴CE=BF,∴∠ECB=∠FBC,∴BH=CH,∴EH=FH,∴平行四边形EHFG是菱形,故答案为:AB⊥BC.【点评】本题考查了菱形的判定,平行四边形的判定与性质,利用这些性质和判定进行正确推理是本题的关键.10.(5分)如图所示,菱形ABCD的对角线的长分别为3和6,P是对角线AC 上任一点(点P不与点A.C重合),且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是.【分析】由题意可得:S△ABC =,四边形AEPF是平行四边形,可得S△AEP=S▱ABCD=S△EFP ,即可得S阴影=S△ABC.【解答】解:∵菱形ABCD的对角线的长分别为3和6,∴S菱形ABCD=×3×6=9∴S△ABC=∵PE∥BC∥AD,PF∥CD∥AB∴S△AEP =S▱ABCD,S△EFP=S▱ABCD∴S△EFP =S△AEP∵S阴影=S四边形BCPE+S△EFP=S四边形BCPE+S△AEP=S△ABC∴S阴影=故答案为:【点评】本题考查了菱形的性质,平行四边形的判定和性质,熟练运用平行四边形的性质解决问题是本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE ∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的判定和菱形的判定解答即可.【解答】证明:(1)∵平行四边形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCF,∵DE∥AC,∴∠DAC=∠EDA,∴∠FCB=∠EDA,在△ADE与△BCF中,∴△ADE≌△BCF(SAS);(2)∵DE∥AC,且DE=AC,∴四边形EFCD是平行四边形,∴DC=EF,且DC∥EF,又∵AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠BAF+∠AED=180°,∴∠BAF+∠BFC=180°,又∠BF A+∠BFC=180°,∴∠BAF=∠BF A,∴BA=BF,∴四边形ABFE为菱形.【点评】此题考查菱形的判定,关键是根据平行四边形的判定、菱形的判定和全等三角形的判定解答.12.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点评】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.13.(10分)如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为或8s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为8s时,四边形ACFE是菱形.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案;②若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是:或8;8.【点评】此题考查了平行四边形的判定,菱形的判定,全等三角形的判定与性质,等边三角形的性质,解题的关键是理解题意,学会用分类讨论的思想思考问题.14.(10分)如图,在△ABC中,点D、E分别是AB、AC的中点,连接BE,有BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若△ABC中BC=5,AC=12,求菱形BCFE的面积.【分析】(1)由题意可得:DE∥CB,BC=2DE=BE=EF,即可证四边形BCFE 是菱形;(2)连接BF交AC于点G,由题意可得EG=CG=3,根据勾股定理可求BG =4,即BF=8,根据菱形面积=×EC×BF,可求菱形BCFE的面积.【解答】证明:(1)点D、E分别是AB、AC的中点,∴BC∥DE,BC=2DE,∵BE=2DE,BE=EF∴EF=2DE∴BC=EF,且DE∥BC∴四边形BEFC是平行四边形又∵BE=EF∴四边形BCFE是菱形;(2)如图:连接BF交AC于点G∵点E是AC中点,AC=12,∴EC=6∵四边形BCFE是菱形∴EG=GC=3,BG=GF,EC⊥BF在Rt△BGC中,BG===4∴BF=8∴S菱形BCFE=×EC×BF=×8×6=24【点评】本题考查了菱形的性质和判定,三角形中位线定理,熟练运用菱形的判定是本题的关键.15.(10分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.【分析】(1)由题意可证BE=DE,四边形BEDF是平行四边形,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于点H,由题意可得BD=CD=6,根据30度所对的直角边等于斜边的一半,可求DH=3,即可求DF=BF的长,即可得菱形BEDF 的面积.【解答】解:(1)∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)如图:过点D作DH⊥BC于点H∵∠A=90°,∠C=30°,∴∠ABC=60°∴∠DBC=30°=∠C∴DB=DC=6∵DH⊥BC,∠C=30°∴DC=2DH=6∴DH=3∵DF∥AB,∴∠A=∠FDC=90°,且∠C=30°,DC=6∴DC=DF∴DF=2∵四边形BEDF为菱形∴BF=DF=2=BF×DH=2×3=6∴S四边形BEDF【点评】本题考查了菱形的性质与判定,30度所对的直角边等于斜边的一半,熟练运用菱形的性质与判定是本题的关键.。

八年级数学上册 3.5矩形、菱形、正方形课时训练 试题

八年级数学上册 3.5矩形、菱形、正方形课时训练  试题

八年级数学上册 3.5矩形、菱形、正方形课时训练 苏科版[双基锤炼] 一、选择题1、以下表达错误的选项是〔 〕A 、平行四边形的对角线互相平分B 、矩形的对角线相等C 、对角线互相平分的四边形是平行四边形D 、对角线相等的四边形是矩形 2、矩形ABCD 的长为5,宽为3,点E 、F 将AC 三等分,那么⊿BEF 的面积为〔 〕A 、23 B 、35 C 、25D 、5 3、如图3.5-1,矩形ABCD 中,E 是BC 的中点, ∠BAE=30°,AE=2,AC 等于〔 〕A. 3B.4、菱形具有而平行四边形不一定具有的性质是 〔 〕5、菱形的周长为32cm ,一个角的度数是60°,那么两条对角线的长分别是〔 〕 A .cm cm 348和 B .cm cm 384和 C .cm cm 388和D .cm cm 344和6、如图3.5-2,菱形ABCD 的对角线AC 与BD 相交于O ,∠ABC ≠90°,那么图中的全等三角形一共有〔 〕A.42对B.6对C.8对D.12对7、四边形ABCD 中,O 是对角线的交点,能判别此四边形是正方形 的是〔 〕E图ABCDO 图〔1〕AC=BD ,AB ∥CD ,AB=CD 〔2〕AD ∥BC ,∠A=∠C 〔3〕AO=CO ,BO=DO ,AB=BC 〔4〕AO=BO=CO=DO ,AC ⊥BD A 、1个 B 、2个 C 、3个 D 、4个8、正方形ABCD 的边长为1,M 是AB 的中点,N 是BC 的中点,AN 和CM 相交于点O ,那么四边形AOCD 的面积是〔 〕A.16B.34C.23D. 3 4 二、填空题9、如图 3.5-3,在矩形ABCD 中,AB=3,BC=4,对角线AC 、BD 相交于点O ,那么AC=______,OD=________.10、如图3.5-4,在矩形ABCD 中,CE ⊥BD ,E 为垂足,∠DCE :∠ECB=3:1,那么∠ACE=__度.11、矩形的周长为8cm ,对角线长为10cm ,那么这个矩形的面积是_______. 12、菱形中较大角是较小角的3倍,高为5cm ,那么这个菱形的边长是 。

八年级数学提高练习矩形菱形

八年级数学提高练习矩形菱形

CB A DOHEFDCA BDA BC m lα65°八年级数学周末提高练习(矩形、菱形)1.下列命题中正确的是( ) A .对角线相等的四边形是矩形B .对角相等且有一个角是直角的四边形是矩形C .有一个角是直角的四边形是矩形D .内角都相等的四边形是矩形2.四边形ABCD 的对角线交于点O ,在下列条件中,不能说明它是矩形的是 ( ) A. AB=CD ,AD=BC ,∠BAD=90° B.∠BAD=∠ABC =90°∠BAD+∠ADC=180° C ∠BAD=∠BCD,∠ABC+∠ADC=180° D. AO=CO,BO=DO,AC=BD3.10.若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( ) A .一般平行四边形 B .对角线互相垂直的四边形 C .对角线相等的四边形 D .矩形4.平行四边形的四个内角角平分线相交所构成的四边形一定是( )A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形5.矩形的三个顶点坐标分别是(-2,-3),(1,3),(-2,-4),那么第四个顶点坐标是( )A .(1,-4)B .(-8,-4)C .(1,-3)D .(3,-4) 6.在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③ CH CA =;④ED BE 3=,正确的( ) A .②③B .③④C .①②④D .②③④7.如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α∠= 度. 8. 如图,四边形ABCD 是平行四边形,使它成为矩形的条件可以是 9. 若矩形短边长4cm ,两对角线的夹角为60度,则对角线长是 cm .10.如图,在扇形中,∠AOB =90度,OA=5,C 是弧AB 上一点,且CD ⊥OB ,CE ⊥OA ,垂足分别为点D 、E ,则DE = . 11.如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分部分是四边形ABCD,已知 ∠BAD=30°则重叠部分的面积是 cm 2.12.如图,已知平行四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 是等边三角形,AB=4cm.(1)平行四边形ABCD 是矩形吗?说明理由。

八年级数学矩形与菱形性质及判定、练习题

八年级数学矩形与菱形性质及判定、练习题
∵ABCD相交于O点,∴AO=CO=BO=DO
∵AE平分∠BAD交BC于E点∴∠BAE=∠EAD=45°
∵∠EAC=15°∴∠BA0=60°
∵AO=BO
∴∠ABO=60°
∵∠BAO+∠ABO+∠AOB=180°∴∠AOB=60°
∴△AOB为等边三角形
即AB=OA=BO
又∵∠ABC=90°∠EAB=45°
(1)猜想四边形AECF是什么四边形,并证明你的猜想.
(2)求折痕EF的长.
26、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积和是多少?
27、(2010肇庆)如图,ABCD是正方形.G是BC上的一点,DE⊥AG于E,BF⊥AG于F.
16.如图,一斜坡AB的中点为D,BC=1,CD=1.5,则斜坡的坡长.
17.如图,在扇形中,∠AOB=90度,OA=5,C是弧AB上一点,且CD⊥OB,CE⊥OA,垂
足分别为点D、E,则DE=.
18.菱形OABC在平面直角坐标系中的位置如图所示, ,则点B的坐
标为.
19.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离
1.已知一矩形的周长是24cm,相邻两边之比是1:2,那么这个矩形的面积是…………()
A.24cm2B.32cm2C.48cm2D.128cm2
2.矩形具有而一般的平行四边形不具有的特征是…………………………………()
A.对角线相等B.对边相等C.对角相等D.对角线互相平分
3.下列图形既是轴对称图形,又是中心对称图形的是……………………………………()
则 度.
(第18题图)(第19题图)(第20题图)

人教版八年级数学下《矩形》拔高练习

人教版八年级数学下《矩形》拔高练习

《矩形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)一个矩形的长是宽的2倍,对角线的长是,那么这个矩形的长等于()A.2B.C.1D.22.(5分)如图,在△ABC中,∠BAC=90°,点D在BC延长线上,且AD=BC,若∠D=40°,则∠B=()A.10°B.20°C.30°D.40°3.(5分)如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A.B.C.D.4.(5分)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为()A.a>b>c B.a<b<c C.a=b=c D.a>c>b 5.(5分)下列说法正确的有()个①一组对边平行且一组对角相等的四边形是平行四边形;②一组对边相等且有一个角是直角的四边形是矩形;③三角形的中位线平行于三角形的第三边且等于第三边的一半;④两条对角线相等的四边形是矩形.A.1B.2C.3D.4二、填空题(本大题共5小题,共25.0分)6.(5分)直角三角形斜边上的高与中线分别为8cm和10cm,则它的面积是cm2.7.(5分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABC的周长为.8.(5分)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.9.(5分)如图,在矩形ABCD中,以A为圆心,AD长为半径作圆,交AB于点E,F为BC的中点,过点F作AB的平行线,交于点G,则∠AGF的度数为.10.(5分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON 上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=4,BC=2,运动过程中点D到点O的最大距离是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图是某居民小区的一块长为2a米,宽为b米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处修建一个半径为a米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?12.(10分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=3,∠DCF=30°,求EF的长.13.(10分)把一张形状是矩形的纸片剪去其中某个角,剩下的部分是一个多边形,则这个多边形的内角和是多少?14.(10分)如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x 轴上,已知点C的坐标是(8,4).(1)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(2)在x轴上是否存在一个点P,使△P AM为等腰三角形?如果有请直接写出符合题意的所有点P的坐标.15.(10分)如图,在矩形ABCD中,AC,BD交于点O,延长BC到点E,使CE=BC,连接AE交CD于点F.若AD=10,求OF的长.《矩形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一个矩形的长是宽的2倍,对角线的长是,那么这个矩形的长等于()A.2B.C.1D.2【分析】设矩形的宽是a,则长是2a,再根据勾股定理求出a的值即可.【解答】解:设矩形的宽是a,则长是2a,∵对角线的长是5cm,∴a2+(2a)2=()2,解得a=1,∴这个矩形的长=2a=2.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.(5分)如图,在△ABC中,∠BAC=90°,点D在BC延长线上,且AD=BC,若∠D=40°,则∠B=()A.10°B.20°C.30°D.40°【分析】取BC的中点E,连接AE,根据直角三角形的性质得到AE=BC=BE,根据等腰三角形的性质,三角形的外角的性质计算.【解答】解:取BC的中点E,连接AE,∵∠BAC=90°,点E是BC的中点,∴AE=BC=BE,∴∠B=∠EAB,∵AD=BC,∴AE=AD,∴∠AED=∠D=40°,∴∠B=20°,故选:B.【点评】本题考查的是直角三角形的性质,等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.3.(5分)如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A.B.C.D.【分析】根据全等三角形的性质得到BF=DF,根据矩形的性质得到∠A=90°,根据勾股定理得到AF=4,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,根据相似三角形的性质得到OH=,根据勾股定理列方程即可得到结论.【解答】解:∵△ABF与△DFG全等,∴BF=DF,∵AD=9,∴BF=9﹣AF,∵四边形ABCD是矩形,∴∠A=90°,∴AB2+AF2=BF2,即32+AF2=(9﹣AF)2,解得:AF=4,∵AE=1,∴EF=3,DE=8,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,∴FH=1,∵∠A=∠OHF=90°,∠AFB=∠OFH,∴△ABF∽△HOF,∴,即,∴OH=,在Rt△ODH中,OD==,故选:B.【点评】本题考查了矩形的性质,全等三角形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.4.(5分)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为()A.a>b>c B.a<b<c C.a=b=c D.a>c>b【分析】由题意可得MO=NH,DO=EF,AO=BC,且MO=DO=AO,即可求a=b=c.【解答】解:如图:连接OM,OD,OA∵四边形ABOC、DEOF、HMNO均为矩形∴MO=NH,DO=EF,AO=BC∵MO=DO=AO∴a=b=c故选:C.【点评】本题考查了矩形的性质,熟练运用矩形的性质解决问题是本题的关键.5.(5分)下列说法正确的有()个①一组对边平行且一组对角相等的四边形是平行四边形;②一组对边相等且有一个角是直角的四边形是矩形;③三角形的中位线平行于三角形的第三边且等于第三边的一半;④两条对角线相等的四边形是矩形.A.1B.2C.3D.4【分析】根据平行四边形的判定,矩形的判定,三角形的中位线定理即可一一判断;【解答】解:①一组对边平行且一组对角相等的四边形是平行四边形;正确,可以证明两组对角分别相等.②一组对边相等且有一个角是直角的四边形是矩形;错误;③三角形的中位线平行于三角形的第三边且等于第三边的一半;正确;④两条对角线相等的四边形是矩形.错误,应该是两条对角线相等的平行四边形是矩形;故选:B.【点评】本题考查平行四边形的判定,矩形的判定,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共5小题,共25.0分)6.(5分)直角三角形斜边上的高与中线分别为8cm和10cm,则它的面积是80 cm2.【分析】根据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.【解答】解:∵直角三角形的斜边上的中线为10,∴斜边为2×10=20,∵直角三角形斜边上的高为8,∴此直角三角形的面积为=80cm2,故答案为:80.【点评】本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.7.(5分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABC的周长为12+4.【分析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.【解答】解:∵四边形ABCD是矩形,AC=8,∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,∴AO=BO=OC=4,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4,∴BC==4,∴△ABC的周长是4+4+4+4=12+4,故答案为:12+4.【点评】本题考查了矩形性质,等边三角形的性质和判定的应用,注意:矩形的对角线相等且互相平分.8.(5分)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴P A==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.9.(5分)如图,在矩形ABCD中,以A为圆心,AD长为半径作圆,交AB于点E,F为BC的中点,过点F作AB的平行线,交于点G,则∠AGF的度数为150°.【分析】由题意可证四边形GHBF是矩形,即可得GM=BC=AD=AG,利用三角函数求出∠GAB的值,继而求出∠AGF的值.【解答】解:连接AG,作GM⊥AB于点M.∴GM∥BF,GM⊥GF.由题意知GF∥AB,AB⊥BC,∴四边形GHBF是矩形.∴∠FGH=90°,GH=BC.∵AG=AD,AD=BC,∴GM=AG∵sin∠GAB==∴∠GAB=30°.∵GF∥AB,∴∠AGF=150°.故答案为150°【点评】本题考查了矩形的性质,锐角三角函数,添加恰当的辅助线构造直角三角形是本题的关键.10.(5分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=4,BC=2,运动过程中点D到点O的最大距离是2+2.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD∵AB=4,点E是AB的中点,∠AOB=90°∴AE=BE=2=OE∵四边形ABCD是矩形∴AD=BC=2,∠DAB=90°∴DE==2∵OD≤OE+DE∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=2+2故答案为:2+2【点评】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半,勾股定理,三角形三边关系,确定出OD过AB的中点时值最大是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图是某居民小区的一块长为2a米,宽为b米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处修建一个半径为a米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?【分析】根据所需资金=花台需要的资金+草地需要的资金,可求解.【解答】解:由题意可得:花台的面积为πa2平方米,草地的面积为(2ab﹣πa2)平方米∴美化这块空地共需资金=100×πa2+50×(2ab﹣πa2)=(50πa2+100ab)元【点评】本题考查了矩形的性质,用正确的代数式表达草地面积是本题的关键.12.(10分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=3,∠DCF=30°,求EF的长.【分析】(1)根据菱形的判定与性质即可求出答案.(2)根据含30度的直角三角形的性质以及等边三角形的性质与判定即可求出答案.【解答】解:(1)由矩形ABCD可知:∠F AO=∠ECO,AO=CO,在△AOF与△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;(2)∵∠DCF=30°,AB=CD=3,∴∠FCE=60°,CE=2∵CF=CE,∴△EFC是等边三角形,∴EF=2;【点评】本题考查矩形的性质,解题的关键是熟练运用矩形的性质以及含30度的直角三角形的性质,本题属于基础题型.13.(10分)把一张形状是矩形的纸片剪去其中某个角,剩下的部分是一个多边形,则这个多边形的内角和是多少?【分析】把一张形状是矩形的纸片剪去其中某一个角,剩下的部分的形状可能是三角形或四边形或五边形,再根据多边形的内角和定理判断即可.【解答】解:把一张形状是矩形的纸片剪去其中某一个角,剩下的部分的形状可能是三角形或四边形或五边形,故这个多边形的内角和可能是180°或360°或540°.【点评】本题考查了多边形的内角和定理,判断剩下的部分的形状可能是三角形或四边形或五边形是解题的关键.14.(10分)如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x 轴上,已知点C的坐标是(8,4).(1)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(2)在x轴上是否存在一个点P,使△P AM为等腰三角形?如果有请直接写出符合题意的所有点P的坐标.【分析】(1)设AM=x,则BM=x,OM=8﹣x,根据勾股定理列方程得:AO2+OM2=AM2,则42+(8﹣x)2=x2,解出即可;(2)△P AM为等腰三角形时,分情况进行讨论:①以A为圆心,以AM为半径画圆;②以M为圆心,以MA为半径,画圆;③作AM的垂直平分线;确定点P的位置,分别计算可得结论.【解答】解:(1)由题意得:OA=4,OB=8,∵MN是AB的垂直平分线,∴AM=BM,设AM=x,则BM=x,OM=8﹣x,Rt△AOM中,由勾股定理得:AO2+OM2=AM2,∴42+(8﹣x)2=x2,解得:x=5,∴AM=5;(2)如图,①当AP1=AM=5时,OM=OP1=3,此时P1(﹣3,0);②当AM=P2M=P3M=5时,此时P2(﹣2,0),P3(8,0);③如图,作AM的垂直平分线,交AM于E,交x轴于P4,∴EM=,sin∠EP4M==sin∠OAM=,∴P4M=,∴OP4=﹣3=,此时P4(﹣,0),综上,△P AM为等腰三角形,点P的坐标是(﹣3,0)或(﹣2,0)或(8,0或(﹣,0).【点评】本题考查的是矩形的性质,等腰三角形的判定,勾股定理,线段垂直平分线的性质,同时与方程相结合解决问题,灵活运用分情况讨论思想是解题的关键.15.(10分)如图,在矩形ABCD中,AC,BD交于点O,延长BC到点E,使CE=BC,连接AE交CD于点F.若AD=10,求OF的长.【分析】首先根据矩形的性质证得△ADF≌△ECF,然后判定OF为△ACE的中位线,从而求得OF的值.【解答】解:∵四边形ABCD是矩形,∴BC=AD,OA=OB=OC=OD,∠ADF=∠BCF=∠BAD=∠ABC=90°,∴∠ECF=90°,∵CE=BC,AD=10,∴EC=BC=AD=10,在△ADF和△ECF中,∴△ADF≌△ECF(AAS),∴AF=EF,即F为AE的中点,、∴OF为△ACE的中位线,∴OF=CE=5.【点评】本题考查了矩形的性质,解题的关键是根据矩形的性质判定三角形全等并证得OF为△ACE的中位线,难度不大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形和菱形专题拔高训练
例1:如图,矩形ABCD中,E是AD上一点,F是AB上一点,EF=EC,且EF⊥EC,DE=2cm,矩形ABCD周长为16cm,求AE及CF的长。

分析与解答:
例2:矩形ABCD,E、F分别在BC、AD上,且EF垂直平分AC于O,
(1)求证:四边形AECF为菱形;
(2)若AD=8,AB=6,求AE的长。

分析与解答:
例3:如图:以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?(不要求证明)
分析与解答:
--
--
例4:如图,矩形ABCG 中,点D是AG 的中点,点E是A B上一点,且BE =BC ,D E⊥DC ,CE 交BD 于F,
(1)求证:BD 平分∠CDE ;
(2)
求EF EA 的值。

分析与解答:
例5:如图;矩形ABC D中,点H在对角线BD 上,HC ⊥BD,HC 的延长线交∠BAD 的平分线于点E,说明CE 与BD的数量关系。

分析与解答:
例6:如图,在△A BC 中,∠A 、∠B 的平分线交于点D,DE ∥AC 交BC 于点E ,DF ∥BC 交AC于点F 。

(1)点D是△ABC 的________心;
(2)求证:四边形DEC F是菱形。

分析与解答:
1.填空题
(1)如图,P是矩形ABCD内一点,PA=3,PD=4,PC=5,则PB=______.
(2)若矩形的两邻边之比是3:4,周长为42cm,则它的边长分别是_______.
(3)矩形的对角线相交成120角,其较短边长4cm,则对角线长______cm.
(4)在矩形ABCD中,点E为AB边的中点,且DE⊥CE,若矩形的周长为30,则AB=_______, AD=_______.
(5)从矩形的一个顶点向对角线引垂线,此垂线分对角线所成的两部分比为1:3,已知两对角线交点到矩形较长边的距离为3.6cm,则矩形的对角线长为____. (6)已知,如图△ABC中,BC=15,E、F分BC为三等分点,AE=13,AF=12,G、H分别为AC、AB的中点,则四边形EFGH的周长为_____,面积为______. (7)如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白部分的面积,其面积是______.
第6题第7题
(8)如图,矩形ABCD面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1,的对角线交于O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,……依此类推,则平行四边形ABCnOn的面积为______.
(9)如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3,EF=4,则边AD的长为_______.
第8题第9题
(10)如图,矩形纸片ABCD,AB=2,点E在BC上,且AE=EC.若将纸片AE折叠,点B恰好落在AC上,则AC的长为_______.
(11)如图,矩形ABCD,AB=2,BC=3,对角线AC的垂直平分线交AD,BC于E、F,连接CE,则CE长________.
第10题第11题
--
(12)已知菱形ABCD的面积是12cm²,对角线AC=4cm,则菱形的边长是_______cm.
2.解答题:
(1)如图,矩形ABCD中,E为BC上一点,且AE=AD,连接DE。

①DE平分∠AEC吗?说明理由。

②若DC=5cm,求D到AE的距离。

(2)如图,BD、CE是高,G、F分别是BC、DE的中点,试说明FG⊥DE。

(3)如图,矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线交点,且∠CAE=15°
①说明△AOB为等边三角形;
②求∠AOE的度数。

(4)如图,△ABC中,AD是边BC上的中线,AE∥BC,DE∥AB,DE与AC交于点O,连CE。

①求证:AD=EC;
②若∠BAC=90°,求证:四边形ADCE为菱形。

--
--。

相关文档
最新文档