经典有趣问题:牛吃草问题

合集下载

牛吃草问题练习题及答案

牛吃草问题练习题及答案

牛吃草问题练习题及答案一、基础题1. 一片草地上有足够的草,可供10头牛吃30天。

若15头牛吃这片草地,可以吃几天?2. 一片草地上有草若干,每天生长的草量可供5头牛吃1天。

若20头牛吃这片草地,可以吃几天?3. 一片草地上有草若干,每天生长的草量可供10头牛吃2天。

若30头牛吃这片草地,可以吃几天?4. 一片草地上有草若干,每天生长的草量可供15头牛吃3天。

若40头牛吃这片草地,可以吃几天?5. 一片草地上有草若干,每天生长的草量可供20头牛吃4天。

若50头牛吃这片草地,可以吃几天?二、提高题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。

若20头牛吃这片草地,每天实际消耗的草量是生长量的几倍?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。

若30头牛吃这片草地,每天实际消耗的草量是生长量的几倍?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。

若40头牛吃这片草地,每天实际消耗的草量是生长量的几倍?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。

若50头牛吃这片草地,每天实际消耗的草量是生长量的几倍?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。

若60头牛吃这片草地,每天实际消耗的草量是生长量的几倍?三、拓展题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。

若20头牛吃这片草地,草地上的草可以维持多少天?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。

若30头牛吃这片草地,草地上的草可以维持多少天?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。

若40头牛吃这片草地,草地上的草可以维持多少天?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。

若50头牛吃这片草地,草地上的草可以维持多少天?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。

若60头牛吃这片草地,草地上的草可以维持多少天?四、综合应用题1. 一片草地原有草量可供50头牛吃20天,若这片草地每天长出的草量可以供10头牛吃1天。

专题二十一牛吃草问题

专题二十一牛吃草问题

牛吃草问题英国科学家牛顿曾经出过一道有趣的问题----牛吃草问题,以后把这种问题用牛顿的名字命名,也叫“牛顿问题”。

那么什么是“牛吃草”问题呢,看下面的例题就知道了。

例一:牧场上长满牧草,每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?例二:一个水池安装有排水量相同的排水管若干根,一根入水管不断的往池里注水,平均每分钟的入水量相等。

现在如果开放3根排水管45分钟可以把池中水排完。

如果开放5根排水管25分钟可以把水排完。

如果开放8根排水管几分钟可以把水排完?例三:格尔牧场长满青草,而且牧草每天都在均匀的生长着。

12头牛4周可以吃光313格尔的牧草;21头牛9周可以吃光10格尔的牧草。

24格尔的牧草可够多少头牛吃18周?(格尔是牧场的面积单位,此题是经典题,所以面积单位保持原貌)(提示:把313格尔、10格尔、24格尔都扩成120格尔,这样只要按相同的倍数扩大牛的只数就可以了)例四:牧场上有一片亲青草,每天生长的速度相同。

现在这片牧草可供16头牛吃20天,或者供80只羊吃12天,如果1头牛一天吃的草等于4只羊一天吃的草量,那么10头牛与60只羊一起吃可以吃多少天?例五:12头牛28天可以吃完10公亩牧场上的全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草,多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长的草量相等)?(注:1公亩=100平方米)例六:一水库原有存水量一定,河水每天均匀入库。

5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。

若要求6天抽干,需要多少台同样的抽水机?例七:一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10人淘水,3小时淘完;如果5人淘水8小时淘完。

如果要求2小时淘完,要安排几个人淘水?练习:1、 有一酒槽,每日泄露相等量的酒。

现让6人饮此酒,则4天喝完;若让4人饮酒,则5天喝完。

牛吃草问题经典例题10道

牛吃草问题经典例题10道

牛吃草问题经典例题10道牛吃草问题常被认为是经典的运筹学题目,在这里我们汇总了10道牛吃草问题的理论例题,以帮助大家学习这些问题的解决方法,加深对运筹学的理解。

例题一:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,那么它最少要移动几次,才能将草地吃完?解答:首先,要吃完草地,牛至少要移动L/a次,也就是说,牛要吃完草地,它最少要移动L/a次,例如当L=12,a=4时,牛需要移动3次才能吃完草地。

例题二:有一片长度为L的草地,有两头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:这里我们可以使用二分法来求解,即每次移动时,两头牛分别前进a/2的距离,最后再合起来这样移动L/a次便可将草地吃完,即当L=12,a=4时,两头牛最少要移动6次,分别前进2次,才能将草地吃完。

例题三:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:牛的数量与它们吃掉草地的最少次数没有关系,只要它们每次移动距离等于a,那么无论有多少头牛,它们最少要移动L/a次,例如当L=12,a=4时,无论有几头牛,它们最少要移动3次才能吃完草地。

例题四:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,而每头牛的移动速度不同,那么它们最少要移动几次,才能将草地吃完?解答:考虑到牛的不同移动速度,它们吃完草地的最少次数取决于最慢移动的牛,即其吃掉草地的总时间就等于最慢移动的牛移动的时间,也就是说最慢移动的牛最少要移动L/a次才能吃完草地,例如当L=12,a=4时,无论有几头牛,最慢的牛最少要移动3次才能将草地吃完。

例题五:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,但是牛有一定的消耗,每移动一次需要消耗b的能量,它有总共c的能量,那么它最多可以移动几次?解答:由于牛有一定的消耗,所以它最多可以移动c/b次,例如当L=12,a=4,b=1,c=8时,牛最多可以移动8次。

牛吃草问题经典例题及答案解释

牛吃草问题经典例题及答案解释

牛吃草问题经典例题及答案解释
牛吃草问题是生物学中一个常见的问题,它揭示了耳聪目明的人类对世界自然规律的模糊和勘误,同时也表明了人类对细节的追求。

牛吃草问题也被称为比喻问题,它是一个言简意赅的问题,可以从许多角度来解答,下面介绍了牛吃草问题的例题及答案解释。

1.为什么牛吃草?
牛吃草是由于牛体内的限制。

牛的消化系统不能消化纤维素,牛的牙齿也不适合咀嚼有机食物,但又能将细胞壁碎裂,将营养物质消化。

此外,牛草也具有抗氧化、抗炎、抗衰老的功效,因此牛会偏好草类的营养,以达到营养平衡,使牛更健康。

2.为什么牛不吃草叶?
牛不能食用叶子,是因为它们对叶子中的细胞壁构成不太敏感,叶子中种类多样的细胞壁非常硬,难以碎裂,也就意味着牛不能将叶子中的营养物质消化。

此外,叶子中大量的维生素C和大量的茴香不易消化,也影响了牛对叶子的表现。

3.为什么牛更喜欢吃新鲜的草?
新鲜的草比干旱的草有更多的营养,对牛而言,新鲜的草能提供更多的维生素、矿物质和水分。

此外,新鲜的草还具有抗氧化、抗炎、抗微生物等功效,可以提高牛的免疫能力,使牛更健康。

4.为什么牛不会吃蓝草?
蓝草含有大量的毒素,如有机毒素和重金属,如铅、铜、镉等,它们可以严重破坏牛的消化系统。

此外,蓝草的叶片中含有各种抗生
素,如木纳和异氟烷,可能会严重损伤牛的健康。

以上就是关于牛吃草问题的经典例题及答案解释,从这里可以看出牛吃草的脆弱性与精妙,牛吃草这一简单的行为,深刻地揭示了自然规律的复杂性,也提醒我们对自然的尊重和保护。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1:牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天)。

说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

因此,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

精选牛吃草问题(含例题、答案、讲解)

精选牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

牛吃草经典例题

牛吃草经典例题

牛吃草经典例题
牛吃草问题是著名的趣味数学问题,典型例题有:
例1:牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者供15头牛吃10天。

问可供25头牛吃几天?
例2:某块草地,假设每天匀速生长出青草正好够10头牛吃,这块草地可以放牧24头牛,则可以放牧多少头牛?
例3:有一片牧场,已知养牛60头,10天可以把草吃完;如果养牛45头,15天可以把草吃完;那么如果养牛20头,多少天可以把草吃完?
例4:有一块牧场,如果养25只羊,8天可以把草吃没,如果养21只羊,12天可以把草吃没,如果养16只羊,几天能把牧场上的一片牧草吃没?。

《牛吃草问题》课件图文

《牛吃草问题》课件图文
实验原理
牛吃草问题是一个经典的数学问题,涉及到速度、时间和数量的关系。通过实验, 可以直观地展示这些关系,帮助学生更好地理解和应用相关知识。
实验步骤及操作要点
实验步骤
1. 准备实验材料:一定数量的草、计时器、测量工具(如天平、尺子) 等。
2. 将草均匀铺设在实验场地上,并记录初始草量。
实验步骤及操作要点
通过建立数学模型和优化算法,对牛吃草问 题进行定量分析和优化求解,为实际问题的 解决提供科学依据。
02
牛吃草问题数学建模
模型假设与参数设定
假设草场是均匀的,草的生长速 度也是均匀的。
设牛吃草的速度为v(单位:单 位草量/单位时间),草的生长 速度为g(单位:单位草量/单位
时间)。
设初始时刻草场的草量为C0 (单位:单位草量),经过时间 t后,草场的草量为Ct(单位:
定期驱虫
精细化管理
加强对牛的饲养管理,包括饲料配方、 饲喂量、饲喂时间等方面的精细化管 理,可以提高饲料的利用效率和牛的 生产性能。
定期对牛进行驱虫处理,可以减少寄 生虫对饲料的消耗,提高饲料的利用 率。
提高饲料利用效率
选用优质饲料
选用优质、高营养价值的饲料, 可以提高饲料的利用效率和牛的
生产性能。
如果放养的牛数量过多,超过了草地的承载能力,草地就会被破坏,导致生态失衡。
牛吃草问题实际上是一个动态平衡问题,涉及到牛的数量、草的生长速度、草的总 量等多个因素。
问题提出及意义
问题提出
如何确定一个草地上最多能放养多少头牛,以保证草地的生态平衡和可持续发 展?
研究意义
牛吃草问题不仅关系到草地生态系统的平衡和稳定,还涉及到畜牧业的发展、 经济效益和环境保护等多个方面。通过解决牛吃草问题,可以实现草地资源的 合理利用和畜牧业的可持续发展。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)题目翻译过来意思是,一个牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

如果是21头牛,要几个星期才可以吃完?2. 设1头牛1天的吃草量为1份,27头牛吃6周共吃了276162⨯=份;23头牛吃9周共吃了239207⨯=份.第二种吃法比第一种吃法多吃了20716245-=份草,这45份草是牧场的草963-=周生长出来的,所以每周生长的草量为45315÷=份,那么原有草量为:16261572-⨯=份。

供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612÷=(周)可将原有牧草吃完,即可供21头牛吃12周。

3. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?[分析] 设1头牛1天的吃草量为1份,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150⨯=份.第一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105÷=,那么原有草量为:200520100-⨯=.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.4. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.那么这片牧场可供几头牛吃25天?[分析] 设1头牛1天的吃草量为1份,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150⨯=份.第一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105÷=,那么原有草量为:200520100-⨯=.要吃25天,总共吃掉了100525225+⨯=份草。

所以牛的头数为225259÷=(头)。

5. 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?[分析] 设1头牛1天的吃草量为1份。

牧场上的草每天自然减少(254166)(64)2⨯-⨯÷-=份。

原来牧场有草(252)4108+⨯=份,可供10头牛吃108(102)9÷+=(天)。

6. 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?[分析] 设1头牛1天的吃草量为1份。

那么每天减少的草量为:()()2051566510⨯-⨯÷-=份,原有草量为:()20105150+⨯=份;10天吃完需要牛的头数是:15010105÷-=(头)。

7. 一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?设1头牛1天的吃草量为1份。

那么每天生长的草量为()()44053040301⨯-⨯÷-=份,原有草量为:()5130120-⨯=份。

如果4头牛吃30天,那么将会吃去30天的新生长草量以及90原有草量,此时原有草量还剩1209030-=份,而牛的头数变为6头,现在就相当于:“原有草量30份,每天生长草量1,那么6头牛吃几天可将它吃完?”求出答案为:()30616÷-=(天)。

8.一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?[分析]设1头牛1天的吃草量为1份。

,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天。

那么每天生长的草量为()()16202012201210⨯-⨯÷-=份,原有草量为:()161020120-⨯=份。

10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要120158÷=天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天。

9. 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?[分析]设1匹马1天吃草量为1份,根据题意,有:15天马和牛吃草量=原有草量15+天新生长草量……⑴20天马和羊吃草量=原有草量20+天新生长草量……⑵30天牛和羊(等于马)吃草量=原有草量30+天新生长草量……⑶由(1)2(3)⨯-可得:30天牛吃草量=原有草量,所以:牛每天吃草量=原有草量30÷;由⑶可知,30天羊吃草量30=天新生长草量,所以:羊每天吃草量=每天新生长草量;设马每天吃的草为3份将上述结果带入⑵得:原有草量60=,所以牛每天吃草量2=.这样如果同时放牧牛、羊、马,可以让羊去吃新生长的草,牛和马吃原有的草,可以吃:()602312÷+=(天).10. 现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?[分析]牛、马45天吃了原有45+天新长的草①所以:牛、马90天吃了2原有90+天新长的草⑤马、羊60天吃了原有60+天新长的草②牛、羊90天吃了原有90+天新长的草③所以:马90天吃了原有90+天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为111()369060÷+=天.所以,牛、羊、马一起吃,需36天.11.有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【分析】设1头牛1天吃草量为1份,由于甲草地的面积是乙草地面积的3倍,把甲草地分成面积相等的3块,那么每块都与乙草地的面积相等.由于30头牛12天能吃完甲草地上的草,相当于每块上的草由10头牛12天吃完.那么条件转换为“10头牛12天能吃完乙草地上的草,20头牛4天也能吃完乙草地上的草”,可知每天乙草地长草量为()()10122041245⨯-⨯÷-=份,乙草地原有草量为:()205460-⨯=份;则甲、乙两块草地每天的新生长草量为5420⨯=份,原有草量为:604240⨯=份.要10天同时吃完两块草地上的草,需要240102044÷+=(头)牛.12. 一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【分析】 (法1) 设1头牛1天吃草量为1份,可以将不同的公顷数统一转化为单位量1公顷来解决。

把2公顷牧场分割成2块,每块1公顷,每块可供4头牛吃5天;把4公顷牧场分割成4块,每块1公顷,每块可供15头牛吃15天.那么1公顷牧场每天新生长的草量为()()215451551⨯-⨯÷-=份,1公顷牧场原有草量为()41515-⨯=份.那么6公顷牧场每天新生长的草量为166⨯=份,原有草量为15690⨯=份.8头牛里,若有6头牛去吃每天新生长的草,剩下2头牛需要90245÷=(天)可将原有草吃完,即它可供8头牛吃45天.(法2)题中3块牧场面积不同,要解决这个问题,可以将3块牧场的面积统一起来. 设1头牛1天吃草量为1份.将8头牛赶到2公顷的牧场,牛5天吃完了草,相当于12公顷的牧场可供48头牛吃5天;将8头牛赶到4公顷的牧场,牛15天可吃完草,相当于12公顷的牧场可供24头牛吃15天.所以12公顷的牧场每天新生长的草量为:()()241548515512⨯-⨯÷-=份,12公顷牧场原有草量为()48125180-⨯=份.那么12公顷牧场可供16头牛吃()180161245÷-=(天),所以6公顷的牧场可供8头牛吃45天.13. 三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?【分析】 设1头牛1天吃草量为1份.第一块牧场饲养12头牛,可以维持4周,相当于1公顷牧场可供4头牛吃4周;第二块牧场饲养25头牛,可以维持8周,相当于1公顷牧场可供2.5头牛吃8周.那么1公顷牧场1周新生长的草量为()()2.5844841⨯-⨯÷-=份,1公顷牧场原有草量为()41412-⨯=份.24公顷牧场每天新生长的草量为12424⨯=份,原有草量为1224288⨯=份,若想维持18周,需要饲养:28818244÷+=(头)牛.14. 一个装满了水的水池有一个进水阀及三个口径相同的排水阀,如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完,如果同时打开进水阀及两个排水阀,则10分钟把水池的水排完.问:关闭进水阀并且同时打开三个排水阀,需要多少分钟才能排完水池的水?[分析] 设一个排水阀1分钟排水量为1份,那么进水阀1分钟进水量为()()130********.5⨯-⨯÷-=份,水池原有水量为()10.53015-⨯=份.关闭进水阀并且同时打开三个排水阀,需要1535÷=(分钟)才能排完水池的水。

15. (10年希望杯六年级初赛第8题)某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人。

某天某时间段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了。

如果当时有两个收银台工作,那么付款开始 小时就没有人排队了。

【分析】 如果只有一个收银台工作,那么4小时内一共能让804320⨯=人付款。

相关文档
最新文档