【实用】(完整版)平行线经典练习题(整理版)

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

(完整版)平行线习题(含答案)

(完整版)平行线习题(含答案)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A.4条 B.3条 C.2条 D.1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2.下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.【详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是( )A.ab∥cd B.A∥B C.a∥B D.a∥b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键。

4.在同一平面内,下列说法正确的是( )A.没有公共点的两条线段平行B.没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.【详解】A.在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B。

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。

(完整版)七年级数学平行线的性质练习题

(完整版)七年级数学平行线的性质练习题

(6)
(7)
( 2)已知:如图 7, AB∥ DE,∠ E=65°,则∠ B+∠ C?的度数是( )
A . 135° B . 115° C . 65° D . 35°
-3-
难点 : 能区分平行线的性质和判定 , 平行线的性质与判定的混合应用 .
一、选择题
1. 下列说法 : ①两条直线平行 , 同旁内角互补 ; ②同位角相等 , 两直线平行 ;? ③内错角相等 ,
两直线平行 ; ④垂直于同一直线的两直线平行 , 其中是平行线的性质的是 ( )
A. ① B. ②和③ C. ④ D. ①和④
七年级数学《平行线的性质》练习题
教学目标
1. 经历观察、操作、想像、推理、交流等活动 , 进一步发展空间观念 , 推理能力和有条
理表达能力。
2. 经历探索直线平行的性质的过程 , 掌握平行线的三条性质 , 并能用它们进行简单的推
理和计算 .
重点、难点
重点 : 探索并掌握平行线的性质 , 能用平行线性质进行简单的推理和计算 .
1
A C
A B
D D
B
E C
(1)
(2)
(3)
4. 如图 2 所示 ,AB∥ CD,则与∠ 1 相等的角 ( ∠ 1 除外 ) 共有 ( )
A.5 个 B.4 个 C.3 个 D.2 个
5. 如图 3 所示 , 已知 DE∥ BC,CD是∠ ACB的平分线 , ∠ B=72° , ∠ ACB=40° ,? 那么∠ BDC等
2. 若两条平行线被第三条直线所截 , 垂直 B. 平行 C. 重合 D. 相交
3、如图( 1), a∥ b, a、 b 被 c 所截,得到∠ 1=∠ 2 的依据是( )

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

(完整版)平行线习题(含答案)

(完整版)平行线习题(含答案)
C、同一平面内两条直线不相交就一定平行,故本选项错误;
D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.
故选:A.
【点睛】
本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
C.没有公共点的两条直线互相平行
D.互相平行的两条直线没有公共点
【答案】D
【解析】
【分析】
回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断.
A.平行B.垂直C.共线D.平行或共线
【答案】A
【解析】
【分析】
结合图形,由平行线的判断定理进行分析.
【详解】
如图所示:
无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行.
故选A.
【点睛】
本题考查了平行线的判定,熟练掌握判定定理是解题的关键.
7.下列结论正确的是()
(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.
(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;
(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.
故线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案一、选择题1. 在平面内,如果两条直线不相交,那么这两条直线被称为:A. 相交线B. 垂直线C. 平行线D. 异面直线答案:C2. 根据平行线的性质,下列哪项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 如果一条直线与两条平行线中的一条相交,则与另一条也相交D. 平行线可以确定一个平面答案:C3. 如果直线AB与直线CD平行,且点E在直线AB上,点F在直线CD 上,那么直线EF与AB的关系是:A. 平行B. 垂直C. 相交D. 无法确定答案:D二、填空题4. 如果直线l1与直线l2平行,且直线l1上的点P到直线l2的距离为d,那么直线l1上任意一点到直线l2的距离都是________。

答案:d5. 平行线的性质之一是,如果一条直线与两条平行线中的一条相交,则与另一条________。

答案:不相交三、判断题6. 平行线在任何情况下都不会相交。

()答案:正确7. 如果两条直线相交,它们就不可能平行。

()答案:正确8. 平行线之间的夹角总是90度。

()答案:错误四、简答题9. 解释什么是平行线,并给出平行线的基本性质。

答案:平行线是两条直线在同一个平面内,且不论延伸多远都不相交的直线。

基本性质包括:平行线之间的距离处处相等,平行线永远不会相交,如果一条直线与两条平行线中的一条平行,则与另一条也平行。

10. 描述如何使用直尺和三角板来检验两条直线是否平行。

答案:首先,使用直尺画出两条直线。

然后,用三角板的一边与直线之一对齐,确保没有间隙。

接着,将三角板沿着直线滑动,检查三角板的另一边是否始终与另一条直线平行。

如果始终平行,则两条直线平行。

五、计算题11. 在平面直角坐标系中,已知直线l1的方程为y=2x+3,直线l2的方程为y=2x+5。

请判断这两条直线是否平行,并给出理由。

答案:这两条直线是平行的。

因为它们的斜率相同,都是2,而截距不同,分别是3和5。

根据平行线的性质,当两条直线的斜率相同时,它们是平行的。

(完整word版)平行线经典练习题(整理版)

(完整word版)平行线经典练习题(整理版)

B . AB ∥CD
C. EF∥ BC
D. AD ∥ EF
2.如图⑧,判定 AB ∥ CE 的理由是(

A .∠ B= ∠ ACE
B .∠ A= ∠ ECD C.∠ B= ∠ ACB
D .∠ A= ∠ ACE
3.如图⑨,下列推理错误的是(

A .∵∠ 1=∠3,∴ a ∥ b B .∵∠ 1= ∠2,∴ a ∥ b

( 3)∵∠ 1= ∠ D(已知)
∴ __________ (

( 4)∵ _______ =∠ F(已知)
∴ AC ∥ DF (

3.填空。如图,∵ AC ⊥ , BD ⊥AB (已知)
∴∠ CAB =90°,∠ ______=90°(

∴∠ CAB =∠ ______( ∵∠ CAE =∠ DBF (已知) ∴∠ BAE =∠ ______ ∴ _____∥ _____(
4.如图⑥ ∵ AB ⊥ BD, CD⊥ BD (已知)
∴ AB ∥ CD (
)
又∵ ∠ 1+∠ 2 = 180 (已知)
∴ AB ∥ EF (
)
∴ CD ∥ EF (
)
________________________________ 。
三.选择题:
1.如图⑦,∠ D= ∠ EFC,那么(

A . AD ∥BC
3
8.如图,已知:∠ AOE +∠ BEF = 180°,∠ AOE +∠ CDE= 180°, 求证: CD ∥ BE 。
9.如图,已知:∠ A =∠ 1,∠ C=∠ 2。求证:求证: AB ∥CD。
4
) )
1
4.已知,如图∠ 1+∠ 2= 180°,填空。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线经典练习题(整理版)
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。

()2.如图①,如果直线l1⊥OB,直线 l 2⊥ OA ,那么 l 1与l 2一定相交。

()
3.如图②,∵∠GMB= ∠HND (已知)∴ AB ∥ CD(同位角相等,两直线平行)()
二.填空题:
1.如图③∵∠ 1=∠2,∴ _______∥ ________()。

∵∠ 2=∠3,∴ _______∥ ________()。

2.如图④∵∠ 1=∠2,∴ _______∥ ________()。

∵∠ 3=∠4,∴ _______∥ ________()。

3.如图⑤∠ B=∠ D=∠ E,那么图形中的平行线有________________________________ 。

4.如图⑥∵ AB⊥ BD,CD⊥ BD(已知)
∴ AB∥CD ()
又∵∠ 1+∠ 2 = 180 (已知)
∴ AB∥EF()
∴ CD∥EF ()
三.选择题:
1.如图⑦,∠D= ∠ EFC,那么()
A. AD ∥BC B.AB ∥CD
C. EF∥ BC D. AD ∥ EF
2.如图⑧,判定AB ∥ CE 的理由是()
A .∠ B=∠ACE B.∠ A= ∠ ECD C.∠ B=∠AC
B D.∠ A= ∠ACE
3.如图⑨,下列推理错误的是()
A .∵∠ 1=∠3,∴a∥ b
B .∵∠ 1= ∠2,∴a∥ b
C.∵∠ 1= ∠ 2,∴c∥ d D .∵∠ 1= ∠2,∴c∥ d
4.如图,直线a、 b 被直线 c 所截,给出下列条件,①∠1=∠ 2,②∠ 3=∠ 6,
③∠ 4+∠ 7= 180°,④∠ 5+∠ 8=180°其中能判断a∥ b 的是()
A.①③ B .②④C.①③④D.①②③④
四.完成推理,填写推理依据:
1.如图⑩∵∠ B=∠ _______,∴AB ∥ CD ()
∵∠ BGC= ∠ _______,∴CD ∥ EF()
∵AB ∥CD , CD ∥ EF,
∴ AB ∥_______()
2.如图⑾填空:
( 1)∵∠ 2= ∠ B(已知)
∴ AB__________ ()
( 2)∵∠ 1= ∠ A (已知)
∴__________ ()
( 3)∵∠ 1= ∠ D(已知)
∴__________ ()
( 4)∵ _______ =∠ F(已知)
∴AC ∥DF()
3.填空。

如图,∵AC ⊥ AB , BD ⊥AB (已知)
∴∠ CAB =90°,∠ ______=90°()
∴∠ CAB =∠ ______()
∵∠ CAE =∠ DBF (已知)
∴∠ BAE =∠ ______
∴ _____∥ _____()
1
4.已知,如图∠1+∠ 2= 180°,填空。

∵∠ 1+∠ 2= 180°()又∠ 2=∠ 3()
∴∠ 1+∠ 3= 180°
∴ _________()
五.证明题
1.已知:如图⑿,CE 平分∠ ACD ,∠ 1=∠ B,
求证: AB ∥ CE
2.如图:∠ 1= 53 ,∠ 2= 127 ,∠ 3= 53 ,试说明直线AB 与 CD, BC 与 DE 的位置关系。

3.如图:已知∠A= ∠ D,∠ B=∠ FCB ,能否确定ED 与 CF 的位置关系,请说明理由。

6.如图 11,直线 AB、 CD被 EF 所截,∠ 1 = ∠2,∠ CNF =∠BME。

求证: AB∥CD,MP∥NQ.
E
A
M
B
1
P
N
C D
2
F Q
图 11
7.已知:如图:∠AHF +∠ FMD = 180°, GH 平分∠ AHM , MN 平分∠ DMH 。

求证: GH∥MN 。

8.如图,已知:∠AOE +∠ BEF =180°,∠ AOE +∠ CDE = 180°,
求证: CD ∥ BE。

4.已知:如图,,,且.
求证: EC ∥DF. 9.如图,已知:∠ A =∠ 1,∠ C=∠ 2。

求证:求证: AB ∥ CD 。

A
5.如图 10,∠ 1∶∠ 2∶∠ 3 = 2 ∶3∶4,∠AFE = 60 °,
F 1
E
∠BDE =120°,写出图中平行的直线,并说明理由. 2
3
B D C
图10
2。

相关文档
最新文档