茎叶图练习题

合集下载

高中数学苏教版必修三 能力提升习题:(十二) 茎 叶 图含答案

高中数学苏教版必修三 能力提升习题:(十二) 茎 叶 图含答案

课下能力提升(十二) 茎叶图一、填空题1.在茎叶图中比40大的数据有________个.1 2 32 3 4 53 4 5 6 740 7 8 92.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有________个.6 1 2 37 2 3 4 6 78 1 2 43.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________.4.在如图所示的茎叶图中落在[20,40]上的频数为________.1 12 1 23 73 0 2 54 0 3 45 55.某中学高一(1)甲、乙两同学在高一学年度的考试成绩如下:甲乙6 567 25 4 3 28 1 26 75 4 190 3从茎叶图中可得出________同学成绩比较好.二、解答题6.某中学高二(1)班甲、乙两名同学自上高中以来每次数学考试成绩情况如下(单位:分):甲的得分:81,75,91,86,89,71,65,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101;画出甲乙两人数学成绩的茎叶图,请根据茎叶图对两个人的成绩情况进行比较.7.50辆汽车经过某一段公路的时速记录如图所示:十位个位1 345667778889992 0000112222233334455566667778889301123将其分成7组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图以及频率分布折线图;(3)根据上述结果,估计汽车时速在哪组的几率最大?8.茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分.试回答下列问题:(1)在伪代码中,“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.女生男生3 09 3 3 65 3 3 2 2 0080 2 3 6 665 3 1 07 1 4 566 2 2 875 3 7答案1.解析:由茎叶图中知比40大的有47、48、49,共3个.答案:32.解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.答案:63.解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.答案:12、13、14、154.解析:由茎叶图中给出了12个数据,其中在[20,40]上有8个.答案:85.解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.答案:甲6.解:甲、乙两人数学成绩的茎叶图如图所示:甲乙5 65 1799 8 6 18 3 6 84 19 3 8 8 9710 1 3011 4从这个茎叶图可以看出,乙同学的得分集中在98分附近,数据分布是大致对称的;甲同学的得分集中在86分附近,分数数据分布也是大致对称的,但较分散.所以乙同学发挥比较稳定,得分情况好于甲.7.解:(1)由茎叶图知,数据最大值为33,最小值为13,分为7组,组距为3,则频率分布表为:分组频数频率[12.5,15.5)30.06[15.5,18.5)80.16[18.5,21.5)90.18[21.5,24.5)110.22[24.5,27.5)100.20[27.5,30.5)50.10[30.5,33.5]40.08合计50 1(2)频率分布直方图及频率分布折线图如图所示:(3)汽车时速在[21.5,24.5)内的几率最大,为0.22.8.解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“S←S/15,T ←T/17”可推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.(2)女生、男生以及全班成绩的平均分分别为S=78,T=77,A≈77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中.整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多.相比较男生两极分化比较严重.。

茎叶图

茎叶图

统计概率练习----茎叶图1.已知一组数据为20、30、40、50、50、60、70、80,其平均数、中位数和众数分别为2.已知5个数据3,5,7,4,6,则该样本标准差为 3.如果数据n x x x ,,,21 的平均数为x ,方差为S 2,则32,,32,3221+++n x x x 的平均数和方差分别为4.已知一个样本1,3,2,5,x ,若它的平均数是3,则这个样本的标准差为5.一教练员出了一份含有3个问题的测验卷,每个问题1分。

班级中30%的学生得了3分;50%的学生得了2分;10%的同学得1分;另外还有10%的学生没得分。

(1)如果班级中有10人,平均分是多少?(2)不告诉你班级中有多少人,你能算出平均得分吗?6.(茎叶图)某赛季甲、乙两名篮球运动员每场比赛得分情况如下:甲的得分:12,15,24,25,3l ,31,36,36,37,39,44,49,50;乙的得分:8,13,14,16,23,26,28,33,38,39,59.(1)制作茎叶图,并对两名运动员的成绩进行比较;(2)计算上述两组数据的平均数和方差,并比较两名运动员的成绩和稳定性;(3)能否说明甲的成绩一定比乙好,为什么?5.如图所示的是某单位职工年龄(取正整数)的频数分布直方图,根据图形提供的信息,回答下列问题:(1)该单位共有职工多少人?(2)不小于38岁但小于44岁的职工人数占总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有多少人?7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程∧∧+=a x b y ;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产l00吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)。

茎叶图

茎叶图

二、例题:
某赛季甲、乙两名运动员每场比赛得分的原始记 录如下: 甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44, 36,15,37,25,36,39。 1、将这两组数据用茎叶图表示。 2、将这两组数据进行比较分析,能得出什么结 论?

(四)练习:
• • • • • 教材P71---3 练习册 P32-例3举一反三, P33-2, P34-12
五、作业

教材P81---1(1),(2),(3)
2.2.1用样本的频率分布估 计总体分布(三)茎叶图
一、茎叶图的概念:
统计中有一种被用来表示数据的图叫做茎叶图。 画茎叶图的步骤: 1.将每个数据分为茎(高位)和叶(低位)两部 分,如:当数据是两位有效数字时,用第一个 有效数字(十位数)表示为植物的茎,用第二 个有效数字(个位数),表示为植物的叶。 2.将最小茎和最大茎之间的数按大小次序排成一 列。 3.将各个数据的叶写在其茎右(左)侧.
茎叶图
甲 8 3 4 6 3 6 8 3 8 9 1

0 1 2 3 4 5
中间的数字表示
得分的十位数字。 5 2 旁边的数字分别 5 字
0
三、茎叶图的优劣
茎叶图的优势: 1.从统计图上没有原始数据信息的损失, 所有数据信息都可以从茎叶图中得到; 2.茎叶图中的数据可以随时记录,随时添 加,方便记录与表示。 3.充分展示数据分布。 茎叶图的不足:只方便记录极差小,数 据少且最多两组数据的问题。

(完整版)茎叶图练习题

(完整版)茎叶图练习题

茎叶图练习题1.下列关于茎叶图的叙述正确的是()(A)将数据的数按位数进行比较,将数大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面(B)茎叶图只可以分析单组数据,不能对两组数据进行比较(C)茎叶图更不能表示三位数以上的数据(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出2.下列关于茎叶图的叙述正确的是()(A)茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同(B)对于重复的数据,只算一个(C)茎叶图中的叶是“茎”十进制的上一级单位(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出3.茎叶图012380 91 3 50 2 3 4 6中,茎2的叶子数为()(A)0 (B)1 (C)2 (D)34.数据8,51,33,39,38,23,26,28,13,16,14的茎叶图是()(A)01234583 4 636 83 8 91(B)1234583 4 636 83 8 91(C)1234583 4 636 83 8 91(D)1234583 4 636 83 8 9115.用茎叶图对两组数据进行比较时()(A)左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写(B)左侧的叶按从大到小的顺序写,右侧的叶也按从大到小的顺序写(C)左侧的叶按从小到大的顺序写,右侧的叶也按从小到大的顺序写(D)左侧的叶按从小到大的顺序写,右侧的叶按从大到小的顺序写6.茎叶图491166794525甲5432119838636438乙中,甲组数据的中位数是()(A)31 (B)5.3323631=+(C)36 (D)7.茎叶图4327538543339865的茎为,叶子最多的茎是。

8.茎叶图4321876532122中所记录的原始数据共有个。

9.在茎叶图9.8.7.6.5.3854196221854322中,样本的中位数为,众数为。

数学苏教版3自我检测:2.2.3茎叶图含解析

数学苏教版3自我检测:2.2.3茎叶图含解析

自我检测基础达标一、选择题1.在用样本频率估计总体的过程中,下列说法中正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:C2.对于样本频率分布直方图与总体密度曲线的关系,下列说法正确的是()A.频率分布直方图与总体密度无关B.频率分布直方图就是总体密度曲线C.样本容量很大的频率分布直方图就是总体密度曲线D.如果样本容量无限增大,各组的组距无限减小,那么相应的频率折线图会越来越接近一条光滑曲线,则这条光滑曲线为总体密度曲线答案:D3.某地一种植物一年生长的高度如下表:则该植物一年生长高度在[30,40)内的频率为()A.0。

3 B.0。

4C.0。

8 D.0.2答案:B4.频率分布直方图中,小长方形的面积等于()A.相应各组的频数B.相应各组的频率C.组数D.组距答案:B5.频率分布直方图中,小矩形的高表示()A.频率/样本容量B.组距×频率C.频率D.频率/组距答案:D二、填空题6。

完成下面的频率分布表:12345678组号频101314141513129数频率答案:0。

1 0。

13 0.14 0.14 0.15 0.13 0.12 0。

097. 一个容量为150的样本分成若干组,已知某组的频数和频率分别是30和x,则x=______。

答案:0.28。

作频率分布直方图时,横轴表示________,纵轴表示________,在横轴上以________为底,在纵轴上以_______为高作矩形.答案:样本数据频率/组距数据各组的两端点表示的线段频率/组距9。

条形图用_________来表示取各值的频率,直方图用_________来表示频率.答案:高度面积10.总体密度曲线是指______________;它反映了_____________。

答案:样本容量取得足够大,分组的组距足够小,相应的频率折线图将趋于一条曲线;它反映了总体的变化趋势.三、计算题11.有一容量为100的样本,数据的分组以及各组的频数如下:[0,5) 15,[5,10)20,[10,15)25,[15,20) 18,[20,25)12,[25,30)10.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计总体在[5,20)之内的个体约占总体的多少?解:(1)。

历年高考数学真题精选41 茎叶图

历年高考数学真题精选41 茎叶图

历年高考数学真题精选(按考点分类)专题41茎叶图(学生版)一.选择题(共7小题)1.(2017•山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7 2.(2015•重庆)重庆市2013年各月的平均气温(︒C)数据的茎叶图如,则这组数据的中位数是()A.19B.20C.21.5D.23 3.(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:︒C)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④(9B.7C.36(4.(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6 5.2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )A.2,5B.5,5C.5,8D.8,8 6.(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A.11636D.677 7.2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x,x,中位数分别甲乙为m,m,则()甲乙A.x<x,m>m甲乙甲乙B.x<x,m<m甲乙甲乙(注:方差 s 2 = [(x - x )2 + ( x - x )2 +⋯+ (x - x )2 ] ,其中 x 为 x , x ,⋯ , x 的平均数);C . x > x , m > m甲乙甲乙D . x > x , m < m甲 乙 甲 乙二.填空题(共 2 小题)8.(2018•江苏)已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出的分数的平均数为.9.(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动 员在这五场比赛中得分的方差为.1 n 12 n 1 2 n三.解答题(共 3 小题)10.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从 A , B 两地区分别随机调查了 20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分满意度等级 低于 70 分不满意 70 分到 89 分满意 不低于 90 分非常满意记事件 C :“ A 地区用户的满意度等级高于 B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求 C 的概率.((注:方差s2=[(x-x)2+(x-x)2+⋯+(x-x)2],其中x为x,x,⋯x的平均数)(11.2013•安徽)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x、x,估计x-x的值.1212 12.2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(Ⅰ)如果X=8,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.1n12n12n历年高考数学真题精选(按考点分类)专题41茎叶图(教师版)一.选择题(共7小题)1.(2017•山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7【答案】A【解析】由已知中甲组数据的中位数为65,故乙组数据的中位数也为65,即y=5,则乙组数据的平均数为:66,故x=32.(2015•重庆)重庆市2013年各月的平均气温(︒C)数据的茎叶图如,则这组数据的中位数是()A.19B.20C.21.5D.23【答案】B【解析】样本数据有12个,位于中间的两个数为20,20,则中位数为20+20=2023.(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:︒C)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,S2=[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2⎤⎦=3.65S2=[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2⎤⎦=2,5其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④【答案】B【解析】由茎叶图中的数据,我们可得甲、乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;1515故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:1甲乙地该月14时温度的方差为:1乙故S2>S2,甲乙所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.4.(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6【答案】B【解析】由已知,将个数据分为三个层次是[130,138],[139,151],[152,153],根据系统抽样方法从中抽取7人,得到抽取比例为,所以成绩在区间[139,151]中共有20名运动员,抽取人数为20⨯=4(9B.7C.36∴这这组数据的方差是(16+1+1+0+0+9+9)=(15155.2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )A.2,5B.5,5C.5,8D.8,8【答案】C【解析】乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.6.(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A.11636D.677【答案】B【解析】Q由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x.∴这组数据的平均数是87+90+90+91+91+94+90+x=91,∴x=4.717367.7.2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x,x,中位数分别甲乙为m,m,则()甲乙x=5+6+8+10+10+14+18+18+22+25+27+30+30+38+41+431616x=10+12+18+20+22+23+23+27+31+32+34+34+38+42+43+481616它们的平均数为⨯(89+89+90+91+91)=90.(注:方差s2=[(x-x)2+(x-x)2+⋯+(x-x)2],其中x为x,x,⋯,x的平均数)A.x<x,m>m甲乙甲乙C.x>x,m>m甲乙甲乙【答案】B【解析】甲的平均数B.x<x,m<m甲乙甲乙D.x>x,m<m甲乙甲乙甲乙的平均数=345,乙=457,所以x<x.甲乙甲的中位数为20,乙的中位数为29,所以m<m甲乙二.填空题(共2小题)8.(2018•江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.【答案】90【解析】根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,159.(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为.1n12n12n∴ 这组数据的方差是 [(8 - 11)2 + (9 - 11)2 + (10 - 11)2 + (13- 11)2 + (15 - 11)2 ];【答案】6.8【解析】Q 根据茎叶图可知这组数据的平均数是8 + 9 + 10 + 13 + 155= 111 51= [9 + 4 + 1 + 4 + 16] = 6.8 5三.解答题(共 3 小题)10.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从 A , B 两地区分别随机调查了 20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分满意度等级 低于 70 分不满意 70 分到 89 分满意 不低于 90 分非常满意记事件 C :“ A 地区用户的满意度等级高于 B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求 C 的概率.解:(1)两地区用户满意度评分的茎叶图如下, , , ,, P(C ) = , P(C ) = , P(C ) = , 20 20 20 4 ⨯ +⨯ = 0.48 .(通过茎叶图可以看出,A 地区用户满意评分的平均值高于 B 地区用户满意评分的平均值;A地区用户满意度评分比较集中, B 地区用户满意度评分比较分散;(2)记 C 表示事件“ A 地区用户满意度等级为满意或非常满意”,A1记 C 表示事件“ A 地区用户满意度等级为非常满意”,A2记 C 表示事件“ B 地区用户满意度等级为不满意”,B1记 C 表示事件“ B 地区用户满意度等级为满意”,B2则 C 与 C 独立, C 与 C 独立, C 与 C 互斥,A1B1 A2 B2 B1 B2则 C = C C U C C ,A1 B1A2B 2P (C ) = P(C C ) + P(C C ) = P(C )P(C ) + P(C ) P (C ) ,A1 B1A2B 2A1B1A2B2由所给的数据 C , C , C , C ,发生的频率为 A1 A2 B1 B2 16 4 10 820 20 20 20所以 P(C ) = A1 16 10 8A2 B1 B2所以 P (C ) = 16 10 8 420 20 20 2011. 2013•安徽)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取 30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:∴估计甲校高三年级这次联考数学成绩的及格率1-5=;30((Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x、x,估计x-x的值.1212解:(I)设甲校高三年级总人数为n,则30=0.05,∴n=600,n又样本中甲校高三年级这次联考数学成绩的不及格人数为5,5306(I I)设样本中甲、乙两校高三年级学生这次联考数学平均成绩分别为a,a,12由茎叶图可知,30(a-a12)=(7-5)+55+(2-8)+(5-0)+(5-6)+⋯+92=15,∴a-a=15=0.5.12∴利用样本估计总体,故估计x-x12的值为0.5.12.2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(Ⅰ)如果X=8,求乙组同学植树棵数的平均数和方差;(注:方差s2=[(x-x)2+(x-x)2+⋯+(x-x)2],其中x为x,x,⋯x的平均数)平均数是X=8+8+9+10方差为⨯[(8-)2+(8-)2+(9-)2+(10-)2]=;∴随机变量的期望是EY=17⨯+18⨯1+19⨯+20⨯+21⨯=19.(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.1n12n12n解:(Ⅰ)当X=8,乙组同学植树棵数是8,8,9,10,35=44,135********4444416(Ⅱ)当X=9时,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10,分别从甲和乙两组中随机取一名同学,共有4⨯4=16种结果,这两名同学植树的总棵数Y可能是17,18,19,20,21,事件Y=17,表示甲组选出的同学植树9棵,乙组选出的同学植树8棵,∴P(Y=17)=21= 168P(Y=18)= P(Y=19)= P(Y=20)= P(Y=21)=1 4 1 4 1 4 1 8,Y P170.125180.25190.25200.25210.125111184448。

黑龙江省北安市实验中学人教版高中数学必修三练习:2.2.1第二课时茎 叶 图 Word版含解析

黑龙江省北安市实验中学人教版高中数学必修三练习:2.2.1第二课时茎 叶 图 Word版含解析

课时作业(十七)1.下列关于茎叶图的叙述正确的是( )A .将数组的数按位数进行比较,将数大小基本不变或变化不大的位作为一个主干(茎),将变化大的位数作为分枝(叶),列在主干的后面B .茎叶图只可以分析单组数据,不能对两组数据进行比较C .茎叶图更不能表示三位数以上的数据D .画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可随意同行列出 答案 A2.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲A.2.7岁 C .3.2岁 D .4岁答案 C解析 分别求出父亲年龄和母亲年龄的平均值,可得父亲的平均年龄比母亲的平均年龄大3.2岁,故选C.3.一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图为,记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为( )A .5B .6C .7D .8答案 D解析 由茎叶图知,10+11+3+x +8+97=7,∴x =8. 4.下图是甲、乙两市领导干部年龄的茎叶图,对于这两市领导干部的年龄给出的以下说法正确的是( )②乙市领导干部的年龄分布大致对称;③甲市领导干部的平均年龄比乙市领导干部的平均年龄大;④平均年龄都是50.A .①②B .①③C .①②③D .①②③④答案 C解析 根据茎叶图上的原始数据可以分析数字特征,对两组数据加以比较,从而做出大致估计,由茎叶图可知甲市领导干部的年龄的分布主要集中在40~50之间,平均年龄大约在48岁左右;而乙市领导干部的年龄分布大致对称,平均年龄大约在45岁左右.可见甲市领导干部的平均年龄比乙市领导干部的平均年龄大,故①②③正确,故选C.5.如下图所示的是2008年至2017年某省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到2008年至2017年此省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6答案 B 解析 由茎叶图得到2008年至2017年城镇居民百户家庭人口数为:291,291,295,298,302,306,310,312,314,317,所以平均数为291+291+295+298+302+306+310+312+314+31710=3 03610=303.6. 6.已知一个班的语文成绩的茎叶图如图所示,那么优秀率(90分及以上)及最低分分别是( )A .4%与51B .16%及15C .4%与15D .28%与51答案 A 7.(高考真题·陕西卷)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x -甲,x -乙,中位数分别为m 甲,m 乙,则( )A.x -甲<x -乙,m 甲>m 乙B.x -甲<x -乙,m 甲<m 乙C.x -甲>x -乙,m 甲>m 乙D.x -甲>x -乙,m 甲<m 乙答案 B解析 由题图可得x -甲=34516,m 甲=20, x -乙=45716,m 乙=29, 所以x -甲<x -乙,m 甲<m 乙.故选B.8.某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图所示,下列说法正确的是( )A .乙同学比甲同学发挥稳定,且平均成绩也比甲同学高B .乙同学比甲同学发挥稳定,但平均成绩不如甲同学高C .甲同学比乙同学发挥稳定,且平均成绩比乙同学高D .甲同学比乙同学发挥稳定,但平均成绩不如乙同学高答案 A 9.茎叶图 ⎪⎪⎪⎪012345 83 4 636 83 8 91中的中位数是________. 答案 2610.如图是2017赛季CBA 广东东莞银行队甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是________.答案 58 解析 中位数是将数据按由大到小或由小到大的顺序排列起来,最中间的一个数或中间两个数的平均数.甲比赛得分的中位数为34,乙比赛得分的中位数为24,故其和为58.11,________.答案38 3812.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为答案 24;23解析 x -甲=110×(19+18+20+21+23+22+20+31+31+35)=24, x -乙=110×(19+17+11+21+24+22+24+30+32+30)=23. 13.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图所示的统计图,试求:(1)(2)甲交通站的车流量在[10,40]间的频率是多少?(3)甲、乙两个交通站哪个站更繁忙?并说明理由.解析 (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).(2)甲交通站的车流量在[10,40]间的频率为414=27. (3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.。

(完整版)频率分布直方图和茎叶图练习

(完整版)频率分布直方图和茎叶图练习

频率分别直方图与茎叶图练习题1第三组的频数和频率分别是 ( ) A .14和0.14 B .0.14和14 C .141和0.14 D . 31和1412.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了(1)求出表中,,,m n M N 所表示的数分别是多少? (2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?3.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约有( ) (A) 30辆 (B) 40辆(C) 60辆(D) 80辆)4年降水量/mm [ 100, 150 ) [ 150, 200 ) [ 200, 250 ) [ 250, 300 ] 概率0.21 0.16 0.13 0.125.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5---89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)6. 某班有50名学生,在学校组织的一次数学质量抽测中,如果按照抽测成绩的分数段[60,65),[65,70),…[95,100)进行分组,得到的分布情况如图所示.求:(Ⅰ)该班抽测成绩在[70,85)之间的人数;(Ⅱ)该班抽测成绩不低于85分的人数占全班总人数的百分比.5101520成绩人数60 65 70 75 80 85 90 95 1007 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,3000的频率为8 从两个班中各随机的抽取10名学生,他们的数学成绩如下:画出茎叶图9.某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)(1)列出频率分布表;(2)画出频率分布直方图;(3)估计数据落在[150,170]范围内的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茎叶图练习题
1.下列关于茎叶图的叙述正确的是()(A)将数据的数按位数进行比较,将数大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面
(B)茎叶图只可以分析单组数据,不能对两组数据进行比较
(C)茎叶图更不能表示三位数以上的数据
(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出
2.下列关于茎叶图的叙述正确的是()(A)茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同
(B)对于重复的数据,只算一个
(C)茎叶图中的叶是“茎”十进制的上一级单位
(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出
3.茎叶图0
1
2
3
8
0 9
1 3 5
0 2 3 4 6
中,茎2的叶子数为()
(A)0 (B)1 (C)2 (D)3
4.数据8,51,33,39,38,23,26,28,13,16,14的茎叶图是()
(A)0
1
2
3
4
5
8
3 4 6
36 8
3 8 9
1
(B)
1
2
3
4
5
8
3 4 6
36 8
3 8 9
1
(C)
1
2
3
4
5
8
3 4 6
36 8
3 8 9
1
(D)
1
2
3
4
5
8
3 4 6
36 8
3 8 9
1
1
5.用茎叶图对两组数据进行比较时()(A)左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写
(B)左侧的叶按从大到小的顺序写,右侧的叶也按从大到小的顺序写
(C)左侧的叶按从小到大的顺序写,右侧的叶也按从小到大的顺序写
(D)左侧的叶按从小到大的顺序写,右侧的叶按从大到小的顺序写6.茎叶图
4
9
1
1
6
6
7
9
4
5
2
5

5
4
3
2
1
1
9
8
3
8
6
3
6
4
3
8

中,甲组数据的中位数是()(A)31 (B)5.
33
2
36
31
=
+
(C)36 (D)
7.茎叶图
4
3
2
7
5
3
8
5
4
3
3
3
9
8
6
5
的茎为,叶子最多的茎是。

8.茎叶图
4
3
2
1
8
7
6
5
3
2
1
2
2
中所记录的原始数据共有个。

9.在茎叶图
9.
8.
7.
6.
5.
3
8
5
4
1
9
6
2
2
1
8
5
4
3
2
2
中,样本的中位数为,众数为。

10.一个班的语文成绩的茎叶图为
9
8
7
6
1
7
5
3
3
2
9
7
6
5
5
5
3
9
8
8
7
6
4
4
3
,则优秀率(80及以上)为,最低分是。

11.为了了解各自受欢迎的程度,甲、乙两个网站分别随机选取了14天,记录了下午00:2~
甲 73 24 58 72 64 38 66 70 20 41 55 67 8 25 乙
12
37
21
5
54
42
61
45
19
6
19
36
42
14
12.有一个容量为50的样本,其数据的茎叶图表示如下:
3213
2 1 1 09 8 8 8 7 7 7 6 6 6 6 5 5 5 4 4
3 3 3 3 2 2 2 2 2 1 1 0 0 0 0
9 9 9 8 8 8 8 7 6 6 6 5 4 3,将其分成7个组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图。

13.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档