旋转体定义一条平面曲线绕着它所在的平面内的一条定直线旋转所构成的曲面叫作旋转面
高中数学 同步教学 简单旋转体

分析:圆柱中挖去圆锥后的几何体被平行于底面的平面所截得的
截面是一个圆环面,它由圆柱被截得的圆面去掉圆锥被截得的同心
圆面得到,故先作出轴截面再求解.
题型一
题型二
题型三
题型四
题型五
解:该几何体的轴截面如图所示,被平行于下底面的平面所截得
的圆柱的截面圆的半径O1C=R.
∵OA=AB=R,
(2)特殊的旋转体:球、圆柱、圆锥、圆台.
名师点拨如果只考虑物体的形状和大小,而不考虑其他因素,那么
由这些物体抽象出来的空间图形叫作空间几何体.旋转体是特殊的
空间几何体.
【做一做1】 以等腰梯形的对称轴为轴旋转一周,所形成的旋转
体为(
)
A.圆台
B.圆锥
C.圆柱
D.球
答案:A
2.几种简单几何体的比较
柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;
③在圆台上、下底面的圆周上各取一点,则这两点的连线是圆台的
母线;④圆柱的任意两条母线所在的直线是互相平行的.
其中正确的是(
)
A.①②
B.②③
C.①③
D.②④
答案:D
【做一做2-2】 有下列说法:
①球的半径是连接球面上任意一点和球心的线段;②球的直径是
名称 定义
球
相关概念
图形表示
球心:半圆的圆心
以半圆的直径
叫作球心;
所在的直线为
半径:连接球心和
旋转轴,将半
球面上任意一点
圆旋转所形成
的线段叫作球的
的曲面叫作球
半径;
面.球面所围
直径:连接球面上
成的几何体叫
的两点并且过球
作球体,简称
第六节__旋转曲面和二次曲面

• 柱面 如,曲面F ( x , y ) 0 表示母线平行 z 轴的柱面. 又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
机动 目录 上页 下页 返回 结束
2. 二次曲面
• 椭球面 • 抛物面: ( p, q 同号)
三元二次方程
椭圆抛物面
双曲抛物面
x2 y2 z 2 p 2q • 双曲面: 单叶双曲面 双叶双曲面 2 2 x2 y2 x y 2 2 1 1 2 2 a b a b x2 y2 • 椭圆锥面: 2 z2 a2 b
z
L
M (0, y, z )
y
两边平方
x
z 2 a2 ( x2 y2 )
机动
目录
上页
下页
返回
结束
例4. 求坐标面 xoz 上的双曲线 轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转 所成曲面方程为
分别绕 x
x2 y2 z 2 1 2 2 a c
绕 z 轴旋转所成曲面方程为
机动
目录
上页
下页
返回
结束
思考:当曲线 C 绕 y 轴旋转时,方程如何?
z
C : f ( y, z ) 0
o x
y
f ( y, x z ) 0
2 2
机动
目录
上页
下页
返回
结束
例3. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为 的圆锥面方程. 解: 在yoz面上直线L 的方程为 绕z 轴旋转时,圆锥面的方程为
平面 x x1 上的截痕为 双曲线
o x
y
平面 z z1 ( z1 c)上的截痕为 椭圆
注意单叶双曲面与双叶双曲面的区别:
绕x轴y轴旋转体积的积分公式

绕x轴y轴旋转体积的积分公式
绕x轴旋转体体积公式是V=π∫[a,b]f(x)^2dx。
一条平面曲线绕着所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
绕y轴旋转体积公式:V=π∫[a,b]φ(y)^2dy。
绕x轴旋转体的侧面积为A=2π∫[a,b]y*(1+y'^2)^0.5dx,其中y'^2是y对x的导数的平方,()^0.5是开平方。
绕x轴旋转得到的旋转体体积为0.5π^2,绕y轴旋转得到的旋转体体积为2π^2。
1、绕x轴旋转时,微体积dV = πy^2dx,或者:dV = π(sinx)^2dx,将dV在0到π之间对x做定积分。
得到:V = ∫π(sinx)^2dx (在0到π区间积分) = ∫π(1-cos2x)/2dx (在0到π区间积分) = 0.5π^2。
即,给定函数,绕x轴旋转得到的旋转体体积为0.5π^2。
2、绕y轴旋转时,微体积dV = π(2x)ydx,或者:dV = 2πxsinxdx,将dV在0到π之间对x做定积分。
得到:V = ∫2πxsinxdx(在0到π区间积分) =2π∫xsinxdx (在0到π区间积分) = 2π^2。
即,给定函数,绕y轴旋转得到的旋转体体积为2π^2。
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
绕y轴旋转一周的表面积

绕y轴旋转一周的表面积
旋转体表面积的公式是S=∫2πf(x)*(1+y'^2)dx。
一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
推导过程:
在x轴上取x→x+△x【△x→0】区域,该区域绕x轴旋转一周得到的旋转曲面的面积,即表面积积分元。
等于以f(x)为半径的圆周周长×弧线长度,即它可以看做是沿x轴方向上,将△x宽度的圆环带剪断,得到一个以圆环带周长为长,宽为x→x+△x弧线长度的矩形的面积。
以f(x)为半径的圆周长=2πf(x),对应的弧线长=√(1+y'^2)△x,所以其面积=2πf(x)*√(1+y'^2)△x。
这就得到表面积积分元,所以,表面积为∫2πf(x)*(1+y'^2)dx。
旋转体的概念

O
O
圆柱的每一条母线都与轴平行
圆柱的侧面沿一条母线剪开后展开成 矩形
圆锥的结构特征
定义:将直角三角形绕其一条直角边所在直线选 转一周所形成的几何体叫做圆锥。 (1)绕其旋转的直线叫做圆锥的轴。 (2) 垂直于轴的边旋转而成的 顶点 圆面叫做圆锥的底面。
S 母 线
(3)不垂直于轴的边旋转而成 轴 的曲面叫做圆锥的侧面。 (4)无论旋转到什么位置,不 垂直于轴的边都叫做圆锥的母 线。 (5)顶点到底面的距离叫做圆锥 的高
例题讲解
例1(1).如图,将直角梯形ABCD绕AB边所 在的直线旋转一周,由此形成的几何体是由哪 些简单几何体构成的?
D A C B
(2)如图,将平行四边形ABCD绕AB边所在的直线 旋转一周,由此形成的几何体是由哪些简单几何体 构成的?
D A B C
2、判断题:
(1)在圆柱的上下底面上各取一点,这两点的连
线是圆柱的母线.
(2)与圆柱的轴平行的截面是矩形.
(
(
)
) )
(3)与圆锥的轴平行的截面是等腰三角形. (
例3.1)已知圆柱的底面半径是2cm,高是3cm,求 圆柱的轴截面矩形的对角线长。
2)圆柱的高为 4 cm ,底面半径为 3 cm , 已知上底面一条半径 OA 与下底面的一条 半径 O B 成 60º角。求: (1) 直线 AB 与圆柱的轴 OO 所成的角的 正切值; (2)线段 AB 的长。
侧 面
A
O B
圆锥的性质
S
平行于底面的截面都是圆。
O
O
过轴的截面(轴截面)是全等的等腰 三角形
圆锥的每一条母线都交于顶点, 与轴的夹角都相等
圆锥的侧面沿一条母线剪开后展开成 扇形
高考数学复习知识点:旋转体

高考数学复习知识点:旋转体一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
是高考数学的重要知识点,一起来复习下吧:1.在中学我们只研直圆柱、直圆锥和直圆台。
所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。
这样定义直观形象,便于理解,而且对它们的*质也易推导。
对于球的定义中,要注意区分球和球面的概念,球是实心的。
等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。
2.圆柱、圆锥、圆和球的*质(1)圆柱的*质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的*质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。
(2)圆锥的*质,要强调三点①平行于底面的截面圆的*质:截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。
②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC.由于截面三角形的顶角不大于轴截面的顶角。
所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有当轴截面的顶角θ>90°时,轴截面的面积却不是最大的,这是因为,若90°≤α<θ<1801=""sin="">sinθ>0.③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式:l2=h2+R2。
旋转体定义一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面

旋转体定义一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
第二类间断点设Xo是函数f(x)的间断点,那么1°如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。
又如果(i),f(x-)=f(x+),则称Xo为f(x)的可去间断点。
(ii),f(x-)≠f(x+),则称Xo为f(x)的跳跃间断点。
2°不是第一类间断点的任何间断点,称为第二类间断点。
第二类间断点:函数的左右极限至少有一个不存在。
a.无穷间断点:y=tanx,x=π/2b.震荡间断点:y=sin(1/x),x=0第一类间断点如果x0 是函数f(x) 的间断点,但左极限及右极限都存在,则称x0 为函数f(x) 的第一类间断点(discontinuity point of the first kind)。
在第一类间断点中,左右极限相等者称可去间断点,不相等者称为跳跃间断点。
非第一类间断点即为第二类间断点(discontinuity point of the second kind)。
相关知识设函数y=f(x) 在点x0 的某一邻域内有定义,如果函数f(x) 当x→x0 时的极限存在,且等于它在点x0 处的函数值f(x0),即limf(x)=f(x0)(x→x0),那么就称函数f(x) 在点x0 处连续。
不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且limf(x)(x→x0)存在,但lim f(x) ≠f(x0)(x→x0)时则称函数在x0处不连续或间断。
刘维尔(Joseph Liouville) 法国数学家,一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题和数论中的超越数问题有深入研究。
刘维尔研究了后来所谓的“刘维尔数”,并证明了其超越性,是第一个证实超越数的存在的人。
2019-2020年高考数学旋转体的概念和性质

2019-2020年高考数学旋转体的概念和性质一. 旋转体定义:一条平面曲线(包括直线)绕它所在的平面内的一条定直线旋转所形成的曲面叫旋转面。
这线叫旋转轴。
无论旋转到什麽位置这条曲线叫旋转面的母线。
封闭的旋转面围成的几何体叫旋转体。
旋转面的轴叫旋转体的轴。
二. 几种常见的旋转体定义:矩形绕一边旋转一周所围成的几何体叫圆柱。
绕一直角边旋转一周所围成的几何体叫圆锥。
直角梯形绕垂直于底边的腰旋转一周所围成的几何体叫圆台 圆绕它的直径旋转一周所围成的几何体叫球。
注意:(1)垂直于轴的线段绕轴旋转一周形成圆面。
(2)与轴相交的直线绕轴旋转一周形成圆锥面。
(3)与轴平行的直线绕轴旋转一周形成圆柱面。
(4)不平行也不相交的线段绕轴旋转一周形成圆台面。
折线旋转形成 上锥、下台 2.性质O O O O 1 O 1A 1A 1VA AA平行于底面的截面全等的圆与底面相等相似的圆(比例关系)圆 球心和截面圆圆心连线垂直截面侧面展开图矩形 扇形 扇环三、体中各元素间的关系上述个体中各元素间的关系是通过三角形、矩形、梯形、圆、扇形等来体现的。
这些关系是求体积、表面积及其它有关问题的有力依据。
1.正n 棱柱 (n 3)侧面展开图h=l=三个矩形:ABB1A1 ,AOO1A1 ,GOO1G1 两个直角三角形:Rt ΔO1A1G1 ≌Rt ΔOAG , , 侧面展开图四个直角三角形:;(1)Rt ΔVOA (2)Rt ΔVOF (3)Rt ΔV AF (4)Rt ΔOAF 3.正n 棱台 三个直角梯形: (1)梯形OO1A1B (2)梯形OO1E1E (3)梯形EE1B1B两个相似三角形:Rt ΔOBE ∽ Rt ΔO1B1E1 ;;=;= 4.圆柱D C 1A D C Bad r E h l B 1 E OOr d G ABChB1G1A1O1 O l FA Br dE OCDV hl l矩形OO1BA h=l 矩形ABCD AD=BC=2πr BD= S 圆柱侧=S 矩ABCD=2πrlBD 是从B 绕圆柱侧面一周到A 的最短距离5.圆锥: 一个三角形及一个扇形Rt Δ扇形中 =C=2πr ;θ= ;=2lsin为从A 出发绕圆锥侧面一周再回到A 的最短距离 S 圆锥侧=S 扇=πrl=cl6.圆台: 一个梯形及一个扇环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶哲轩实分析是一本书,本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。
书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。
勒贝格积分
将给定的函数按函数值的区域进行划分,作和、求极限而产生的积分概念,就是勒贝格积分。
勒贝格测度
数学上,勒贝格测度是赋予欧几里得空间的子集一个长度、面积、或者体积的标准方法。
它广泛应用于实
分析,特别是用于定义勒贝格积分。
勒贝格(1875~1941)Lebesgue,Henri Lon
法国数学家。
1875年6月28日生于博韦,1941年7月26日卒于巴黎。
1894~1897年在巴黎高等
师范学校学习。
1902年在巴黎大学获得博士学位,从1902年起先后在雷恩大学、普瓦蒂埃大学、巴黎大学文理学院任教。
1922年任法兰西学院教授,同年被选为巴黎科学院院士。
勒贝格的主要贡献是测度和积分理论。
他采用无穷个区间来覆盖点集,使许多特殊的点集的测度有了定义。
在定义积分时他也采取划分值域而不是划分定义域的办法,使积分归结为测度,从而使黎曼积分的局限性得到突破,进一步发展了积分理论。
他的理论为20世纪的许多数学分支如泛函分析、概率论、抽象积分论、抽象调和分析等奠定了基础。
利用勒贝格积分理论,他对三角级数论也作出基本的改进。
另外,他在维数论方面也有贡献。
晚年他对初等几何学及数学史进行了研究。
他的论文收集在《勒贝格全集》(5卷)中。
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x).
当函数的变量是正整数时,函数的值就是前一个整数的阶乘,或者说Γ(n+1)=n!。
函数图象
华南理工大学数学科学学院。