非线性电路中的混沌现象11011079

合集下载

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节实验者:班级材料0705学号 XX67025 姓名童凌炜同组者:班级材料0705学号 XX67007 姓名车宏龙实验地点:综合楼 404实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括:1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3, 100kHz正弦波振荡波作为参考信号2. 低频信号发生器用以输出正弦波信号,提供给约结作为交流信号 3. 数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1. 了解混沌的产生和特点2. 掌握吸引子。

倍周期和分岔等概念3. 观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。

混沌的最本质特征是对初始条件极为敏感。

1. 非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。

除此之外,非线性关系还具有某些不同于线性关系的共性:1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因2. 倍周期,分岔,吸引子,混沌借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。

虫口方程如下:xn?1???xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。

在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。

但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。

1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。

于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。

从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。

该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。

混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。

【实验目的】1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。

2.学会测量非线性器件伏安特性的方法。

【实验仪器】非线性电路混沌实验仪【实验原理】图1 非线性电路 图2 三段伏安特性曲线1.非线性电路与非线性动力学:实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。

电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。

较理想的非线性元件R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1 电路的非线性动力学方程为:11211Vc g )Vc Vc (G dtdVc C ∙--∙=L 2122i )Vc Vc (G dtdVc C +-∙=式中,导纳21W W 1G +=,1C V 和2C V 分别表示加在1C 和2C 上的电压,L i 表示流过电感器L 的电流,g 表示非线性电阻R 的导纳。

2. 有源非线性负阻元件的实现:有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路:采用两个运算放大器(一个双运放 353LF ) 和六个配置电阻来实现,其电路如图3所示,它的伏安 特性曲线如图4所示。

研究非线性力学中的混沌现象

研究非线性力学中的混沌现象

研究非线性力学中的混沌现象混沌现象在非线性力学领域中引起了广泛的研究兴趣。

它被认为是由于系统的微小变化引起的显著结果,其中微小的初始条件会引发系统的极大差异,使得长期的系统行为难以预测。

混沌现象的研究不仅对理论科学有重要意义,还在应用领域如天气预测、经济学和生物学等方面具有重要的意义。

本文将探讨混沌现象的定义、数学模型和应用,以及未来的研究方向。

首先,我们来定义混沌现象。

混沌是指一个动态系统表现出高度的敏感性和不可预测性,即使在系统方程是确定的情况下,也很难预测长期的行为。

这是因为混沌系统对初始条件的微小变化非常敏感,这种敏感性导致了系统演化的不确定性。

一个常用的描述混沌现象的数学模型是洛伦兹系统。

洛伦兹系统是由Edward Lorenz于1963年提出的,用来描述对流层中的大气流动。

这个三维非线性动力学模型包含了时间、空间和速度三个变量。

洛伦兹方程的形式如下:dx/dt = σ(y - x)dy/dt = rx - y - xzdz/dt = xy - bz其中,x、y和z是系统的三个状态变量,t是时间,σ、r和b是模型的参数。

通过数值模拟和数学分析,洛伦兹系统展现了典型的混沌现象,如奇异吸引子和散射性。

洛伦兹系统的混沌现象对于多个领域都具有重要的意义。

例如,在天气预测中,洛伦兹系统的混沌性质表明天气预测可以受到微小初始条件的影响。

这就是为什么长期天气预测通常是相对不准确的原因之一。

此外,混沌现象还在经济学、生物学和信息理论中发挥了重要的作用。

在经济学中,混沌现象可以用来描述金融市场中的价格波动。

股票市场的价格波动通常显示出混沌性质,这使得金融市场的预测变得非常困难。

此外,混沌现象还被应用于金融数据的压缩和加密方面。

在生物学中,混沌现象可以用来解释生物系统中的复杂行为。

生物系统通常包含大量的相互作用因素,这些因素产生的微小变化可以导致非常不同的结果。

通过混沌现象的研究,我们可以更好地理解生物系统的稳定性和可变性。

非线性电路中的混沌现象_电子版实验报告范文

非线性电路中的混沌现象_电子版实验报告范文

1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=30.8kHz ;实验仪器标示:C=1.145nF 由此可得:mHC f L 32.23)108.30(10145.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222108.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 18.0)(=最终结果:mH L u L )2.03.23()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:99999.9 -11.750 23499.9 -11.550 13199.9 -11.350 -11.150 -10.950 -10.750 -10.550 -10.350-10.150-9.550-9.350-9.150-8.350-8.150上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。

基础物理实验报告第3页基础物理实验报告(2)数据处理:根据RU I RR可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。

对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.00433464,-9.150)和(0.00118629,-1.550)两个实验点是折线的拐点。

故我们在V U 150.9750.11-≤≤-、550V .1U 9.150-≤<-、V 150.1U 1.550-≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

⎪⎩⎪⎨⎧≤≤+≤≤+-≤≤+= -1.150U 1.550- 0.00000976U 0.00075901- -1.550U 9.150- 240.0.000609U 0.00040784- 9.150U 11.750- 0.02018437U 0.00170003I经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。

非线性电路混沌实验报告

非线性电路混沌实验报告

非线性电路混沌实验报告本实验旨在通过搭建非线性电路,观察其在一定条件下的混沌现象,并对实验结果进行分析和总结。

在此过程中,我们使用了一些基本的电子元件,如电阻、电容和电感等,通过合理的连接和控制参数,成功地观察到了混沌现象的产生。

首先,我们搭建了一个基本的非线性电路,其中包括了电源、电阻、电容和二极管等元件。

通过调节电路中的参数,我们观察到了电压和电流的非线性响应,这表明电路的行为不再遵循简单的线性关系。

接着,我们进一步调整电路参数,尤其是电容和电阻的数值,使电路处于临界状态,这时我们观察到了电路输出信号的混沌波形。

混沌波形表现出了随机性和不可预测性,这与传统的周期性信号有着明显的区别。

在观察混沌波形的过程中,我们发现了一些有趣的现象。

首先,混沌波形的频谱分布呈现出了宽带特性,这说明混沌信号包含了多个频率成分,这也是混沌信号难以预测的重要原因之一。

其次,混沌信号的自相关函数表现出了指数衰减的特性,这表明混沌信号的相关性极低,难以通过传统的方法进行分析和处理。

最后,我们还观察到了混沌信号的分形特性,即信号在不同时间尺度下呈现出相似的结构,这也是混沌信号独特的特征之一。

综合以上实验结果,我们可以得出以下结论,非线性电路在一定条件下会产生混沌现象,混沌信号具有随机性、不可预测性、宽带特性、自相关性低和分形特性等特点。

这些特点使得混沌信号在通信、加密、混沌电路设计等领域具有重要的应用前景。

同时,我们也需要注意到混沌信号的复杂性和不确定性,这对于混沌信号的分析和处理提出了挑战,需要进一步的研究和探索。

总之,本实验通过搭建非线性电路,成功地观察到了混沌现象,并对混沌信号的特性进行了初步的分析和讨论。

通过本次实验,我们对混沌现象有了更深入的理解,也为混沌信号的应用和研究提供了一定的参考和启发。

希望本实验能够对相关领域的研究和工程实践有所帮助。

感谢各位的参与和支持!非线性电路混沌实验小组。

日期,XXXX年XX月XX日。

用非线性电路研究混沌现象pdf

用非线性电路研究混沌现象pdf

用非线性电路研究混沌现象长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。

直到1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。

如今,非线性科学已成为21世纪科学研究的一个重要方向。

非线性科学的研究对了解生物、物理、化学、气象等学科都有重要意义。

混沌作为非线性科学中的主要研究对象之一,在许多领域都得到了证实和应用。

混沌作为一门新学科,填补着自然界决定论和概论的鸿沟。

混沌是对经典决定论的否定,但本身有它特有的规律。

研究混沌的目的是要揭示貌似随机的现象背后所隐藏的规律。

本实验通过建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测非线性电中倍周期分岔产生混沌的全过程。

同时了解混沌现象的一些基本特征。

[实验目的]1. 通过对非线性电路的分析,了解产生混沌现象的基本条件;2. 通过调整蔡氏电路的参数,学习用示波器观察倍周期分岔走向混沌的过程;3. 用示波器观察非线性电路的I-U 特性曲线。

[实验原理]混沌产生的必要条件是系统具有非线性因素。

图1是讨论非线性电路系统的一种简单而又经典的电路——蔡氏电路。

电路中共有5个基本电路元件:4个线性元件L ,C1,C2,R0和一个非线性电阻R ,其中R 的伏安特性如图2。

电路中电感L 和电容C2并联构成一个LC 振荡电路,可变电阻R 0和电容器C 1串联构成移相电路,将振荡器产生的正弦信号移相输出,非线性负阻元件R 和R0共同作用是使振荡周期产生分岔和混沌等一系列非线性现象。

由蔡氏电路图1可得到蔡氏电路的状态方程组为: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧−=+−⋅=⋅−−⋅=2211211121)(1)()(10201C L L C C C C C C C C U dt di L i U U R dt dU C U U g U U R dt dU C (1) 式中: Uc1, Uc2 和iL 分别是电容C 1, C 2 两端的电压和流过电感L 的电流, g (Uc 1 ) 是描述非线性电阻R 的i - v 特性的折线(图2)多项式为))((21)(1111E U E U Gb Ga GbU U g C C C C −−+−+= 式中: Ga ,Gb 分别表示特性内、外折线段的斜率; E 为转折点电压。

非线性电路混沌现象研究

非线性电路混沌现象研究

非线性电路混沌现象研究对混沌现象的研究,是20世纪物理学的重大事件。

相对论和量子力学的兴起,使牛顿力学受到巨大冲击。

而近二十年内进一步发起挑战的是对混沌现象的研究。

混沌理论是当前物理学范围的前沿课题,涉及物理学、数学、生物学、计算机科学、电子学、经济学等领域,范围相当广泛。

混沌理论包含的物理内容非常多,研究这些内容需要比较深入的数学理论如微分动力学理论、拓扑学、分形几何学等。

研究表明,混沌现象与系统的非线性特征紧密相关。

而非线性特征是自然界普遍存在的现象。

例如,在非线性电路中,往往伴随着混沌现象的出现。

本实验通过chua电路,观察电路混沌现象,包括“蝴蝶效应”分岔、收敛吸引子,奇异吸引子等,从而可以直观地了解混沌观察和理论。

[预习提要]1、什么叫“混沌”?什么叫系统的非线性?2、结合chau’s电路理解。

什么叫“蝴蝶效应”?什么叫“分岔”?什么叫“分形”?什么叫“奇异吸引子”?3、本实验中chua’s电路的非线性电阴伏安特性怎样?如何测量?[实验要求]1、理解混沌及相关概念的含义。

2、学会测量有源理想非线性负电阻伏安特性。

3、掌握一种测有芯电感电感量的方法。

[实验目的]1、理解混沌及相关概论的含义。

2、了解有源理想非线性负电阻的伏安特性及测量方法。

[实验器材]非线性电路混沌实验电路板(包括:1、LC振荡器;2、RC移相器电路;3、双动放及6个电阻组成的等效“有源非线性负阻元件”;4、连接导线及同轴电缆线;5、四位半数字电压表。

)双踪示波器。

[实验原理]一、基本概念在混沌学中,混沌一词一般取其混乱和无序的意思。

在英、法、德文中,都写作“chaos”。

混沌一词的科学定义是指发生在确定性系统中的貌似随机的不规则运动或表现。

一个确定性理论描述的系统,其行为却表现为不确定性,不可重复、不可预测,这就是混沌现象。

研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。

因为是决定性系统内部所因有的,故又称之为“内禀随机性”。

非线性电路中的混沌现象-电子版实验报告

非线性电路中的混沌现象-电子版实验报告

非线性电路中的混沌现象学号:37073112 姓名:蔡正阳 日期:2009年3月24日五:数据处理:1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π 估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=CC u f f u L L u 即mH L u 16.0)(=最终结果:mH L u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:(2)数据处理:根据RU I RR=可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。

对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.0046336,-9.8)和(0.0013899,-1.8)两个实验点是折线的拐点。

故我们在V U 8.912≤≤-、8V .1U 9.8-≤<-、0V U 1.8≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

使用Excel 的Linest 函数可以求出这三段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12- 20.02453093-0.002032UI经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V线性符合得较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性电路中的混沌现象实验指导及操作说明书北航实验物理中心2013-03-09教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。

5.2 非线性电路中的混沌现象二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。

许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。

目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。

混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。

理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。

混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。

实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数 费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。

此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。

5.2.1 实验要求1.实验重点①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。

②掌握用串联谐振电路测量电感的方法。

③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。

熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。

④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。

了解用计算机实现实验系统控制和数据记录处理的特点。

2.预习要点(1)用振幅法和相位法测电感①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。

②串联电路的电感测量盒如图5.2-7所示。

J1和J2是两个Q9插座,请考虑测共振频率时应如何连线?你期望会看到什么现象?③考虑如何用振幅法和相位法测量共振频率并由此算得电感量?当激励频率小于、等于和大于电路的共振频率时,电流和激励源信号之间的相位有什么关系?(2)混沌现象的研究和描述① 本实验中的混沌现象是怎样发生的?LC 电路有选频作用,为什么还会出现如此复杂的图形呢?② 什么叫相图?为什么要用相图来研究混沌现象?本实验中的相图是怎么获得的?复习示波器的使用,考虑如何用示波器观察混沌系统的相图和动力学系统各变量如Vc 1(t )、Vc 2(t )的波形。

③ 什么叫倍周期分岔,表现在相图上有什么特点?④ 什么叫混沌?表现在相图上有什么特点?⑤ 什么叫做吸引子?什么是非奇异吸引子?什么是奇异吸引子?表现在相图上有什么特点? ⑥ 什么是费根鲍姆常数?在本实验中如何测量它的近似值?(3)负阻元件① 负阻元件在本实验中起什么作用?为什么把它叫做负阻元件?对结构比较复杂的负阻元件,我们采用了什么方法来进行研究?这种方法有什么优缺点?② 非线性电阻R 的伏安特性如何测量?如何对实验数据进行分段和拟合?实验中使用的是哪一段曲线(图5.2-1)?③ 给出测量负阻元件特性的电路图,实验时应当怎样安排测量点? 5.2.2 实验原理1.非线性电路与混沌非线性电路如图5.2-2所示。

电路中只有一个非线性电阻R =1/g ,它是一个有源非线性负阻元件,电感L 与电容C 2组成一个损耗很小的振荡回路。

可变电阻1/G 和电容C 1构成移相电路。

最简单的非线性元件R 可以看做由三个分段线性的元件组成。

由于加在此元件上的电压增加时,其上面的电流减少,故而称为非线性负阻元件(图5.2-1)。

图5.2-2电路的动力学方程为⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=--=2212211211)()(c L L c c c c c c c V dt di L i V V G dt dV C gV V V G dt dV C (5.2-1) 上式方程组中,G 代表可变电阻的导纳,1c V 、2c V 分别表示加在电容1C 、2C 上的电压,L i 表示流过L 的电流,g =1/R 表示非线性电阻R 的导纳。

将电导值G 取最小(电阻最大),同时用示波器观察1c V —2c V 的李萨如图形。

它相当于由方程x =1c V (t)图5.2-1 负阻曲线的拟合 图5.2-2 实验电路原理图和y =2c V (t )消去时间变量t 而得到的空间曲线,在非线性理论中这种曲线称为相图(phase portrait)[1]。

“相”的意思是运动状态,相图反映了运动状态的联系。

一开始系统存在短暂的稳态,示波器上的李萨如图形表现为一个光点。

随着G 值的增加(电阻减小),李萨如图表现为一个接近斜椭圆的图形(图5.2-3a )。

它表明系统开始自激振荡,其振荡频率决定于电感与非线性电阻组成的回路特性。

由于1c V 和2c V 同频率但存在一定的相移,所以此时图形为一斜椭圆;由于非线性的存在示波器显示的并不是严格的椭圆,但系统进行着简单的周期运动。

这一点也不难用示波器双踪观察予以证实。

应当指出的是,无论是代表稳态的“光点”,或是开始自激振荡的“椭圆”都是系统经过一段暂态过程后的终态。

示波器显示的是系统进入稳定状态后的“相”图。

实验和理论都证明:只要在各自对应的系统参数(G ,C 1,C 2,L 和R )下,无论给它什么样的激励(初值条件),最终都将落入到各自的终态集上,故它们被称为“吸引子(attractor )”。

在非线性动力学理论中,前者又叫“不动点”,后者则属于“极限环”。

继续增加电导(减小可变电阻值1/G ),此时示波器屏幕上出现两相交的椭圆(图5.2-3b ),运动轨线从其中一个椭圆跑到另一个椭圆,再在重叠处又跑到原来的椭圆上,它说明:原先的一倍周期变为两倍周期,即系统需两个周期才恢复原状。

这在非线性理论中称为倍周期分岔(period-doubling bifurcation)。

它揭开了动力学系统步入混沌的“序幕”。

继续减小1/G 值,依次出现4倍周期、8倍周期、16倍周期 与阵发混沌(图5.2-3d )。

再减小1/G 值,出现3倍周期如图5.2-4a ,随着1/G 值的进一步减小,系统完全进入了混沌区,由图5.2-4b 到图5.2-4c ,可以看出运动轨线不再是周期性的,我们从屏幕上观察轨道(如5.2-4c 双吸引子)的演化时,可以看到轨道在左侧绕一会,然后又跑到右侧范围走来走去,绕几圈绕多大似乎是随机的。

完全无法预料它什么时候该从一边过渡到另一边。

但这种随机性与真正随机系统中不可预测的无规性又不相同。

因为相点貌似无规游荡,不会重复已走过的路,但并不以连续概率分布在相平面上随机行走。

类似“线圈”的轨道本身是有界的,其极限集合呈现出奇特而美丽的形状,带有许多空洞,显然有某种规律。

我们仍把这时的解集和前面看到的周期解一样称为一种吸引子。

此类吸引子与其它周期解的吸引子不同,我们通常称之为奇异吸引子(strange attractor )或混沌吸引子(chaotic attractor )。

图5.2-4b 称为单吸引子,图5.2-4c 被称为双吸引子。

[1]在传统的讨论中,人们总是习惯在时间域来研究运动规律,例如讨论电压或电流的时间过程V c2(t ), V c1(t )等。

在非线性理论中,我们会看到使用运动状态之间的关系,更有利于揭示事物的本质。

在本实验中就是研究V c2(t )—V c 1(t )的关系。

这样做表面上看不到V c2和V c 1的时间信息,却突出了电路系统运动的全局概念。

a . 一倍周期b . 两倍周期c . 四倍周期d . 阵发混沌图5.2-3 倍周期相图那么究竟什么是混沌(chaos )呢?混沌的本意是指宇宙形成以前模糊一团的景象,作为一个科学的术语,它大体包含以下一些主要内容:① 系统进行着貌似无规的运动,但决定其运动的基础动力学却是决定论的;② 具体结果敏感地依赖初始条件,从而其长期行为具有不可预测性;③ 这种不可预测性并非由外界噪声引起;④ 系统长期行为具有某些全局和普适性的特征,这些特征与初始条件无关。

混沌吸引子具有许多新的特征,例如具有无穷嵌套的自相似结构,几何上的分形即具有分数维数等,还可以用李雅普诺夫(Lyapunov )指数、功率谱分析等手段来描述,这里我们仅就倍周期分岔通向混沌道路中的某种普适性做一简单分析。

尽管混沌行为是一种类随机运动,但其步入混沌的演化过程在非线性系统中具有普适性。

对于任一非线性电路,其动力学方程可表示为),(r X F dt dX = N R X ∈ (5.2-2) 其中N 为系统变量数,r 是系统参量。

借助于相图(也称运动轨迹观察法,如任意两变量之间的关系图)可以观察系统的运动状态。

改变参量r 当1r r =时可以看到系统由稳定的周期一变为周期二,继续改变r ,当2r r =时周期二失稳,同时出现周期四,如此继续下去,当n r r =时出现周期为n 2的轨道,上述描述的过程为倍周期分岔。

这一过程不断继续下去,即存在一个集合{n r },使得如果n n r r r ≥>+1,存在稳定的周期n 2解,且存在一极限∞r ,这样系统经过不断周期倍化而进入混沌,这种演化过程在非线性系统中带有通有(genetic )性质。

上述分岔值序列按几何收敛方式n n r r -∞⋅-=δConst 迅速收敛。

其中Const 为常数,δ 是大于1的常数6692016091.4lim 11=--=+-∞→nn n n n r r r r δ (5.2-3) 常数δ 被命名为费根鲍姆(Feigenbaum )常数,它反应了沿周期倍化分岔序列通向混沌的道路中具有的普适性,其普适性地位如同圆周率π,自然对数e 和普朗克常数h 一样。

实际上Feigenbaum 常数之谜还有待更深入的科学论证。

最后再对阵发混沌做一点说明。

当∞>r r 时系统的结果大都完全不收敛于任何周期有限的轨道上,因而可以说系统在倍周期分岔的终点步入混沌。

但是在混沌区当系统参量变化时会出现周期窗口和间歇现象(intermittency)。

其中最宽的窗口是对应周期3的运动轨道。

在这些窗口内,周期轨道也要发生倍周期分岔,最后又进入混沌状态。

另外在出现周期3窗口的位置,发生的分岔在分岔理论中被称为切分岔。

这类分岔点的一侧有三个稳定的周期解,而另一侧根本没有任何稳定的周期解存在,这样当r 稍小于切分岔时的参量c r 时,系统动力学行为呈现间歇现象。

相关文档
最新文档