数学分析三习题答案
数学分析简明教程答案数分3_极限与函数的连续性

第三章 极限与函数的连续性第一节 极限问题的提出 第二节 数列的极限22221.1(1)lim 120,[]1,,12222.211lim0.1n n n n N n N n n n n n N n n εεεε→∞→∞++∀>=+∀>+≤=<<=++=+用定义证明下列极限为零:证明:对于取则对于总有因此有sin (2).lim;10,[]1,,sin 111.1sin lim0.n n nnN n N n n n N nnεεεε→∞→∞∀>=+∀>≤<<==证明:对于取则对于总有于是可知 1(3).lim;!111110,[]1,,.1!1lim0.!n n n N n N n n N n εεεε→∞→∞∀>=+∀>≤<<==证明:对于取则对于总有于是可知2222222(1)(4).lim ;120,[]2,,(1)222.211[]1(1)lim 0.1n n n n N n N n n n n n n n n εεεε→∞→∞+--∀>=+∀>+-≤=<<---++-=-证明:对于取则对于总有于是可知210,[]1,,.0.nn nn nN n Nεεε→∞→∞→∞=∀>=+∀>≤<<===证明:对于取则对于总有于是可知1010(6).lim;!10101010101010,lim lim .0,[]1, 10!!1112131010101010101010,.lim0.10!111213!nnnn nn nnnM M M Nn nn N M M MMn n n nεεεε→∞→∞→∞→∞==∀>=+∀>=<<==证明:取则那么对于取则对于总有因此2222222(7).lim(1);111(0),(1)1(1)(1);2220,[]2,,22.12(1)(1)2lim0.nnn n nn nnnnaaa a n n n n nN n Nn n na a nn nnaλλλλλλλεελελλλελ→∞→∞>=+>=+=++-++>-∀>=+∀>=<<<=--=证明:令则那么对于取则对于总有因此!(8).lim;!123111,;0,[]1, ,!111.1!lim0.nnnnnnnnn n nn Nn n n n n n nn Nnn n Nnnεεεε→∞→∞-∀=≤∀>=+∀>≤<<==证明:对于总有因此对于取则对于总有因此3332233123(9).lim;112312112,;0,[]1,22,123111.1123lim0.n n nn n nn n n n N n n n n n n N nn n N nn εεεε→∞→∞++++++++++∀==≤=∀>=+∀>++++≤<<=++++=证明:对于总有因此对取则对于总有因此112121(10).lim(), 1.11(7)110,2[]2,max(,),11122.21lim()0.n n n n n n n a a nn N n N N a a nN N N n N a n n n n a nεεεεε-→∞--→∞+>=∃><<∀>=+=∀>+≤+=<=+=证明:由可知对于,,当时,有,即;因此对取则对于总有因此222222222222222.33(1).lim ;2123333332322,2122121233333,[]1,,.321233lim .212n n n n n n n n n n n n n n n n n n n nn n N n N n n n n n εεεε→∞→∞+=-+-++++∀-==≤=----+∀=+∀>-≤<=-+=-用定义证明:证明:对于都有那么对于取对于总有因此可知1;11,111,[]1,,1.1lim 1.n n n nN n N n nεεεε→∞→∞=∀===<∀=+∀><<==证明:对于那么对于取对于因此可知1(3).lim 1,.1 1111,11.0,[]1,1111.lim 1.1n n n n n n n n n nx x n n nn n x N n N n n n x x n N εεεε→∞→∞-⎧⎪⎪==⎨+⎪⎪⎩±±∀-=-==∀>=+>-=<<==为偶数其中为奇数证明:对于都有则对于取当时总有于是有3 331(4).lim 3, 31(1,2,).23233330311131333232n n n n n n n k n xx n k k n n k n kx n n k x n n nn k x →∞⎧⎪=⎪+⎪===+=⎨⎪⎪=+⎪⎩=-=-=+=+-=-===+-=+其中证明:当时,; 当时,; 当时,232323110,[]1,[]1,max(,),11.33330;.313n nN N N N N n N i n k x ii n k x n Nεεεεε-====<=∀>=+=+=>=-=-=<=+-=<< 那么对于分别取于是当时有当时,当时,;.323.,3;lim 3.n n n n iii n k x n N x x εε→∞=+-=<<>-<=当时,有即对任意都有故有11113.(1).lim ,,lim ;lim ,0,,.,0,,.lim .n n k n n n n n n k n k n a a k a a a a N n N a a N N k N n k N N k a a a a εεεε+→∞→∞→∞++→∞===∀>∃>-<=+∀>∃+>=+-<=用定义证明:若则对任一个正整数总有证明:由于那么由定义可以知道:对当时有那么取则对当时有因此(2).lim ,lim ;;lim ,0,,.(1),0,,lim .(1),l n n n n n n n n n n n n n n n a a a a a a N n N a a a a a a N n N a a a a a a a εεεε→∞→∞→∞→∞===∀>∃>-<-≤-∀>∃>-≤-<==-若则反之是否成立?证明:由于那么由定义可以知道:对当时有由于第二章第二节习题那么可以知道对当时有 于是有反之不成立,例如有im 1,lim 1().n n n n a a →∞→∞=≠而极限不存在111(3).lim ,,,;lim 0,,.,,,2.n n n n n n n n a a a b N n N a b a a N n N a a a b N n N a a a b b a a b εεε→∞→∞=>>>=∀>∃>-<=->-<-<<-若且则存在当时,有证明:由于,那么由极限的定义可以知道:对于当时有我们取可知存在当时有即得证。
数学分析 3,4,5章答案 华东师范大学

(2)若 存在,试问是否成立 ?
解:(1)证明因为 存在,设 ,则任给 ,存在 ,使得当 时,有 。此时取 ,则当 时, ,从而有 ,故有 。
(2)若若 存在, 并不一定成立。
例如
这里 存在,但 不存在,但是 则 。
3.函数极限存在的条件
1.叙述函数极限 的归结原则,并应用它证明 不存在。
所以 。
2.利用迫敛性求极限:
(1) ;(2) 。
解:(1)因为 趋于负无穷,所以当 时,
,而 ,由迫敛性定理得 。
(2)因为 趋于正无穷,所以当 时, 。而 , 。由迫敛性定理得 。
3.设 , ,证明:
(1) ;
(2) ;
(3) 。
证明:(1)因为 ,则对任给的 ,存在 ,当 时, 。 ,则对任给的 ,存在 ,当 时, 。对已给定的 ,取 ,当 时, 与 同时成立。当 时,
,对 ,存在 ,使得当 时,有 ,于是取 ,则当 ,即在 内有 。
8.求下列极限(其中 皆为正整数):
(1) ;(2) ;
(3) ;(4) ;
(5) 。
解:(1) 。
(2) 。
(3)由于
。由极限的四则运算法则,有
。
(4)由于 ,
。
(5)由于 ,当 时, 或 。对于两种形式,均有 ,由迫敛性定理得 。
解归结原则:设函数 为定义在 上的函数,则 存在的充要条件是:对任何含于 且趋于正无穷的数列 ,极限 都存在且相等。
证明由于 在 上有定义,设 ,则显然有 且 ,
但 ,有归结原则知 不存在。
2.设 为定义在 上的增(减)函数。证明: 存在的充要条件是 在 上有上(下)界。
证明只证一种情况即可。
数学分析Ⅲ练习册参考答案

1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭ 为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D )A 、闭区域B 、开区域C 、开集D 、闭集 解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A ) A 、开区域必为开集 B 、闭区域必为有界闭集 C 、开集必为开区域 D 、闭集必为闭区域4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y xy →→=+. 2、2200x y →→解因为())2222221111x y x y +==++-所以)22000lim12x x y y ==.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解 2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件 解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为00000()()()0y x x x yy z z -+---= 由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解 2221(,)(0,0)02x y x y x x y ≠≤≤+ 当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆(,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222l n 2z z x z y u x y x v x v y v vy∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =- 的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB上的方向导数.解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y =++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C ) A 、(-1,-1) B 、(0,0) C 、(1,1) D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B A C =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2 D、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令0xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .226,3,6xy x yz x z a z y ⅱ =-==- 对于点(0,0),220,3,0,90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260,3,6,270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205xy x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S ⅱⅱⅱ===2124180,,,80555A B C B A C =>==D =-=-< 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s 20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则 (,,),(,,),(,,)z x y zF x y z y z F x y z x z F x y z ex y'''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x xv u v u x x x ì抖ïï--=ïï抖íï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u xx xy uv?=?1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y x yd x F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=. 法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 .解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B ) A 、只有一条 B 、只有二条 C 、至少有三条 D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线22260x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得x y z ===根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x yìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ ==-=,6,2,4x y zG G G ⅱ =-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖 =-=-=-抖所以切线的法向量为(8,10,7),切线方程为1128107x y z -+-== 法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=.1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故l i m ()()l i m (x x xaac A A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰ 即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞adx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)21cos 2121002(100)2100100x x x xx x x ⎡⎤+=≥==+⎢⎥++++⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε→+=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解 0x = 是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e d x+∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞ 而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D ) A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.。
数学分析第三版答案下册

数学分析第三版答案下册数学分析第三版答案下册【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分):1、126;2、2;3、1?x?x2xn?o(xn);4、arcsinx?c(或?arccosx?c);5、2.二、选择题(每小题3分,共15分)1、c;2、a;3、a;4、d;5、b三、求极限(每小题5分,共10分)1??1、lim1?2? 2、limxlnx ?n??x?0n?n1??lim?1?2?n??n??1nn2?1n1lnx(3分) ?lim?li??x?0x?0112xx(3分)(?x)?0 (2分)?lime?1(2分) ?lim?n??x?03n23 。
四、利用数列极限的??n定义证明:lim2(10分)n??n?3证明:当n?3时,有(1分)3n299(3分) ?3??22n?3n?3n993n2因此,对任给的??0,只要??,即n?便有2 ?3?? (3分)n?n?33n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。
n?393n23(1分)即得证lim2n??n?3五、证明不等式:arctanb?arctana?b?a,其中a?b。
(10分)证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分)f(b)?f(a)?f?(?)(b?a)?1(b?a),21??(ab) (3分)所以有 f(b)?f(a)?(b?a) (2分)bn?arctaan?b?a (2分)即 arcta六、求函数的一阶导数:y?xsinx。
(10分)解:两边取对数,有: lny?sinxlnx (4分)两边求一次导数,有:y??xsinx(cosxlnx?y?sinx(4分) ?cosxlnx?yxsinx)(2分) x七、求不定积分:?x2e?xdx。
(10分)解:2?x2?xxedx?xde = (2分) ??= ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分)= ?x2e?x?2xe?x?2?e?xdx (2分)=?e?x(x2?2x?2)?c (2分)15八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。
燕山大学数学分析(3)试卷1答案

欲索取更多考研资料,请上北京天问教育网站官网! 东 北 大 学秦 皇 岛 分 校课程名称: 数学分析(3) 试卷: 答案 考试形式: 闭 卷授课专业:信息与计算科学 考试日期: 年 月 日 试卷:共2页题 号 一 二 三 四 五 六 七 八 总 分 得 分 阅卷人一、填空题:(每题3分,共24分)1、0ε∀>,0A c ∃>,0A A ∀>,[,]x a b ∀∈,(,)Af x y dy ε+∞<⎰.2、设222,1z y x r ru ++==,则=)0,0,1()(gradu div 03、偏导数存在、偏导数连续、可微则连续;偏导数连续则可微且偏导数存在;可微则偏导数存在,但偏导数不一定连续。
4、已知42sin()()x xy F x dy y=⎰,则=)('x F 54sin sin 2x x x -5、方程0)sin(2=++xy y x 在(0,0)点的某邻域内_能_____(填能、不能或不一定)确定隐函数)(y g x =.6、函数),(y x f 在点),(000y x P 的某邻域内具有二阶的连续偏导数,则f 在0P 取极值的必要条件是0),(),(0000==y x f y x f y x ;充分条件是0000000000()()(,)(,)0,0,(,)0()()xx xy x y xx xy yy f P f P f x y f x y D f x y f P f P ===>≠7、改变积分次序,22212(,)x x xdx f x y dy --=⎰⎰211102(,)y ydy f x y dx +--⎰⎰8、l 是以(0,0)O ,(1,0)A , (0,1)B 为顶点的三角形,计算()lx y ds +=⎰12+二、(每题5分,共20分)1、解:12u f f x ∂=+∂, 2111221222u f f f f x ∂=+++∂,211122122uf f f f x y∂=-+-∂∂. 装订线装 订 线 内 不 要 答 题学 号姓 名班 级2、解:两边取对数,有)1ln(ln xy x z +=,于是z -1xy xy xy x z +++=∂∂1)1ln(,21z x z y xy ∂=∂+ ,故dy xy x dx xy xy xy dz ++⎥⎦⎤⎢⎣⎡+++=11)1ln(23、解:方程两边关于x 求偏导得,1z zyz xyx x∂∂+=+∂∂,于是, 11z yz x xy ∂-=∂-,22(1)z x y z xyzx y xy ∂-++=∂∂- 4、答案:2y P x =,1Q x =-,21Q P x y x ∂∂==∂∂,积分和路径无关。
数学分析第三章习题答案

数学分析第三章习题答案数学分析是数学的重要分支之一,它研究的是数学中的极限、连续、微分和积分等概念及其应用。
第三章是数学分析课程中的重要章节,主要讲述了函数的极限和连续性。
本文将为读者提供数学分析第三章习题的详细解答,帮助读者更好地理解和掌握这一章节的知识。
1. 设函数f(x) = x^2 - 3x + 2,求f(x)在x = 2处的极限。
解答:要求f(x)在x = 2处的极限,即求lim(x→2)f(x)的值。
根据极限的定义,我们需要计算当x无限接近2时,f(x)的取值。
将x代入f(x)的表达式中,得到f(2) = 2^2 - 3×2 + 2 = 4 - 6 + 2 = 0。
因此,f(x)在x = 2处的极限为0。
2. 设函数f(x) = sin(x),求f(x)在x = π/2处的极限。
解答:要求f(x)在x = π/2处的极限,即求lim(x→π/2)f(x)的值。
根据极限的定义,我们需要计算当x无限接近π/2时,f(x)的取值。
将x代入f(x)的表达式中,得到f(π/2) = sin(π/2) = 1。
因此,f(x)在x = π/2处的极限为1。
3. 设函数f(x) = 1/x,求f(x)在x = 0处的极限。
解答:要求f(x)在x = 0处的极限,即求lim(x→0)f(x)的值。
根据极限的定义,我们需要计算当x无限接近0时,f(x)的取值。
将x代入f(x)的表达式中,得到f(0) = 1/0,由于分母为0,这个表达式是无意义的。
因此,f(x)在x = 0处的极限不存在。
4. 设函数f(x) = x^3,求f(x)在x = -1处的极限。
解答:要求f(x)在x = -1处的极限,即求lim(x→-1)f(x)的值。
根据极限的定义,我们需要计算当x无限接近-1时,f(x)的取值。
将x代入f(x)的表达式中,得到f(-1) = (-1)^3 = -1。
因此,f(x)在x = -1处的极限为-1。
数学分析第三版答案 (2)

数学分析第三版答案简介《数学分析第三版》是一本经典的数学教材,对于数学分析的基本概念、定理和方法进行了系统而全面的介绍。
本文档整理了《数学分析第三版》中的一部分习题答案,希望能够对读者巩固和检验所学知识提供帮助。
目录1.函数、极限与连续2.导数与微分3.一元函数的积分4.多元函数的积分5.级数与广义积分函数、极限与连续习题1.1-1证明下列函数的极限不存在:1.$f(x) = \\sin{\\left(\\frac{1}{x}\\right)}$2.$f(x) = \\frac{\\sin{x}}{x}$解答1.当x趋于0时,$\\frac{1}{x}$趋于无穷大。
由于正弦函数的周期是$2\\pi$,所以当x趋于无穷大时,$\\frac{1}{x}$趋于0。
因此,当x趋于0时,$f(x) =\\sin{\\left(\\frac{1}{x}\\right)}$不收敛。
2.当x趋于无穷大时,$\\sin{x}$在$[-\\pi, \\pi]$上做无限多次振荡。
而x也趋于无穷大,所以$\\frac{\\sin{x}}{x}$在无限多个点上振荡。
因此,当x趋于无穷大时,$f(x) = \\frac{\\sin{x}}{x}$不收敛。
习题1.1-2计算下列极限:1.$\\lim\\limits_{x \\to 0}{\\frac{\\sin{x}}{x}}$2.$\\lim\\limits_{x \\to \\infty}{\\frac{x^2 - 3x +2}{2x^2 + 5}}$3.$\\lim\\limits_{x \\to 1}{\\frac{x^2 - 1}{x - 1}}$解答1.根据拉’Hospital法则,$\\lim\\limits_{x \\to0}{\\frac{\\sin{x}}{x}} = \\lim\\limits_{x \\to0}{\\frac{\\cos{x}}{1}} = 1$。
微积分(数学分析)习题及答案.doc

统计专业和数学专业数学分析(3)练习题一 填空题1. 函数 xy xyz +=arcsin 的定义域是 . 2. 函数y x z -=的定义域是 .3. 设 )ln(),(22y x x y x f --=,其中 0>>y x ,则),(=-+y x y x f .4. 设 yx xy y x y x f tan ),(22-+=,则 =),(ty tx f .5. 设2R E ⊂为 点集,则E 在2R 中至少有一个聚点.6. 32),,(yz xy z y x f +=,则 =-)1,1,2(gradf 。
7. xyz z xy u -+=32在点)2,1,1(0P 处沿方向→l (其中方向角分别为00060,45,60)的方向导数为=→)(0P u l.8. ,y x z =其中,0>x ,0≠x 则=dz 。
9. 函数),(y x f 在),(00y x 处可微,则 =-∆df f 。
10. 若函数 ),(y x f 在区域D 上存在偏导数,且,0==y x f f ,则),(y x f 在区域上为 函数。
11. 由方程1(,)sin 02F x y y x y =--=确定的隐函数)(x f y =的导数'()f x = . 12. 设243340x y x y +-=, 则dy dx= . 13. 平面上点P 的直角坐标),(y x 与极坐标),(θr 之间的坐标变换公式为 .其雅可比行列式(,)(,)x y r θ∂=∂ .14. 直角坐标),,(z y x 与球坐标),,(θϕr 之间的变换公式为 . 其雅可比行列式(,,)(,,)x y z r ϕθ∂=∂ .15. 设平面曲线由方程0),(=y x F 给出, 它在点),(000y x P 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法线,其方程分别为切线: , 法线: .16. 设空间曲线由参数方程βα≤≤===t t z z t y y t x x L ),(),(),(:给出, 它在点0000000(,,)((),(),())P x y z x t y t z t =处的切线和法平面方程为 切线: ,法平面: . 17. 设空间曲线L 由方程组(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩ 给出, 若它在点0000(,,)P x y z 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法平面,其方程分别为切线: , 法平面: .18. 设曲面由方程0),,(F =z y x 给出,它在点),,(0000z y x P 的某邻域内满足隐函数定理条件,则该曲面在0P 处有切平面与法线,它们的方程分别是切平面: , 法线: . 19. 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ϕ的限制下,求目标函数 ),,,(21n x x x f y = 的极值.其拉格朗日函数是 , 其中m λλλ,,,21 为拉格朗日乘数.20. 若(,)f x y 在矩形区域R 上连续, 则对任何[]0,x a b ∈, 都有0lim (,)dcx x f x y dy →=⎰.21. (可微性)若函数),(y x f 与其偏导数),(y x f x∂∂都在矩形区域[][]d c b a R ,,⨯=上连续,则⎰=dcdy y x f x I ),()(在[]b a ,上可微,且(,)dcd f x y dy dx =⎰ .22. (可微性) 设),(),,(y x f y x f x 在[][]q p b a R ,,⨯=上连续,()()x d x c ,为定义在[]b a ,上其值含于[]q p ,内的可微函数,则函数⎰=)()(),()(x d x c dy y x f x F 在[]b a ,上可微,且'()F x = .23. (两个累次积分的关系)若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则(,)bdacdx f x y dy =⎰⎰ .24. 含参量反常积分(,)cf x y dy +∞⎰在[]b a ,上一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数 在[]b a ,上一致收敛. 25. 设有函数)(y g ,使得.,),(),(+∞<≤≤≤≤y c b x a y g y x f 若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在[]b a ,上 .26. (连续性)设),(y x f 在[][)+∞⨯,,c b a 上连续,若含参量反常积分⎰+∞=cdyy x f x I ),()(在[]b a ,上 ,则)(x I 在[]b a ,上 .27. (可微性)设),(y x f 与),(y x f x 在区域[][)+∞⨯,,c b a 上连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析三习题答案【篇一:《数学分析》第三版全册课后答案 (1)】class=txt>------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第页(共)------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。
111.求函数f(x,y)??在点(0,0)处的二次极限与二重极限.yx11解:f(x,y),因此二重极限为0.……(4分)yx1111因为与均不存在,x?0yxy?0yx故二次极限均不存在。
……(9分)zxf(xy),yy(x),2. 设? 是由方程组?所确定的隐函数,其中f和f分别f(x,y,z)?0z?z(x)??dz数,求.dx解:对两方程分别关于x求偏导:dy?dzf(xy)xf(xy)(1),??dxdx?……(4分)dydz?f?f?fz?0。
xydxdxdzfy?f(x?y)?xf?(x?y)(fy?fx)?解此方程组并整理得.……(9分) dxfy?xf?(x?y)fz3. 取?,?为新自变量及w?w(?,v)为新函数,变换方程2z2zzz。
2?x?x?y?xx?yx?y设??,??,w?zey (假设出现的导数皆连续).22解:z看成是x,y的复合函数如下:wx?yx?y。
……(4分) z?y,w?w(?,?),??,??e22代人原方程,并将x,y,z变换为?,?,w。
整理得:2w2w2w。
……(9分) 2?4. 要做一个容积为1m3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r,高为h,则原问题即为:求目标函数在约束条件下的最小值,其中目标函数: s表?2?rh?2?r2,约束条件: ?r2h?1。
……(3分)构造lagrange函数:f(r,h,?)?2?rh?2?r2??(?r2h?1)。
fr2h4r2rh0,令?……(6分) 2f?2?r??r??0.?hh? 由题意知问题的最小值必存在,当底面半解得h?2r,故有r?径为r?y3高为h?时,制作圆桶用料最省。
……(9分) 25. 设f(y)??e?xydx,计算f?(y).y2解:由含参积分的求导公式y3y322x2yf?(y)2edx2?x2e?xydx?3y2e?xyyyy2x2e?xydx?3y2e?y?2ye?yyy3275x?y32yex2yx?y2……(5分)72?y75?y51y3?x2y ?ye?ye?edx。
……(9分)222y?y2x2y2xy6. 求曲线?2?2??2所围的面积,其中常数a,b,c?0.b?c?axacos,解:利用坐标变换? 由于xy?0,则图象在第一三象限,从而可 y?b?sin?.?2以利用对称性,只需求第一象限内的面积。
,0,0。
……(3分) 2??则v?2??(x,y)d?d??2?2d??0?(?,?)1ab2sincosc0ab?d? ……(6分)ab2sin?cos?d?2?0ca2b2?2 ……(9分)2c.7. 计算曲线积分?3zdx?5xd?,z其中l是圆柱面x2?y2?1与平面y2ydl22,从z轴的正向看去,是逆时针方向. z?y?3的交线(为一椭圆)解:取平面z?y?3上由曲线l所围的部分作为stokes公式中的曲面?,定向为上侧,则?的法向量为cos?,cos?,cos0,。
……(3分)?由stokes公式得cos?cos?cos3zdx5xdy2ydzxyzl3z5x?2y?ds ……(6分)x2y21?2? ……(9分)x2y2z28. 计算积分??yzdzdx,s为椭球2?2?2?1的上半部分的下侧.abcs解:椭球的参数方程为x?asin?cos?,y?bsin?sin?,z?ccos?,其中,且2?(z,x) ?acsin2?sin?。
……(3分) ?(?,?)积分方向向下,取负号,因此,2322yzdzdx??d?bacsin?cos?sin?d2?02?,0……(6分)bac2?sin2?d2sin3?cos?d?2?4abc2……(9分)二。
. 证明题(共3题,共28分)xy322,x?y?0?249.(9分)讨论函数f(x)??x?y在原点(0,0)处的连续性、0,x2y20可偏导性和可微性.解:连续性:当x2?y2?0时,xy2x2?y4yyf(x)?2?y0,当?x,y0,0?, 424x?yx?y22从而函数在原点?0,0?处连续。
……(3分) 可偏导性:fx?0,0??lim f?0??x,0??f?0,0?xx00,fy?0,0??limf?0,0??y??f?0,0?y即函数在原点?0,0?处可偏导。
……(5分)y00,ffxfy3不存在,从而函数在原点?0,0?处不可微。
……(9分)10.(9分)(9分)设f?x,y?满足:(1)在d?x,y?x?x0?a,y?y0?b上连续,(2)f?x0,y0??0,(3)当x固定时,函数f?x,y?是y的严格单减函数。
试证:存在??0,使得在xx?x0??上通过f?x,y??0定义了一个函数y?y(x),且y?y(x)在??上连续。
证明:(i)先证隐函数的存在性。
由条件(3)知,f?x0,y?在?y0?b,y0?b?上是y的严格单减函数,而由条件(2)知f?x0,y0??0,从而由函数f?x0,y?的连续性得f?x0,y0?b??0, f?x0,y0?b??0。
现考虑一元连续函数f?x,y0?b?。
由于f?x0,y0?b??0,则必存在?1?0使得f?x,y0?b??0, ?x?o(x0,?1)。
同理,则必存在?2?0使得f?x,y0?b??0, ?x?o(x0,?2)。
取??min(?1,?2),则在邻域o(x0,?)内同时成立f?x,y0?b??0, f?x,y0?b??0。
……(3分) 于是,对邻域o(x0,?)内的任意一点x,都成立固定此x,考虑一元连续函数f?x,y?。
由上式和函数f?x,y?关于y 的连续性可知,存在f?x,y?的零点y??y?b,y?b?使得f?x,y?=0。
而f?x,y?关于y严格单减,从而使f?x,y?=0的y是唯一的。
再由x的任意性,fx,y0?b?0, fx,y0?b?0。
证明了对??:?o(x0,?)内任意一点,总能从f?x,y??0找到唯一确定的y与x相对应,即存在函数关系f:x?y或y?f(x)。
此证明了隐函数的存在性。
……(6分)(ii)下证隐函数y?f(x)的连续性。
设x*是??:?o(x0,?)内的任意一点,记y*:?f?x*?。
对任意给定的??0,作两平行线y?y*??, y?y*??。
由上述证明知f?x*,y*0, f?x*,y*0。
由f?x,y?的连续性,必存在x*的邻域o(x*,?)使得f?x,y*0, f?x,y*0, ?x?o(x*,?)。
对任意的x?o(x*,?),固定此x并考虑y的函数f?x,y?,它关于y 严格单减且f?x,y*0, f?x,y*0。
于是在?y*??,y*内存在唯一的一个零点y使f?x,y??0,即对任意的x?o(x*,?),它对应的函数值y满足y?y*??。
这证明了函数y?f(x)是连续的。
……(9分)11111.(10分)判断积分??sindx在02上是否一致收敛,并给出证明。
0xx证明:此积分在02上非一致收敛。
证明如下:1作变量替换x?,则t11??110xsinxdx1t2sintdt。
……(3分)3不论正整数n多么大,当t??a?,a2n,2n时,恒有44??sint?。
……(5分)因此,a??1t2??a?a??1sintdt?dt……(7分)2?a?t2??a2??34?2n4??因此原积分在02上非一致收敛。
……(10分) 注:不能用dirichlet判别法证明原积分是一致收敛的。
原因如下:b1尽管对任意的b?1积分?sintdt一致有界,且函数2??关于x单调,但是当1t1x时,2??关于0,2?并非一致趋于零。
事实上,取t?n, 相应地取t11112?,则lim2lim1??1?0,并非趋于零。
1t??n??ntnnlimnnn??0,当??2?时。
4【篇三:数学分析3期末练习题三参考答案】1. 试求极限解2?xy?4.(x,y)?(0,0)xylimlim(x,y)?(0,0)(x,y)?lim(x,y)4 .lim2. 试求极限解由(x,y)?(0,0)lim1?cos(x2?y2)(x?y)e22x2y2.x2?y22sin1?cos(x2?y2)x2?y2lim?lim?x2y22222x2y2(x,y)?(0,0)(x,y)?(0,0)x?y2(x?y)ee4()210?02 . 113. 试求极限lim(x?y)sinsin.(x,y)?(0,0)xy2解由于111111lim(x?y)sinsin?lim(xsinsin?ysinsin)(x,y)?(0,0)xy(x,y)?(0, 0)xyxy ,又 x?y,所以21111xsinsin?0limysinsin?0(x,y)?(0,0)(x,y)?(0,0)xyxy, , lim所以11lim(x?y)sinsin?0(x,y)?(0,0)xy .xy24. 试讨论lim.(x,y)?(0,0)x2?y4解当点(x,y)沿直线y?x趋于原点时,y?x?0xy2x3lim2?lim2?0x?0x?y4x?0x?x4.当点(x,y)沿抛物线线x?y趋于原点时,2x?y?0 .因为二者不等,所以极限不存在.xy2y41lim2?lim?y?0x?y4y?0y4?y4225. 试求极限解由(x,y)?(0,0)limx2?y2?x?y?122.(x,y)?limlim(x,y)?(0,0)22=(x,y)?(0,0)lim1)?2uu,. xy.6. u?f(x?y,xy),f有连续的偏导数,求解令v?x?y,w?xy, 则ufvfwffyxvxwxvw ufvfwff xwyvywyvdz. 7. z?arctanxy,y?ex, 求dx解由dz1?(y?xy)2dx1?(xy)1ex(1?x)xx(exe)x222x1(xe)1xe.8. 求抛物面 z?2x2?y2在点 m(1,1,3)处的切平面方程与法线方程。