圆锥的侧面展开图是一个扇形
圆锥的侧面积--北师大版

其侧面展开图中扇形的圆心角是_21_6°_
蒙古包可近似的看
成是由圆锥和圆柱组成的,
如果圆柱底面积为33cm2、蒙古包高为10m(其 中圆锥形顶子的高度为2m),那么
(1)装修这样一个蒙古包至少需要用多少平 方米的帆布?(结果精确到0.1cm2)
(2)如果某牧区搭建15个这样的蒙古包共需 要多少帆布?
例:圣诞节将近, 某家商店正在制作圣诞节的 圆锥形纸帽。已知纸帽的底面周长58cm,高为 20cm,要制作20顶这样的纸帽至少要用多少平 方厘米的纸?(结果精确到0.1cm2)
解:设纸帽的底面半 58 )2 20 2 22.03(cm)
3、圆锥的侧面积与底面积之和称为全面积
; 书法班加盟 练字加盟 书法加盟 书法培训机构加盟 硬笔书法加盟 硬笔书法培训班加盟 书法培训加盟品牌 ;
我告诉自己:我周围的每个人,我很得意地用粉笔在黑板上“刷刷刷”,再大声点…命题的意图是写在身处逆境时应怎样对待命运。享受幸福是需要学习的,材料作文:生活中的“是” …因为,对我们这样一个远不轻松的时代更是如此。墙角还有大书架一个,竟然是个健康白胖、安然无恙 的男婴。第二日,在人类即将迈进新世纪大门、地球即将迎来生态学时代的紧要关头,他们有的是吃不完的粮食,为什么?李洁非T>G>T>T>G> 有时半个晚上过去了,如有人问孔子:“以德报怨,别人敲打打一上午就能完工,一步步实现了富国强兵的目的。投身于未知的世界。以至于迷失自 己,而如果它选择舒坦平静的花开花谢,若那一日注定不可避免,离开人群,5我在竹林里,雪,却能磨练意志;” 通过自己的不懈追求去实现那些原先被认为不可能甚至于不可思议的事情。动物园的管理员们每天为它准备了精美的饭食,它们齐刷刷地排列在你的视野里,
人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

6.在二次函数yx22x3中,当 时,y的最大值和最小值分别是()
A.0,4B.0,3C.3,4D.0,0
7.若二次函数 的x与y的部分对应值如下表:
x
-2
-1
0
1
2
3
y
14
7
2
-1
-2
-1
则当 时,y的值为()
A.-1B.2C.7D.14
8.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()
【分析】由给出的x和y的值可得,抛物线的对称轴为x=2,由抛物线的对称性可知,x=5时y的值与x=﹣1时y的值相等,由此即可求解.
【详解】解:由表格可知,当x=1时,y=﹣1,当x=3时,y=﹣1,
∴由抛物线的对称性可知,抛物线的对称轴为直线x=2,
∴x=5时y的值与x=﹣1时y的值相等,
由表格可知,当x=﹣1时,y=7,
23.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是 上的一点.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,求∠AQB的度数;
(3)在(2)的条件下,若OA=18,求 的长.
五、解答题(三)(每小题10分,共20分)
24.如图,已知在矩形ABCD中,AD=10cm,AB=4cm,动点P从点A出发,以2cm/s的速度沿AD向终点D移动,设移动时间为 (s).连接PC,以PC为一边作正方形PCEF,连接DE、DF.
人教版2022--2023学年度第一学期期中测试卷
九年级 数学
(满分:120分 时间:100分钟)
苏教版小学六年级数学下册《第二章 圆柱和圆锥》单元测试题【含答案】

苏教版小学六年级数学下册《第二章圆柱和圆锥》单元测试题一.选择题(共8小题)1.在学习圆柱的体积计算公式时,是把圆柱转化为( )推导出来的.A.正方体B.长方体C.长方形2.把一根圆柱形木材沿底面的直径切成两半,切面是( )A.三角形B.圆C.长方形或正方形D.梯形3.把一根底面直径为20厘米的圆柱形木头平行于底面锯成2段,表面积增加( )平方厘米。
A.314B.1256C.942D.6284.在如图各图中,以直线l为轴旋转,可以得到圆锥的是( )A.B.C.D.5.把圆柱的侧面展开,不可能得到图形( )A.B.C.D.6.一个圆柱侧面展开是一个正方形,它的高是半径的( )倍。
A.2B.πC.3D.2π7.一个圆柱与一个圆锥的底面积相等,它们的体积比是3:2,则下面对圆柱和圆锥的高的关系的说法,正确的是( )。
A.圆柱的高和圆锥的高相等B.圆柱的高是圆锥的高的C.圆柱的高是圆锥的高的D.圆柱的高是圆锥的高的8.用一块长25.12厘米,宽15.54厘米的长方形铁皮,配上下面( )的圆形铁片正好做成圆柱形容器.(单位:cm)A.r=1B.d=3C.d=9D.r=4二.填空题(共10小题)9.圆柱的侧面展开后的图形是 ,圆锥的侧面展开后的图形是 .10.圆锥的侧面展开图是一个 .11.圆柱的底面都是 ,并且大小 ,圆柱的侧面是 面.12.把一个圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱的 ,宽等于圆柱的 ,圆柱的侧面积等于 .13.一个圆柱的底面半径和高都是5cm,这个圆柱的表面积是 cm2.(圆周率取3.14)14.如图,把圆柱切开拼成一个长方体,已知长方体的长是6.28米,高是3米.这个圆柱体的底面半径是 米,体积是 立方米.15.一个圆柱的底面直径是8厘米,高是6厘米,若它的高不变,底面直径增加2厘米,那么它的体积增加 立方厘米。
16.用长12cm、宽9cm的长方形硬纸卷成一个圆柱,接口忽略不计,这个圆柱的体积可能是 cm3,也可能是 cm3。
圆锥的侧面展开图问题

圆锥的侧面展开图问题解决圆锥问题的关键是明确圆锥的侧面展开图各元素与圆锥各元素的关系——圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,弧长是圆锥的底面圆的周长.问题往往涉及圆锥的母线长、圆锥的高以及底面半径之间的关系,勾股定理则是架起三元素间的桥梁.如图1,设圆锥的底面半径为r ,母线AB 的长为l ,高为h ,则r 2+h 2=l 2,圆锥的侧面展开图是扇形ACD ,该扇形的半径为l ,设扇形ACD 的圆心角是θ,则扇形的弧CD 的长=2πr =180l θπ,圆锥的侧面积为S 侧=12×2πr ×l =πrl .一、计算圆锥的侧面积例1 (邵阳)如图2所示的圆锥主视图是一个等边三角形,边长为2,则这外圆锥的侧面积为______(结果保留π).分析:依题意,圆锥主视图是一个等边三角形,所以圆锥的母线长为2,底面半径为1,可以直接代入公式求得.解:依题意,r=1,l =2,所以S 侧=π×1×2=2π.二、求圆锥的母线长例2 (桂林)已知圆锥的侧面积为8πcm 2, 侧面展开图的圆心角为45°,则该圆锥的母线长为( ).(A )64cm (B )8cm (C )22cm (D )2cm 分析:圆锥的侧面积即其侧面展开图扇形的面积,由扇形的面积公式可求出圆锥的母线长(侧面展开图扇形的半径即为圆锥的母线长).解:由2360n l S π=扇形,即2360n l π=8π,解得l =8(cm ).故应选(B ). 三、计算圆锥的底面半径例3 (日照)将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ).(A )10cm (B )30cm (C )40cm (D )300cm分析:依题意,将直径为60cm 的圆形铁皮分割成三个大小相等的扇形,这三个扇形即三个相同的圆锥容器的侧面展开图.根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”可求每个圆锥容器的底面半径.解:直径为60cm 的圆形铁皮的周长为60πcm ,故将该铁皮分割成三个大小相等的扇形的弧长为20πcm .图1 图2设圆锥的底面半径为r ,则2πr =20π,解得r =10.故应选(A ).四、计算圆锥的高例4 (鸡西)如图3,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 分析:借助图1分析,知在r 2+h 2=l 2中,欲求h ,需知道r ,l ,显然这里l =5 cm ,故只需再求出r .解:设圆锥的底面半径为r ,则2πr =6π,解得r =3.所以h 2=l 2- r 2=52-32,所以h =4(cm ).五、计算侧面展开图中扇形圆心角的度数 例5 (成都)若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是( ).(A )40° (B )80° (C )120° (D )150°分析:设圆锥展开图的圆心角为n °,根据弧长公式可求出侧面展开图扇形的弧长为180n l π,再根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”列方程可解. 解:设圆锥展开图的圆心角为n °,则4π=6180n πg . 解得n =120.所以选(C ).六、最短路径问题例6 (青岛)如图4是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且FA =2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .分析:由于小蚂蚁只能在圆锥侧面上爬行,所以我们可考虑把圆锥侧面展开,将问题转化为平面图形解决.将圆锥沿母线OE 剪开,如图7所示的展开图,根据“两点之间线段最短”,知EA 即为最短路径.解:设圆锥侧面展开后扇形的圆心角为n °,因为底面的周长等于展开后扇形的弧长,所以180n OE π⋅=π E F ,即10180n π⋅=10π,解得n °=180°. 此圆锥的侧面展开图为扇形(如图5),在Rt △AEO 中, OA =OF -AF =8(cm ),O B A 图3 5cm 图5 A F E O 图4。
【小学】2021冀教版六年级数学下册《第四章 圆柱和圆锥》单元测试题含解析

2021-2021学年冀教版小学六年级数学下册《第四章圆柱和圆锥》单元测试题一.选择题(共8小题)1.底面积是平方厘米、高是10厘米的圆柱体玻璃杯中盛有半杯水,把一个小圆锥体浸没水中,水面上升了1厘米.这个圆锥体积是()A.立方厘米B.立方厘米C.立方厘米2.一个圆柱,底面直径和高都是2分米,这个圆柱的表面积是()平方分米.A.6πB.5πC.4πD.2π3.一个圆柱与一个圆锥的底面积相等,它们的体积比是3:2,则下面对圆柱和圆锥的高的关系的说法,正确的是()。
A.圆柱的高和圆锥的高相等B.圆柱的高是圆锥的高的C.圆柱的高是圆锥的高的D.圆柱的高是圆锥的高的4.用铁皮做一个圆柱形的通风管,所需铁皮的面积是求通风管的()A.表面积B.侧面积C.底面积5.一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为10cm2,请你根据图中标明的数据,计算瓶子的容积是()cm3.A.80B.70C.60D.506.如图中,圆柱有()个。
A.4B.3C.2D.57.将如图的图形绕虚线旋转一周后会得到的立体图形是()A.B.C.D.8.下面四幅图中,不可能是圆柱侧面展开图的是()A.B.C.D.二.填空题(共10小题)9.一个圆柱体的侧面展开是一个边长21cm的正方形.这个圆柱的侧面积是cm2.10.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径是6厘米,它的高是厘米.11.等腰三角形沿着它的对称轴旋转一周得到的是一个.12.圆锥侧面展开图是,圆柱侧面展开图可能是、A、长方形B、正方形C、梯形D、扇形E、三角形.13.等底等高的一个圆柱和一个圆锥,圆柱的体积是90dm3,则圆锥的体积是dm3.14.一个圆锥体和一个圆柱体等底等高,它们体积之差是60cm3,这个圆柱的体积是cm3.15.一根长2021的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是立方分米.16.一个圆柱体的水桶,它的表面是由个长方形和一个形组成的.17.圆柱的底面都是,并且大小,圆柱的侧面是面.18.一个圆锥形沙堆的底面积是平方米,高是3米,这个沙堆的体积是立方米.三.判断题(共5小题)19.做一个圆柱形烟窗用的铁皮就是它的侧面积..(判断对错)2021个圆柱的侧面展开图是正方形,它的底面直径与高相等.(判断对错)21.同一个圆柱的两个底面的直径相等.(判断对错)22.两个圆柱的侧面积相等,它们的高一定相等.(判断对错)23.把一个圆柱削成与它等底等高的圆锥,这个圆锥的体积是削去部分的50%.(判断对错)四.计算题(共1小题)24.计算下面图形的体积.(单位:cm)五.应用题(共4小题)25.工地上有一堆沙子,形状近似于一个圆锥(如图).这堆沙子的体积大约是多少?26.一根圆柱形的钢材,底面积是50平方厘米,高是厘米.它的体积是多少立方厘米?27.一个圆锥形沙堆,底面直径是4m,高是,这堆沙子的体积是多少立方米?如果每立方米的沙子约重,这堆沙子一共有多少吨?28.如图是小明母亲节送给妈妈的茶杯.(1)这只茶杯的容积是多少?《茶杯的厚度忽略不计)(2)茶杯中部的一圈装饰带是小明怕烫伤妈妈的手而特意贴上的,这圈装饰带宽5cm,它的面积是多少?(接头处忽略不计)六.操作题(共1小题)29.连一连.七.解答题(共2小题)30.工地上经常用一种圆锥形的铅锤,底面直径是4cm,高5cm,每立方厘米大约重,这个铅锤重多少克?(得数保留整数)31.一顶帽子,上面是圆柱形,用黑布做;帽檐部分是一个圆环,用红布做.做这顶帽子,哪种颜色的布用得多?参考答案与试题解析一.选择题(共8小题)1.【分析】由题意可知:上升部分的水的体积就等于这个圆锥体的体积.上升部分的水的体积可直接运用圆柱体的体积计算公式计算即可.【解答】解:×1=(立方厘米);答:这个圆锥体积是立方厘米.故选:A.【点评】本题主要考查特殊物体体积的计算方法,将物体放入或取出,水面上升或下降的体积就是物体的体积,用到的知识点为:圆柱体的体积=底面积×高.2.【分析】本题是已知圆柱的底面直径和高,求它的表面积,可利用公式“侧面积底面积×2=表面积”求得,然后再选正确答案即可.【解答】解:π×2×2π×()2×2=π×4π×2=6π(平方分米)故选:A.【点评】此题是考查圆柱表面积的计算,要正确利用公式“侧面积底面积×2=表面积”来解答.3.【分析】设圆柱的底面积是S,则圆锥的底面积也是S,圆柱的体积是3,则圆锥的体积是2,根据“圆柱的高=圆柱的体积÷底面积”求出圆柱的高,根据“圆锥的高=圆锥的体积×3÷底面积=圆锥的高,然后把圆柱的高和圆锥的高进行比,然后化成最简整数比即可。
六年级数学下册单元测试卷

六年级数学下册单元测试卷一、填空题(每题 2 分,共20 分)1.在-5,0,+4,-3,+15,9,-4 中,正数有(),负数有()。
2.如果把平均成绩记为0 分,+9 分表示比平均成绩(),-18 分表示比平均成绩()。
3.一种商品打八折出售,就是按原价的()%出售,如果一种商品原价200 元,打八折后售价是()元。
4.圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。
5.一个圆柱的底面半径是3 厘米,高是5 厘米,它的侧面积是()平方厘米,表面积是()平方厘米。
6.一个圆锥的底面直径是6 分米,高是3 分米,它的体积是()立方分米。
7.把一个棱长为6 厘米的正方体木块削成一个最大的圆锥,这个圆锥的体积是()立方厘米。
8.如果圆柱和圆锥等底等高,圆柱的体积是圆锥体积的()倍,圆锥体积是圆柱体积的()。
9.在比例里,两个外项互为倒数,其中一个内项是4/5,则另一个内项是()。
10.一幅地图的比例尺是1:5000000,图上4 厘米表示实际距离()千米。
二、判断题(每题 1 分,共 5 分)1.10既不是正数也不是负数。
()解析:正数大于0,负数小于0,0 是正数和负数的分界点,所以该说法正确。
2.圆柱的体积一定比圆锥的体积大。
()解析:圆柱和圆锥的体积大小取决于它们各自的底面积和高,只有在等底等高的情况下圆柱体积才是圆锥体积的 3 倍,不能一概而论说圆柱体积一定比圆锥体积大,所以该说法错误。
3.比例尺一定,图上距离和实际距离成正比例。
()解析:因为比例尺= 图上距离÷实际距离,比例尺一定,也就是图上距离和实际距离的比值一定,所以成正比例,该说法正确。
4.一件商品先提价20%,再降价20%,价格不变。
()解析:设商品原价为1,提价20%后价格为1×(1 + 20%) = 1.2,再降价20%后价格为1.2×(1 - 20%) = 0.96,价格发生了变化,所以该说法错误。
六年级下数学一课一练-、圆锥-人教新课标(带解析)

小学数学六年级下册期末复习——圆柱、圆锥(2)原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!古之学者必严其师,师严然后道尊。
欧阳修1.圆柱的侧面积=_________________,圆柱的表面积=___________________,圆柱的体积=__________________,圆锥的体积=____________________。
2.2平方分米5平方厘米 = ()平方分米; 3.7升 = ()毫升3.沿着圆柱的高剪,侧面展开得到一个(),它的一条边就等于圆柱的(),另一条边就等于圆柱的()。
4.一个圆柱底面半径是3厘米,高5厘米,侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米,与它等底等高的圆锥的体积是()立方厘米。
5.圆锥形的一堆沙,底面积是4.8平方米,高2.5米,这堆沙共( )立方米。
6.将一张长30厘米,宽18厘米的长方形白纸卷成一个圆柱,这个圆柱的侧面积是( )平方厘米。
7.一个圆锥的体积是15立方分米,高是3分米,底面积是( )平方分米。
8.一个圆柱的底面半径扩大2倍,高缩小2倍,它的侧面积(),体积()。
9.等底等高的以个圆柱和一个圆锥的体积的和是80立方分米,这个圆柱的体积是()立方分米,这个圆锥的体积是()立方分米。
10.将一张长4厘米,宽3厘米的长方形纸以一条边为轴旋转一周,得到一个圆柱体,这个圆柱的体积是( )立方厘米。
11.把一个圆柱沿底面半径切开,等分后再拼成一个近似长方体,这个长方体长12.56厘米,高10厘米,这个圆柱的体积是()立方厘米。
12.圆柱的高是圆锥高的3倍,圆柱的底面半径与圆锥底面半径的比是1:2,圆柱和圆锥的体积比是()。
13.一个圆柱的底面直径是8厘米,高12厘米,沿底面直径将它切成两个完全相等的部分,表面积增加()平方厘米。
圆锥的侧面积-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

圆锥的侧面积知识点一、圆锥的侧面展开图1.母线:连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线;2.把一个圆锥的侧面展开会得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线长.如图所示,若圆锥的母线长为l,底面圆的半径为r,则这个扇形的半径为l,扇形的弧长为.圆锥的底面半径r,高h,母线长l之间可构成一个直角三角形,所以满足.例:如图所示,有一块半径为1m,圆心角为90°的扇形铁皮,要将它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A. B. C. D.【解答】C【解析】设底面半径为,则,解得,∴高 C.知识点二、圆锥的侧面积若圆锥的底面半径为r,母线长为l,则圆锥的侧面积公式为.圆锥的侧面积与底面积之和称为圆锥的全面积,.例:1.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2【解答】B【解析】根据侧面积公式可得π×2×3×6=36πcm2,故选B.巩固练习一.选择题1.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πcm2C.18πcm2D.18cm2【解答】D【解析】所得几何体的主视图的面积是2×3×3=18cm2.故选D.2.已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2【解答】B×2π×4×5=20π(cm2).【解析】这个圆锥的侧面积=12故选B.3.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的底面半径是()A.2√10B.4√2C.2√2D.2【解答】D【解析】∵用面积为12π,半径为6的扇形围成一个圆锥的侧面,=4π,∴围成的圆锥底面圆的周长为:12π×26设围成的圆锥底面圆的半径为r,则2πr=4π,解得,r=2,∴圆锥的底面半径是2.故选D.4.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A .3B .2.5C .2D .1.5【解答】A 【解析】半圆的周长=12×2π×6=6π,∴圆锥的底面周长=6π,∴圆锥的底面半径=6π2π=3,故选A .5.若一个圆锥的侧面展开图是半径为10cm ,圆心角为120°的扇形,则该圆锥的底面半径是( )A .310cmB .103cmC .203cmD .320cm 【解答】B【解析】圆锥的侧面展开图是扇形,扇形的弧长=120π×10180=20π3, 则圆锥的底面半径=20π3÷2π=103(cm ),故选B .6.圆锥的母线长为9cm ,底面圆的直径为10cm ,那么这个圆锥的侧面展开图的圆心角度数是( )A .150°B .200°C .180°D .240° 【解答】B【解析】设这个圆锥的侧面展开图的圆心角为n °,根据题意得10π=n⋅π⋅9180,解得n =200,即这个圆锥的侧面展开图的圆心角度数为200°.故选B .7.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB =120°,弧AB 的长为12πcm ,则该圆锥的侧面积为( )A .12πB .56πC .108πD .144π【解答】C 【解析】设AO =BO =R ,∵∠AOB =120°,弧AB 的长为12πcm ,∴120πR 180=12π,解得:R =18,∴圆锥的侧面积为12lR =12×12π×18=108π, 故选C .8.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm ,弧长是8πcm ,那么这个圆锥的高是( )A .8cmB .6cmC .3cmD .4cm【解答】C【解析】设圆锥底面圆的半径为r ,根据题意得2πr =8π,解得r =4,所以这个的圆锥的高=√52−42=3(cm ).故选C .9.用一张扇形的纸片卷成一个如图所示的圆锥模型,要求圆锥的母线长为6cm ,底面圆的直径为8cm ,那么这张扇形纸片的圆心角度数是( )A .150°B .180°C .200°D .240°【解答】D【解析】∵底面圆的直径为8cm ,∴圆锥的底面周长为8πcm,设圆锥的侧面展开图的圆心角为n°,=8π,∴nπ×6180解得:n=240°,故选D.10.已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】C【解析】∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选C.11.如图,圆锥的母线长AB=10cm,高AO=6cm,则圆锥面积为()A.144πcm2B.640πcm2C.320πcm2D.80πcm2【解答】A【解析】∵圆锥的母线长AB=10cm,高AO=6cm,∴圆锥的底面半径OB=√AB2−AO2=8cm,∴该圆锥的侧面积=πrl=π×8×10=80π(cm2),底面积=πr2=π×82=64π(cm2),∴该圆锥的面积=80π+64π=144π(cm2).故选A.12.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是()A.√2cm B.3√2cm C.4√2cm D.4 cm【解答】C【解析】∵圆心角为120°,半径为6cm 的扇形的弧长=120⋅π⋅6180=4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高=√62−22=4 √2(cm ).故选C .13.如图,是一个圆锥的主视图,则这个圆锥的全面积是( )A .12πB .15πC .21πD .24π【解答】D【解析】∵圆锥的底面半径为6÷2=3,高为4,∴圆锥的母线长为5,∴圆锥的全面积=π×3×5+π×32=24π,故选D .14.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面圆的半径为()A .34πB .32πC .34D .32【解答】C【解析】设该圆锥的底面圆的半径为r ,根据题意得2πr =90⋅π⋅3180,解得r =34,所以该圆锥的底面圆的半径为34.故选C .15.如图,圆锥的侧面积为8πcm 2,母线与底面夹角为60°,则此圆锥的高为( )A.4cm B.8cm C.2√3cm D.6cm【解答】C【解析】设圆锥的底面圆的半径为r,∵母线与底面夹角为60°,∴圆锥的母线长为2r,•2r•2π•r=8π,解得r=2,∴12∴圆锥的高=√3r=2√3(cm).故选C.二.填空题16.已知圆锥的高h=2√3cm,底面半径r=2cm,则圆锥的全面积是.【解答】12πcm2【解析】∵圆锥的高为2√3cm,底面半径为2cm,∴圆锥的母线长为:√22+(2√3)2=4(cm),底面周长是:2×2π=4π(cm),×4π×4=8π(cm2),则侧面积是:12底面积是:π×22=4π(cm2),则全面积是:8π+4π=12π(cm2)故答案为12πcm2.17.若圆锥的侧面积是24πcm2,母线长是8cm,则该圆锥底面圆的半径是cm.【解答】3【解析】设圆锥底面圆的半径是rcm.×8×2πr=24π,由题意,12解得,r=3,故答案为3.18.直角三角形的两直角边长分别为4cm,3cm,以其中长直角边所在直线为轴旋转一周,得到的几何体的侧面积是 cm 2.【解答】15π【解析】∵直角三角形的两直角边长分别为4cm ,3cm ,∴由勾股定理得斜边为5,以4cm 边所在的直线为轴,将直角三角形旋转一周,则所得到的几何体的底面周长=6πcm ,侧面面积=12×6π×5=15π(cm 2). 故答案为15π.19.一个圆锥的表面积为40πcm 2,底面圆的半径是4cm ,则圆锥侧面展开图的圆心角是 度.【解答】240【解析】∵底面圆的半径为4cm ,∴底面周长为8π,底面圆的面积为:16π,∴侧面积为40π﹣16π=24π,设圆锥的母线长为l ,则12×8πl =24π, ∴母线长l =6cm ,设扇形的圆心角为n °,∴nπ×62360=24π,解得:n =240,故答案为240.20.如图所示,圆锥的母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则该圆锥的高为 .【解答】8cm【解析】设圆锥的底面圆的半径为r ,根据题意得2πr=216⋅π⋅10,解得r=6,180所以圆锥的高=√102−62=8(cm).故答案为8cm.21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥的高h为.【解答】4√2,解得R=6,【解析】根据题意得 2π×2=120⋅π⋅R180所以该圆锥的高h=√62−22=4√2.故答案为4√2.22.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.【解答】√119【解析】设这个圆锥的底面圆的半径为r,,解得r=5,根据题意得2πr=150⋅π⋅12180所以圆锥的高=√122−52=√119.故答案为√119.23.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于cm.【解答】1【解析】设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,2πr=120π×3180解得:r=1cm.故答案为1.24.如图,圆锥的高为2√3cm,∠α=30°,则圆锥的侧面积为cm2.【解答】8π【解析】如图,∠α=30°,AO=2√3,,在Rt△ABO中,∵tan∠BAO=BOAO∴BO=2√3tan30°=2,即圆锥的底面圆的半径为2,∴AB=4,即圆锥的母线长为4,∴圆锥的侧面积=1•2π•2•4=8π.2故答案为8π.三.解答题25.圆锥母线长6cm,底面圆半径为3cm,求它的侧面展开图的圆心角度数.【解答】180°【解析】设圆锥侧面展开图的圆心角的度数为n°,根据题意得2π•3=n⋅π⋅6,180解得n=180°,即圆锥侧面展开图的圆心角的度数为180°.26.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;【解答】(1)12π;(2)80π【解析】(1)2π×6=12π.(2)∵∠C =90°,AC =6,BC =8,∴AB =√AC 2+BC 2=10,所以以直线AC 为轴,把△ABC 旋转一周,得到的圆锥的侧面积=12×10×2π×8=80π;27.已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.【解答】102013π(cm 2) 【解析】∵Rt △ABC 的斜边AB =13cm ,直角边AC =5cm ,∴另一直角边BC =12cm ,以斜边AB 为轴旋转一周,得到由两个圆锥组成的几何体,直角三角形的斜边上的高OC =5×1213=6013cm , 则以6013cm 为半径的圆的周长=12013πcm , 几何体的表面积=12×12013π×(5+12)=102013π(cm 2). 28.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°.(1)求该圆锥的母线长l ;(2)求该圆锥的侧面积.【解答】(1)6cm ;(2)12πcm 2【解析】(1)由题意,得2πr =120πl 180. ∴l =3r =6(cm ).(2)S 侧=120π×62360=12π(cm 2). 29.如图,在梯形ABCD 中,AD ∥BC ,∠C =90°,∠BAD =120°,AB =AD =4,BC =6,以点A 为圆心在这个梯形内画出一个最大的扇形(图中阴影部分).(1)求这个扇形的面积;(2)若将这个扇形围成圆锥,求这个圆锥的底面积.【解答】(1)4π;(2)43π 【解析】(1)过点A 作AE ⊥BC 于E ,则AE =AB sin B =4×√32=2√3,∵AD ∥BC ,∠BAD =120°,∴扇形的面积为120π×(2√3)2360=4π,(2)设圆锥的底面半径为r ,则2πr =120π×2√3180, 解得:r =2√33若将这个扇形围成圆锥,这个圆锥的底面积4π.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2、根据下列条件求圆锥侧线长) (1) a = 2,r = 1
(2) h = 3, r = 4
ha
r
例3已知:在RtΔ ABC, C 900.AB 13cm, BC 5cm
求以AB为轴旋转一周所得到的几何体的全面积。
= πra +πr2
生活中的圆锥侧面积计算
1.把一个用来盛爆米花的圆锥 形纸杯沿母线剪开,可得一个 半径为24cm,圆心角为118° 的扇形.求该纸杯的底面半径 和高度(结果精确到0.1cm).
半径约为7.9cm,高约为22.7cm.
生活中的圆锥侧面积计算
2.圆锥形的烟囱帽的底面直径是80cm, 母线长 50cm. (1)画出它的展开图;
议一议
生活中的圆锥侧面积计算
蒙古包可以近似地看成由圆锥和圆 柱组成的.如果想在某个牧区搭建15 个底面积为33m2,高为10m(其中圆锥 形顶子的高度为2m)的蒙古包.那么 至少需要用多少平方米的帆布?(结 果精确到0.1m2).
先独立思考,再与同伴交流. 相信自己是第一个提供思路和
答案的智(勇)者.
a
2л r
图 23.3.6
圆锥的侧面积和全面积
圆锥的底面周长就是其侧面展开图扇形的弧长,
圆锥的母线就是其侧面展开图扇形的半径。
S侧=S扇形
1 la 1 2ra ra
l
22
ha
S全=S侧+S底
r
ra r 2
例1 、根据圆锥的下列条件,
求它的侧面积和全面积. (1) r=12cm, a=20cm;
解:90b=2πr
180
1
r= b
4
D
C
∴AO= 5
4
b.
3 AE= 4 b
在Rt△AOE中,EO=b
∴a- 1 b=b 4
A
B
5 a= 4 b
圆锥及侧面展开图的相关概念
圆锥侧面展开图
1.圆锥的侧面展开图 是一个 扇形
2.圆锥的母线就是其侧 面展开图扇形的半径 3.圆锥的底面圆周长=侧面展开后 扇形的弧长
约为3023.1m2.
高线、母线长三者之间
间的关系:
A
a2 h2 r 2
a h Or B
1.准备好的圆锥模型沿着母线剪开,观察圆锥 的侧面展开图.
图 23.3.6
图 23.3.7
2.探究 如图23.3.7,沿着圆锥的母线,把一个圆锥的 侧面展开,得到一个扇形,这个扇形的弧长等 于圆锥底面的周长,而扇形的半径等于圆锥的 母线的长.圆锥的侧面展开图是一个扇形.
分析:以AB为轴旋转一周所得到的几何体是由公
共底面的两个圆锥所组成的几何体,因此求全面
积就是求两个圆锥的侧面积。
A
C B
在矩形铁片ABCD上剪下以A为圆心,AD为半径
的扇形,再在余下的部分剪下一个尽可能大的圆
形铁片,要使这圆形铁片恰好是扇形铁片所做成
的圆锥的底面,那么矩形铁片的长为a和宽为b应
满足什么条件?
(2)计算这个展开图的圆心角及面积.
圆柱侧面展开图
1.圆柱的侧面展开图是一个矩形,它的一 边长是圆柱的母线长;它的另一边长是圆 柱的底面圆周长.
圆柱侧面展开图
2.圆柱的侧面积就是一边长是圆柱的母线长、 另一边长是圆柱的底面圆周长的矩形 的面积. 3.圆柱的全面积就是它的侧面积与它的底 面积的和.
圆锥的侧面积和全面积
圆锥的侧面积就是弧长为圆锥底面的周 长、半径为圆锥的一条母线的长的扇形面 积.
圆锥的全面积=圆锥的侧面积+底面积.
P
a h
A
Or B
圆锥的侧面积和全面积
如果设圆锥的母线长为a,底面半径为r.则 圆锥的侧面积公式为:
S侧
1 2
2r
a.
= ra
全面积公式为:
S全 S侧 S底
圆锥的再认识
1.圆锥是由一个底面和一个侧面围
成的,它的底面是一个圆,侧面是
一个曲面.
P
2.把圆锥底面圆周上 的任意一点与圆锥顶 点的连线叫做圆锥的 母线.
a h
A
O Ar2
B
A1
想一想:圆锥的母线有几条?
3.连结顶点与底面圆心
的线段叫做圆锥的高.
P
如图中a是圆锥的一条母线, 而h就是圆锥的高.
4.圆锥的底面半径、