导数中的分类讨论依据问题

合集下载

导数中如何分类讨论

导数中如何分类讨论

导数中如何分类讨论在微分学中,导数是一个非常重要的概念,描述了函数在其中一点的变化率。

导数的分类讨论主要有以下几种情况:1.右导数和左导数:对于函数在其中一点的导数来说,如果左极限和右极限都存在且相等,则这个导数称为右导数和左导数。

如果左右导数相等,则称为函数在这一点处可导。

否则,函数在这一点处不可导。

2.一阶导数:函数的一阶导数描述的是函数的瞬时变化率,也就是在特定点的切线斜率。

如果函数在其中一点可导,则这一点的一阶导数存在。

通过函数的一阶导数,可以推断出函数的增减性、极值点和拐点等信息。

3.高阶导数:函数的高阶导数描述的是函数的瞬时变化率的变化率,即变化率的二阶或更高阶的导数。

高阶导数主要用于研究曲线的弯曲程度、拐弯点等。

如果函数的一阶导数存在,且一阶导数也再次可导,则可以得到函数的二阶导数。

以此类推,得到三阶导数、四阶导数,依此类推。

4.导数的连续性:对于函数的导数,我们可以考虑导数本身在其中一区间上的连续性。

如果导数在其中一区间上连续,则称该函数在该区间处可导。

连续导数的函数是很常见的类型,如多项式函数、三角函数等。

但也有一些函数在一些点处的导数不连续,如绝对值函数在零点处。

5.可导函数的性质:对于可导函数而言,还有一些特殊的性质可以讨论。

例如,连续函数的定义域上的导函数在整个区间上是无穷可微的。

光滑函数是指具有任意阶导数的函数。

对于光滑函数而言,它的导数在整个定义域上是无穷可微的。

在实际问题中,导数的分类讨论可以帮助我们更好地理解函数的性质和行为。

通过分析导数的分类情况,可以确定函数的增减性、极值点和拐点等重要信息,从而为更深入的研究函数提供了基础。

同时,导数的分类讨论也有助于我们理解函数之间的关系和运算法则,如链式法则、乘积法则和商法则等。

综上所述,导数的分类讨论在微分学中是非常重要的。

对函数的导数进行分类讨论,可以帮助我们更好地理解函数的性质和行为,并进一步研究更复杂的数学问题。

第3讲 导数中含参问题的分类讨论(解析版)

第3讲 导数中含参问题的分类讨论(解析版)

导数中含参问题的分类讨论本讲义由作业帮周永亮老师(白哥)独家编撰,侵权必究或知识导航★ 1.-次型导函数一次型导函数,是指能够影响原函数单调性的部分是一次函数形式,或者说导函数中,除去里面的一次函数形式,剩余的部分全部恒为正(负).例:f (x) = ax + b;f (a:) = (ax + b) e x ; f' (a;) = 口“ * " (z > 0)X★ 2.二次型导函数二次型导函数:二次型导函数,是指能够影响原函数单调性的部分是二次函数形式,或者说导函数中,除去里面的二次函数形式,剩余的部分全部恒为正(负).例:f (a:) = ax2 +bx + c;f (x) = (ax2 +bx + cj e x ; f (x) —* 况* ° (a; > 0)注:以上a尹0,若不确定a是否可以为0,就先讨论是一次型还是二次型;★ 3 .含参函数单调性的分类讨论(1)先确定导函数是一次型还是二次型,一次型按照一次型的讨论方式讨论;①判断是否有根,没有根会出现恒成立状况;②求出导函数的根,判断根是否在定义域内,不在定义域会出现恒成立问题;③根在定义域内,穿根法确定导函数正负,进而确定原函数的单调性;(2)若是二次型,先判断二次型函数是否有根,没有根会出现恒成立状况;①如果二次型函数有根,就先求出根(能因式分解就因式分解);②判断根是否在定义域内(讨论根与定义域端点值的大小关系);③如果两根全在定义域,那么确定两根大小关系;④穿根法确定导函数正负,进而确定原函数的单调性;★ 4.拟合函数(1)拟合函数是指,根据散点图,拟合出函数的解析式,这里考虑到的点越多,拟合的解析式就越精确.(2 )在求导中,我们会发现很多函数的导函数是指数型或者对数型的,如:f' (x) = e x—2 ; (/ (x) = (a; — a) (In x — S),这种类型的导函数,我们判断原函数的单调性比较麻烦,所以我们会采用拟合函数的形式进行讨论就可以了;(3)在单调性讨论中,拟合的形式比较简单,只需要参考两个关键点就可以了,分别是:①等于0的解,②所需拟合函数单调性;例如:f (a;) = e x -2,①当 / (a:) = 0 时,c = ln2 :② f (时=e x -2单调递增;则,我们也可以找到一个具有相同性质的一次函数,所以f (x) = 可以拟合成f' {x) — x — \n.2 ;再如:寸(x) = (a; — a) (In a: — 3),只需要讨论g = In r - 3这部分就可以了,此函数可以拟合成:y = x-^(x>0);则寸(c) = (z — a) (Ina: — 3)可以拟合成(/ (x) = (x — a) (x — e3) (z > 0).知识札记歩经典例题考点1 一次型含参导函数的分类讨论已知函数f(x) = lnx + --l ^R),讨论函数六z)的单调性. X解答:由题意知该函数的定义域为(0, +8),且/ (^) = - - 4 = 与凸从而当a W0时,/(苛>0,则,(z)在(0,+8)上单调递增当a > 0时(1 )若z € (0,a),则「(r) < 0,从而/(a:)在(0,a)上单调递减(2)若z€(a,+8),则f(z)>0,从而f(3!)在(a,+8)上单调递增综上所述,当aWO时,义时在(0,+8)上单调递增;当a>0时,山z)在(0,a)上单调递减,在(a, +oo)上单调递增讨论函数f(x)=ax-inx的单调区间.解答:函数,(z)的定义域是(0,+8) m—,若aWO,则/ (x) <。

【高考数学】《分类讨论的“界点”》破解导数解答题

【高考数学】《分类讨论的“界点”》破解导数解答题
ཧᥐ ཧ
【规范解答】(1)令 h(x)=f(x)﹣g(x)=lnx+x+1﹣x2﹣2x=lnx+1﹣x2﹣x.(x∈(0,
+∞)).
h′(x)
ᄖ ཧ
2x﹣1
ሺ ཧ ᄖ ሺཧᥐᄖ .

可知:当 x ᄖ时,函数 h(x)取得极大值,h(ᄖ)=lnᄖ ᥐ1 ᄖ ᄖ
ln2ᥐ ᄖ.h(x)无
极小值.
(2)令 f(x)﹣mg(x)≤0 成立,g(x)=x2+2x>0.∴m
①当﹣1ᥐ ᄖ ᄖ 1 即 ᄖ a<0 时,f(x)在[0,1]单调递增, f(0)=0,此时 f(x)在区间[0,1]上有一个零点; ②当﹣1ᥐ ᄖ ᄖ<1 即 a< ᄖ时,
若 f(1)>0 即ᄖ 1<a< ᄖ时,f(x)在[0,﹣1ᥐ ᄖ ᄖ)单调递增,在[﹣1ᥐ ᄖ ᄖ, 1]单调递减, f(0)=0,此时 f(x)在区间[0,1]上有一个零点; 若 f(1)≤0 即 a ᄖ 1 时,f(x)在[0,﹣1ᥐ ᄖ ᄖ)单调递增,在[﹣1ᥐ ᄖ ᄖ,1] 单调递减, f(0)=0,此时 f(x)在区间[0,1]上有零点 x=0 和在区间[﹣1ᥐ ᄖ ᄖ,1]有一个零点 共两个零点; 综上:当 a ᄖ 1 时,f(x)在区间[0,1]上有 2 个零点; 当 a> ᄖ 1 时,f(x)在区间[0,1]上有 1 个零点.
②当 a>1 时,令 f′(x)=0,解得:x1=﹣1 ᄖ ᄖ,x2=﹣1ᥐ ᄖ ᄖ,
x,f′(x),f(x)的变化如下:
x
(﹣∞,x1)
x1
f′(x)
+
0
(x1,x2) x2

0
(x2,+∞) +
f(x)

(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。

(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。

解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。

(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。

这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。

因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。

(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。

故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。

例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。

帮你归纳总结五导数中常见的分类讨论

帮你归纳总结五导数中常见的分类讨论

帮你归纳总结五导数中常见的分类讨论在导数的学习中,我们经常会遇到各种不同的函数和问题,为了更好地理解和解决这些问题,我们需要进行分类讨论。

下面将介绍导数中常见的五种分类讨论,并探讨每种分类讨论的应用。

一、基本函数的导数基本函数是指一些常见的函数,如常数函数、幂函数、指数函数、对数函数、三角函数等。

对于这些函数,我们可以通过公式或运用基本性质来求导数。

例如,对于常数函数f(x) = c,其导数为f'(x) = 0;对于幂函数f(x) = x^n,其中n为常数,其导数为f'(x) = nx^(n-1)。

基本函数的导数可以通过记忆公式或基本性质来求解,这是导数求解中最基础的分类讨论。

二、复合函数的导数复合函数是指由两个或多个函数相互组合而成的函数。

对于复合函数的导数求解,我们可以运用链式法则。

链式法则指出,若y=f(g(x)),其中f(u)和g(x)分别是两个可导函数,则复合函数y的导数可以表示为y'=f'(g(x))*g'(x)。

通过链式法则的应用,我们可以将复合函数的导数求解转化为求两个基本函数的导数,从而简化导数的计算。

三、隐函数的导数隐函数是指由一个关系式所定义的函数,其自变量和因变量的关系并不明显。

对于隐函数的导数求解,我们可以运用隐函数求导法。

隐函数求导法是一种通过求全微分和利用导数的定义来求解隐函数的导数的方法。

具体而言,我们可以将隐函数的方程两边求导,并利用导数的表示推导出隐函数的导数表达式。

隐函数的导数求解不仅可以帮助我们理解隐函数的性质,还可以解决一些与隐函数相关的问题。

四、参数方程的导数参数方程是指用参数的形式表示的函数。

对于参数方程的导数求解,我们可以运用参数方程的求导法。

参数方程的求导法是一种通过将参数作为自变量,并利用导数的定义和基本性质来求解参数方程的导数的方法。

具体而言,我们可以将参数方程中的每个参数视为独立的变量,然后对每个参数分别求导得到参数方程对应的导数表达式。

导数问题的常见分类讨论策略

导数问题的常见分类讨论策略

导数问题的常见分类讨论策略导数是高考必考查的一个模块,利用导数研究函数的单调性、极值、最值等问题,常常需要进行分类讨论,如何分类讨论?常见的有哪些类型?本文来支支招。

1.导数为零的点与定义域或给定的区间的相对位置关系的讨论例1、已知,求函数在区间[0,1]上的最小值。

解析:,由①当在区间[0,1]上是减函数,此时在区间[0,1]上的最小值是②当在区间[0,1]上是增函数,在区间[0,1]上的最小值是③当所以当时,函数取得极大值,又,因此当时,在区间[0,1]上的最小值是,当时,在区间[0,1]上的最小值是。

综上,当时,在区间[0,1]上的最小值是;当时,在区间[0,1]上的最小值是。

评析:当求出的导数为零的点不能确定是否在给定区间内时,常常要分零点在区间的左侧、右侧(这两种情况函数一般是单调函数)和在区间内(此时函数一定有极值)三种情况讨论。

2、对代数式正负的讨论例2、设函6570,求函数的单调区间。

解析:,当,所以函数的单调增区间是;,所以函数的单调减区间是当,所以函数的单调减区间是;,所以函数的单调增区间是。

评析:研究函数的单调性时,常常需要解不等式,当不等式两边同除一个代数式时,要分此式为正、为0和为负三种情况分别讨论。

3、对判别式的讨论例3、已知函数,讨论的极值。

解析:函数的定义域为设方程的判别式 =。

Ⅰ、当 =时,恒成立,不存在极值。

Ⅱ、当 =时,恒成立,不存在极值。

Ⅲ、当 =时,方程有两个不同的实根当x变化时,、的变化情况如下表:递增递减递增由表知,当时,取得极大值,当时,取得极小值。

评析:当函数求导后能转化为二次函数或二次不等式问题,它们对应的二次方程是否有解不能确定时,往往要对判别式进行讨论,此时要特别注意,当判别式 =0时,虽然导数为0有根,但根的左右两侧符号相同,不存在极值。

4、对两根大小的讨论例4、已知函数,试讨论函数的单调性。

解析:的定义域为,方程①当时,由,所以函数在上是增函数;,所以函数在上是减函数。

导数分类讨论解决含参问题(三种常见类型)

导数分类讨论解决含参问题(三种常见类型)

导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释.几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论.类型一:导函数根的大小比较实例1:求函数()321132a f x x x ax a -=+--,x R ∈的单调区间.分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数()321132a f x x x ax a -=+--进行求导可以得到导函数()()'21f x x a x a =+--,观察可知导函数可以因式分解为()()()()'211f x x a x a x a x =+--=-+,由此可知方程()'0f x =有两个实根1x a =,21x =-,由于a 的范围未知,要讨论函数()321132a f x x x ax a -=+--的单调性,需要讨论两个根的大小,所以这里分1a <-,1a =-,1a >-三种情况进行讨论:当1a <-时,()f x ,()'f x 随x 的变化情况如下:x (),a -∞a(),1a --1()1,-+∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -.当1a =-时,()'0f x ≥在R 上恒成立,所以函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间.当1a >-时,()f x ,()'f x 随x 的变化情况如下:x (),1-∞--1()1,a -a(),a +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.综上所述,当1a <-时,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -;当1a =-时,函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当1a >-时,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两根的大小又会影响到原函数的单调区间,而由于a R ∈,所以要分1a <-,1a =-,1a >-三种情况,这里注意不能漏了1a =-的情况.类型二:导函数的根的存在性讨论实例2:求函数()32f x x ax x =++的单调区间分析:这道题跟实例1一样,可以用求导法讨论单调区间,对函数()32f x x ax x =++进行求导可以得到导函数()'2321f x x ax =++,观察可以发现,该导函数无法因式分解,故无法确定方程23210x ax ++=是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式2412a ∆=-,若24120a ∆=-<即a <<23210x ax ++=没有实根,即()'0f x >在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=-=即a =,方程23210x ax ++=有两个相等的实根123ax x ==-,即()'0f x ≥在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=->即a a <>,则方程23210x ax ++=有两个不同实根,由求根公式可解得13a x --=,23a x -+=,显然12x x <此时()f x ,()'f x 随x 的变化情况如下:x ()1,x -∞1x ()12,x x 2x ()2,x +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增综上所述,当a ≤≤时,()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当a a <>时,()f x 的单调递增区间为,3a ⎛---∞ ⎪⎝⎭和,3a ⎛⎫-++∞ ⎪ ⎪⎝⎭,单调递减区间为,33a a ⎛---+ ⎝⎭点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出来的两根大小已知,所以不用再讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数中的分类讨论问题
分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”
一、导函数为二项式,并且参数独立成项
例:已知函数
()ln(1)(1)1f x x k x =---+,求函数()f x 的单调区间;
解:(1)'1(),(1)1
f x k x x =->-,所以, 0k ≤当时,'()0;f x ≤0k >当时,由'()0f x >得:11,x k <+所以, 0k ≤当时()()1,f x +∞在上为增函数;
0k >当时1()1,1f x k ⎛⎫+ ⎪⎝⎭在上为增函数;在11,k ⎛⎫++∞ ⎪⎝⎭
上为减函数; 二、导函数为三项式时(主要是二次三次式或变形后为二次三项式的含参讨论)
1、二次项系数引起的分类讨论
例:已知函数1)1(ln )(2+-+=x p x p x f , 当0>p 时,讨论函数)(x f 的单调性。

解: ()f x 的定义域为(0,+∞),()()()x p x p x p x p x f +-=-+=2'
1212, 当
1>p 时,'()f x >0,故()f x 在(0,+∞)单调递增;
当0<p <1时,令'()f x =0,解得()
12--=p p x . 则当()⎪⎪⎭⎫ ⎝⎛
--∈12,0p p x 时,'()f x >0;()⎪⎪⎭
⎫ ⎝⎛∞+--∈,12p p x 时,'()f x <0. 故()f x 在()⎪⎪⎭⎫ ⎝⎛--12,0p p 单调递增,在()⎪⎪⎭
⎫ ⎝⎛∞+--,12p p 单调递减. 2、二次函数对称轴与给定区间引起的分类讨论 例:已知函数322()233f x x ax x ,令()ln(1)3()g x x f x ,若()g x 在 1(,)2
-+∞上单调递增,求实数a 的取值范围. 解:由已知得22()ln(1)3(243)ln(1)24g x x x ax x x ax =++--++=++-,
2144(1)14()4411
x a x a g x x a x x +-+-'∴=+-=++, 又当1(,)2
x ∈-+∞时,恒有10x +>, 设2()44(1)14h x x a x a =+-+-,其对称轴为44182a a x --=-
=, (i) 当
1122
a -≥-,即0a ≥时,应有216(1)16(14)0a a ∆=---≤ 解得:20a -<≤,所以0a =时成立,
(ii) 当1122a -<-,即0a <时,应有1()02h ->即:114(1)1402a a --⨯+-> 解得0a <,
综上:实数a 的取值范围是0a ≤。

3、判别式引起的分类讨论
例:已知函数2()ln f x x x a x =-+,()a R ∈,讨论()f x 在定义域上的单调性。

解:由已知得22()21,(0)a x x a f x x x x x
-+'=-+=>, (1)当180a ∆=-≤,18
a ≥
时,()0f x '≥恒成立,()f x 在(0,)+∞上为增函数. (2)当180a ∆=->,18a <时,
1)108
a <<0>>,()f x 在
上为减函数,()f x 在)+∞上为增函数,
2)当0a <0<,故()f x 在上为减函数,
()f x 在,+∞)上为增函数. 综上,当18
a ≥时,()f x 在(0,)+∞上为增函数;
当)108
a <<时,()f x 在上为减函数,
()f x
在)+∞上为增函数,
当a <0时,
()f x 在(0,
]上为减函数,()f x 在
[, +∞)上为增函数. 4、二次方程根的大小引起的讨论
例:已知函数))(1ln()(2R a x a ax x x f ∈---=,求函数)(x f 的单调区间;
解:1
)22(212)('-+-=---=x a x x x a a x x f , 若0≤a 时,则1)22(2)(,12
2-+-=≤+x a x x x f a >0在(1,+∞)恒成立, 所以)(x f 的增区间(1,+∞). 若122,0>+>a a 则,故当]2
2,1(+∈a x ,01)22(2)('≤-+-=x a x x x f , 当),22[+∞+∈a x 时,01
)22(2)(≥-+-=x a x x x f , 所以a>0时)(x f 的减区间为(22,1+a ),)(x f 的增区间为[),2
2+∞+a . 总之,我们对二次型的讨论本着如下的顺序选择:开口方向→对称轴→判别式(根的个数)→两根大小。

当然,也不可墨守成规,在遇到具体题目时,可适发灵活调整。

例:已知函数2()(1)ln 1f x a x ax =+++.
(1)讨论函数()f x 的单调性;
(2)设a ≤-2,求证:对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|.
解析:(1)f (x )的定义域为(0,+∞),
f ′(x )=a +1x +2ax =2ax 2+a +1x
. 当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.
当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减.
当-1<a <0时,令f ′(x )=0,解得x =-a +12a

则当x ∈时,f ′(x )>
0;当)x ∈+∞时,()0f x '<;
故()f x 在1(0,]2a a +-上单调递增,在1(,)2a a
+-+∞上单调递减. (2)不妨设x 1≥x 2.由于a ≤-2,故f (x )在(0,+∞)上单调减少,
所以|f (x 1)-f (x 2)|≥4|x 1-x 2|等价于
f (x 2)-f (x 1)≥4x 1-4x 2,即f (x 2)+4x 2≥f (x 1)+4x 1.
令g (x )=f (x )+4x ,则
g ′(x )=a +1x +2ax +4=2ax 2+4x +a +1x
. 于是g ′(x )≤-4x 2+4x -1x =-2x -12
x ≤0.
从而g (x )在(0,+∞)上单调减少,故
g (x 1)≤g (x 2),即f (x 1)+4x 1≤f (x 2)+4x 2,
故对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|.。

相关文档
最新文档