开关电源频率提升的极限
开关电源频率设置的依据

开关电源频率设置的依据
开关电源的频率设置通常取决于以下几个因素:
1. 国际标准,在全球范围内,电力系统的频率通常是50Hz或
60Hz。
大多数国家和地区都遵循这些标准,因此,开关电源的频率
设置通常会遵循所在国家或地区的标准电网频率。
2. 应用领域,不同的应用领域可能对频率有不同的要求。
例如,一些应用可能需要更高的频率以减小电子设备的体积和重量,而另
一些应用可能需要更低的频率以降低能量损耗。
因此,开关电源的
频率设置可能会根据具体的应用需求进行调整。
3. 设备兼容性,某些设备对输入电源的频率有特定的要求。
开
关电源的频率设置可能需要与特定设备的要求相匹配,以确保设备
可以正常工作并且不会受到损坏。
4. 环境和成本考虑,在某些情况下,频率设置可能受到环境和
成本考虑的影响。
例如,某些频率可能会更容易实现并且成本更低,因此在制定频率设置时可能会考虑这些因素。
总的来说,开关电源的频率设置的依据主要取决于国际标准、应用领域的要求、设备兼容性以及环境和成本考虑。
综合考虑这些因素,制定合适的频率设置可以确保开关电源在特定应用中能够正常工作并且符合相关的标准和要求。
高频开关电源、电池参数设置

高频开关电源、电池参数设置
高频开关电源、电池主要参数设置
一、技术要求:
1.清楚控制模块进入设置的步骤
2.清楚设置电源参数标准
3.清楚设置电池参数标准
二、参数设置
按设置键“C键”进入设置界面
选择电源参数设置,按“确认”键
输入密码“上上上上左右”进入
浮充电压设置:53.32~54.48V
均充电压设置:55.2~56.4V
维规要求一次下电门限设置值-44V
维规要求二次下电门限设置值-43.2V
交流输入允许电压范围:中间站155~285V
交流输入允许电压范围:通信站380±76V,220±44V
频率上下限:50±10%HZ
根据电池组数选择1组或2组
根据电池容量标称选择容量
均充周期设置:90天
充电限流设置:一般采用0.1C10A
均浮充转换电流设置:一般为电池容量的5%
按“C”键退出后选择设置日历时间
对时间进行设置
全部设置完成后按“C”键退出
选择保存全部设置,按“确定”键保存完成,退回到主界面。
如何为开关电源选择正确的工作频率?

如何为开关电源选择正确的工作频率?电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。
通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。
虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。
接下来,我们使用一款简单的降压电源来描述这些权衡过程。
我们以滤波器组件作为开始。
这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。
另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低。
其次,较高的频率运行通常意味着可以使用较小的组件值。
因此,更高频率运行能够带来极大的成本节约。
图 1 显示的是降压电源频率与体积的关系。
频率为 100 kHz 时,电感占据了电源体积的大部分(深蓝色区域)。
如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。
由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。
如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。
另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。
该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。
另外,电源的半导体部分不会随频率而变化。
这样,由于低频开关,无源器件会占据电源体积的大部分。
当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。
该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。
与半导体相关的损耗主要有两类:传导损耗和开关损耗。
同步降压转换器中的传导损耗与 MOSFET 的裸片面积成反比关系。
MOSFET 面积越大,其电阻和传导损耗就越低。
开关损耗与MOSFET 开关的速度以及 MOSFET 具有多少输入和输出电容有关。
这些都与器件尺寸的大小相关。
大体积器件具有较慢的开关速度以及更多的电容。
开关电源工作频率的原理分析

开关电源工作频率的原理分析开关电源是一种高效稳定的电源供应系统,在许多电子设备中得到广泛应用。
在开关电源的设计和使用过程中,工作频率是一个至关重要的参数。
本文将分析开关电源工作频率的原理,并探讨其对性能的影响。
一、开关电源的基本原理开关电源是通过快速开关管将输入电源切换成高频脉冲信号,然后经过滤波、调整和变换等环节,最终得到稳定的输出电压。
这种切换过程会产生开关频率的信号,即工作频率。
二、工作频率的选择原则1. 效率:开关电源的效率在很大程度上取决于工作频率。
较高的工作频率会导致较低的开关损耗,从而提高整个系统的效率。
2. 尺寸:开关频率高的电源可以采用较小的元件,减小整体体积。
尤其在微型电子设备中,对尺寸的要求较高。
3. 抗干扰能力:工作频率的选择还应考虑系统对外界干扰的抗性。
合适的工作频率可以减小电源对周围环境电磁波的敏感程度,提高系统的抗干扰能力。
三、开关电源工作频率的影响因素1. 电感元件:工作频率越高,电感元件的体积越小。
同时,高频信号会导致电感元件产生更大的功率损耗,因此需要选择工作频率适中的电感元件来平衡体积和损耗的关系。
2. 开关管:开关管具有较大的开关频率响应能力,但频率过高会产生更大的导通压降和开关损耗。
因此,在选择开关管时,需综合考虑频率响应和损耗的权衡。
3. 输出滤波:工作频率的选择还涉及输出滤波电容的大小。
频率过高会导致输出滤波电容变得更小,从而可能引起输出电压波动或噪声。
四、常见的工作频率范围开关电源的工作频率通常分为几个常见的范围,包括:1. 低频范围(20 kHz以下):适用于需要高功率输出和承受重载的应用,如电感加热、电动工具等。
2. 中频范围(20 kHz至100 kHz):适用于一般的电子设备,如计算机、通信设备等。
在这个频率范围内,可以实现较高的效率和尺寸优势。
3. 高频范围(100 kHz以上):适用于追求小型化和高效率的应用,如笔记本电脑、手机等微型电子设备。
开关电源的主要技术指标

开关电源的主要技术指标开关电源的主要技术指标电源是各种电子设备必不可少的重要组成部分,其性能的优劣直接关系到整个系统的安全性和可靠性指标。
开关电源以其低功耗、高效率、小体积等显著优点而深受人们的青睐,并被广泛应于计算机设备、电子仪器、通信设备和家用电器中。
下面将介绍开关电源的主要技术指标。
1. 输入电压范围:当开关电源的输入电压发生变化时,保持输出特性不变的输入电压变化范围。
这个范围越宽,表示电源适应外界的市电变化的能力越强,开关电源的工作范围就越宽。
它和开关电源内部的误差放大器、取样反馈调节电路的增益及占空比调节范围有关。
目前开关电源的输入电压变化范围已经做到90V-270V,可以省去许多电器上的110V/220V转换开关。
2. 电压调整率:电压调整率也称为电压稳定度,是在输出电流不变(即负载不变化),而输入的交流工作电压变化时,输出电压的相对变化量。
此项技术指标用来验证开关电源在最恶劣的电源电压环境下,输出电压的稳定度是否符合需求规格。
3. 电流调整率:电流调整率也称负载调整率,是在输入的交流电压为额定值(比如220VAC),而输出电流从最小值0变到最大值时,输出电压的相对变化量。
此项指标用来验证开关电源适配器在最恶劣的负载环境下,输出电压稳定度是否合乎需求的规格。
4. 输出内阻:输出电压的变化量与输出电流的变化量的比值。
这个比值越小,表示电源输出电压随负载大小的变化越小,稳压性能好。
5. 转换效率:电源输出功率与输入功率的比值。
这个比值越高,表示变化效率高,开关电源的体积越小,可靠性也越高。
目前开关电源的效率可达到90%以上。
6. 输出电压的纹波:由于开关电源的稳压过程是一个不断取样反馈调节的过程,因此在输出的直流电压上会出现一个叠加的波动的纹波电压,即输出的纹波电压。
这个值越小,表示输出特性越好。
纹波有两种表示方法:一是输出纹波电压有效值;二是输出纹波电压的峰峰值。
一般开关电源的规格都要求小于输出直流电压的1%,其频宽为20Hz-20MHz或者其他更高频率,如100MHz等。
开关电源频率与电压关系

开关电源频率与电压关系
举个栗⼦:
开关电源传递能量就像⽤勺⼦舀⽔,磁芯的⼤⼩相当于勺⼦⼤⼩,频率⾼低就是你舀⽔的速度了。
舀⽔速度太快会累死⼈,电源频率太⾼磁芯和管⼦也会受不了发热。
通常在磁芯和管⼦损耗可以承受的情况下尽量取较⾼频率,实际对⽐旧的技术现在的电源频率确实不断提⾼着。
占空⽐可以想象为舀⽔⽤的时间,时间长舀⽔就满⼀点。
通常电源管理IC的频率是固定的,不会存在频率变化。
但是近年能效标准越来越⾼,新型的IC会在待机的时候“间歇震荡”,很像降低了频率但不等同于降低频率。
PWM中占空⽐和输出电压没有直接关系,占空⽐直接关系的是功率。
如果电压降低了但是电流加⼤了,占空⽐不见得是降低的。
在开关管和变压器的参数范围内,频率⾼,效率也⾼,同体积的变压器频率⾼的输出功率会⾼⼀些,⼀般可调的都是调节占空⽐,占空⽐⾼输出功率⼤,但是原件负荷也⼤。
像3842类的电源,调节范围也是可以零起调的,主要限制的辅助电源,如果有单独的⾼压侧辅助电源和低压辅助电源,配合431和运放就可以实现⼤范围调整了,TL494的成品开关电源也有辅助绕组供电的,照样不能⼤范围调整。
不过tl494⼀般⽤的是半桥电路,效率⽐3842⾼很多的。
开关电源频率设置的依据

开关电源频率设置的依据全文共四篇示例,供读者参考第一篇示例:开关电源频率对电源性能和稳定性具有重要影响,通常选择的频率有50Hz、60Hz和400Hz等。
那么怎样确定开关电源的频率呢?下面我们就来一起探讨一下关于开关电源频率设置的依据。
开关电源频率的选择受到电源负载特性的影响。
不同的负载对频率的要求也不同,有些负载对频率要求较高,有些则对频率变化不敏感。
对于一些高精度的电子设备,如医疗设备、工业自动化设备等,通常需要选择较高频率的开关电源,以避免频率变化对设备性能造成影响。
而对于一些一般家用电器,如电视机、冰箱等,对频率的要求相对较低,可以选择一般的50Hz或60Hz频率。
开关电源频率的选择还受到变压器设计的影响。
变压器、尤其是高频变压器的设计与开关电源频率密切相关。
在设计变压器时,需要考虑到频率对铁芯损耗、铜损、开关管的工作频率等因素的影响。
一般来说,开关频率越高,变压器的尺寸和重量也会减小,效率更高。
在选择开关电源频率时,需要综合考虑变压器设计的因素。
开关电源频率的选择还与电源系统的稳定性和抗干扰能力有关。
通常情况下,高频率的开关电源具有更好的抗干扰能力,能够提高系统的稳定性。
因此在一些对稳定性和抗干扰性能要求较高的应用中,如军事装备、航空航天等领域,通常会选择高频率的开关电源。
开关电源频率的选择还受到电网标准的影响。
不同地区的电网标准可能不同,有的地区使用50Hz的电网,有的地区使用60Hz的电网。
在选择开关电源频率时,需要根据所处地区的电网标准来进行调整。
开关电源频率的选择受到多种因素的影响,包括电源负载特性、变压器设计、系统稳定性和抗干扰能力等。
在进行频率选择时,需要综合考虑以上因素,并根据具体应用需求进行选择,以确保系统工作稳定、高效。
希望以上内容能够帮助大家更好地了解开关电源频率设置的依据。
第二篇示例:开关电源是一种将输入电源转换为稳定输出电压的电源设备,其频率设置是影响其工作性能和效率的重要因素之一。
开关电源频率提升的极限

开关电源频率提升的极限1、器件的限制对于一个开关管来说,在实际应用中,不是给个驱动就开,驱动撤掉就关了。
它有开通延退时间(tdon),上升时间(tr),关断延退时间(tdoff),下降时间tf,对应的波形如下:通俗的讲,开关管开通关断不是瞬间完成的,需要一定的时间,开关管本身的开关时间就限制了开关频率的提升。
以答主以前在台达实习,台达用在3kW的逆变器上的一款英飞凌600V的coolmos为例。
看看这些具体的开关时间是多少那么对于这个mos管来说,它的极限开关频率(在这种极限情况下,mos管刚开通就关断)fs=1/(16+12+83+5)ns=8.6MHz ,当然,在实际应用中,由于要调节占空比,不可能让开关管一开通就关断,所以实际的极限频率是远低于8.6MHz的,所以器件本身的开关速度是限制开关频率的一个因素。
2、开关损耗当然,随着器件的进步,开关管开关的速度越来越快,尤其是在低压小功率场合,如果仅考虑器件本身的开关速度,开关频率可以run得非常高,但实际并没有,限制就在开关损耗上面。
下面给出开关管实际开通的时候对应的波形图可以看到,开关管每开通一次,开关管DS的电压(Vds)和流过开关管的电流(Id)会存在交叠时间,从而造成开通损耗,关断亦然。
假设每次开关管每开关一次产生的能量损耗是一定的,记为Esw,那么开关管的开关损耗功率就为Psw=Esw*fs,显然,开关频率越高,开关损耗越大。
5M开关频率下开关损耗比500K要大10倍,这对于重视效率的开关电源来说,显然是不可接受的。
所以,开关损耗是限制开关频率的第二因素。
3、软开关的困难题主提到了软开关,没错,软开关确实是解决开关损耗的有力手段。
而在各种研究软开关的paper上,提出了无数种让人眼花缭乱的软开关方案,似乎软开关能解决一切问题。
但是实际工程应用和理论分析不同,实际工程追求的是低成本,高效率,高可靠性,那些需要添加一堆辅助电路,或者要非常精确控制的软开关方案在实际工程中其实都是不太被看好的,所以即使到现在,在工业界最常应用软开关的拓扑也只要移相全桥和一些谐振的拓扑(比如LLC),至于题主提到的flyback,没错,我也听说过有准谐振的flyback (但没研究过),但即使有类似的方案,对于能不能真正工程应用,题主也需要从我上面提到的几个问题去考量一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源频率提升的极限1、器件的限制对于一个开关管来说,在实际应用中,不是给个驱动就开,驱动撤掉就关了。
它有开通延迟时间(tdon),上升时间(tr),关断延迟时间(tdoff),下降时间tf,对应的波形如下:通俗的讲,开关管开通关断不是瞬间完成的,需要一定的时间,开关管本身的开关时间就限制了开关频率的提升。
以答主以前在台达实习,台达用在3kW的逆变器上的一款英飞凌600V的coolmos为例。
看看这些具体的开关时间是多少那么对于这个mos管来说,它的极限开关频率(在这种极限情况下,mos管刚开通就关断)fs=1/(16+12+83+5)ns=8.6MHz,当然,在实际应用中,由于要调节占空比,不可能让开关管一开通就关断,所以实际的极限频率是远低于8.6MHz的,所以器件本身的开关速度是限制开关频率的一个因素。
2、开关损耗当然,随着器件的进步,开关管开关的速度越来越快,尤其是在低压小功率场合,如果仅考虑器件本身的开关速度,开关频率可以run得非常高,但实际并没有,限制就在开关损耗上面。
下面给出开关管实际开通的时候对应的波形图可以看到,开关管每开通一次,开关管DS的电压(Vds)和流过开关管的电流(Id)会存在交叠时间,从而造成开通损耗,关断亦然。
假设每次开关管每开关一次产生的能量损耗是一定的,记为Esw,那么开关管的开关损耗功率就为Psw=Esw*fs,显然,开关频率越高,开关损耗越大。
5M开关频率下开关损耗比500K要大10倍,这对于重视效率的开关电源来说,显然是不可接受的。
所以,开关损耗是限制开关频率的第二因素。
3、软开关的困难题主提到了软开关,没错,软开关确实是解决开关损耗的有力手段。
而在各种研究软开关的paper上,提出了无数种让人眼花缭乱的软开关方案,似乎软开关能解决一切问题。
但是实际工程应用和理论分析不同,实际工程追求的是低成本,高效率,高可靠性,那些需要添加一堆辅助电路,或者要非常精确控制的软开关方案在实际工程中其实都是不太被看好的,所以即使到现在,在工业界最常应用软开关的拓扑也只要移相全桥和一些谐振的拓扑(比如LLC),至于题主提到的flyback,没错,我也听说过有准谐振的flyback(但没研究过),但即使有类似的方案,对于能不能真正工程应用,题主也需要从我上面提到的几个问题去考量一下。
ps2 对于小功率高频电源,现在class E非常火,我觉得它火的原因就是电路简单,所以才能被工业界接受,题主有兴趣可以去研究下。
4、高频化带来的一系列问题假设上面的一系列问题都解决了,真正做到高频化还需要解决一系列工程上的问题,比如在高频下,电路的寄生参数往往会严重影响电源的性能(如变压器原副边的寄生电容,变压器的漏感,PCB布线之间的寄生电感和寄生电容等等),造成一系列电压电流波形震荡和EMI的问题,如何消除寄生参数的影响,甚至进一步地,如何利用寄生参数为电路服务,都是有待研究的问题。
ps,对于高频化应用的实际工程应用的问题,还有很重要的一块是高频驱动电路的设计,@桂涵东实验室这块做得比较好,可以邀请他来回答下。
当然,随着新器件(SiC, GaN)的兴起,开关电源高频化的研究方兴未艾,开关电源的高频化一定是趋势,而且有望给电力电子带来又一次革命。
让我们拭目以待。
类似于在微电子产业中著名的摩尔定律,从1970年开始,电力电子变换器的功率密度大约每十年增加一倍。
这和功率半导体发展的轨迹密切相关,受益于硅器件封装和沟道结构不断的发展,开关频率已经推到了兆赫兹级别,被动元件的体积不断减小,变换器提高了功率密度,但是高开关频率带来的高开关损耗、高磁芯损耗使得整个系统损耗大幅增加,散热系统也随之增加,所以现在阻碍电力电子变换器功率密度进一步提高的技术屏障在散热系统和高频电磁设计,以及先进的功率集成和封装技术。
为了维持这个功率密度的发展速度,很多电力电子前沿研究已经转移到散热基板研究,被动元件集成等方面的研究,所以题主你明白我的意思了吗?就算你现在把开关频率提到很高,功率密度也是被这些因素制约的。
下面我稍微展开来说下:1.开关损耗开关损耗确实是限制因素之一,但是氮化镓器件的推出已经让开关损耗在1-3Mhz这个范围内变得可以接受,我下面附一张图片,这是三家公司推出的650V的GaN device,可以看出最好的管子开通损耗已经4uJ,关断损耗在8uJ(测试条件在400V, 12A),还有一家叫RFMD的公司,其650V的管子基本可以和Transphorm平齐。
而同电压电流等级的硅器件很多管子都还在以mJ为单位。
下面在贴出一张低压氮化镓和硅器件的比较,可以看出,总体来说,驱动损耗也会变得很小。
还有一点很重要,宽禁带半导体的工作结温很高,以目前的工艺来说,Sic的结温可以工作到200°,氮化镓可以工作到150°。
而硅器件呢,我觉得最多100°就不得了。
结温高,意味着相同损耗下,需要给宽禁带半导体设计的散热器表面积要小很多,何况宽禁带半导体的损耗本身还小。
但是开关频率的提高,往往只能使用QFN或者其他一些表贴器件减少封装寄生参数,这给散热系统带来了极大的挑战,原来To封装可以加散热器,减少到空气对流的热阻,而现在不行了。
所以如果想在高频下工作,第一问题就是解决散热,把高开关损耗导出去,尤其是在kW级别,散热系统非常重要。
现在学界解决这个问题的手段偏向于把器件做成独立封装,采用一种叫DCB的技术,用陶瓷基板散热,器件从陶瓷上表面到下表面的热阻基本为0.4°C/W(有些人也用metal core PCB, 但是要加绝缘层,热阻一般在4°C/W),而FR4为20°C/W。
总结一下,半导体不断在发展,开关损耗也在显著下降,而封装越来越小,现在来看,我们要做的是怎么把那些热量从那么小的表贴封装下散出去。
2.EMI和干扰在我接触EMI前,很多老工程师以他们有丰富的EMI调试经验来鄙视我们这些菜鸟,搞的我一直以为EMI是门玄学,也有很多人动不动就拿EMI出来吓人。
我想说EMI确实很难理解,很难有精确的纸面设计,但是通过研究我们还是能知道大概趋势指导设计,而不是一些工程嘴里完全靠trial and error的流程。
我先给出结论,EMI确实和开关频率不成线性关系,某些开关频率下,EMI滤波器的转折频率较高,但是总体趋势而言,是开关频率越高,EMI体积越小!我知道很多人开始喷我了,怎么可能,di/dt和dv/dt都大了,怎么可能EMI滤波体积还小了。
我想说一句,共模和差模滤波器的没有区别,相同的截止频率下,高频的衰减更大!就算你高频下共模噪声越大,但是你的记住,这个频率下LC滤波器的衰减更大,想想幅频曲线吧。
为了说明这个结论,我给出一些定量分析结果。
这些EMI分析均基于AC/DC三相整流,拓扑为维也纳整流。
我分别给出了1Mhz和500Khz的共模噪声,可以看出,500khz共模滤波器需要的截止频率为19.2kHz,1MHz为31.2kHz。
这张图给出了不同频率下共模和差模滤波器转折频率的关系,可以看出,一些低频点EMI滤波器体现出了非常好的特性。
例如70Khz,140Khz。
而这两个开关频率是工业界常用的两个开关频率,非常讨巧,因为EMI噪声测试是150KHz到30MHz。
不过这个也与拓扑有关。
以上数据均基于仿真,虽然不能精确的反应EMI噪声的大小,但是趋势肯定是正确的。
说了这么多,我只想表明,开关频率的选取相当有学问。
如果要以高功率密度为设计指标,开关频率并不是越高越好,而是有一个最佳转折点。
下面2张图给出了维也纳整流器和BUCK-type整流器的功率密度趋势,可以看出,最佳功率密度点不是一个开关频率。
对那些拍着脑瓜选开关频率,解决EMI问题并且鄙视过我的老工程师,我还是怀有很大敬意的,但是我想说的是,如果真正想设计一台最高功率密度的变换器,详细的考证是值得的,还不是单纯依靠经验,况且经验背后也是一定有理论支持。
我不禁问个问题,都有EMI滤波器,EMI噪声都符合标准,为啥高频干扰大。
难道大家在实际工程遇到高频干扰是个假象?不是的,举1个非常简单的例子,剩下的自己思考吧。
在输入电压较高的场合中,一般开关管驱动的都需要隔离。
我们知道隔离后一端的地一般要接到悬浮开关管的源端,一般这一点的电平是跳变得,以氮化镓晶体管为例,这点电压变化率可以达到140kV/us。
而隔离芯片前一端的地是与控制地连接的,你随便看看隔离模块电源的手册,原副边耦合的寄生电容一般在60pF左右,也是就说在高速开关瞬间,会产生大约6A的电流从副边的地通过电容耦合到原边,原边的地电平肯定瞬间产生尖峰,整个控制系统产生强烈的干扰。
所以做高频的时候,隔离电源的地线千万不要平行的铺在2层PCB中,干扰效果会更加强烈。
同时选隔离芯片的时候也需要注意一个参数叫做CM transient immunity(肯定会给的),这个参数最好大于开关瞬间,桥臂中点电平的变化速率。
光耦隔离这个参数一般在30kV/us,磁耦在35kV/us,电容耦合在50kV/us(是不是绝望了,都比氮化镓低,硅器件一般在10kV/us,Sic 30kV/us)。
还有很多细节可以引起干扰,不过真的不是EMI噪声做的孽。
关于高频磁芯设计,我是真的写不动了,哪天有空写一下。
我先简单的把以上内容总结一下:1.不是开关频率越高,功率密度就越高,目前这个阶段来说真正阻碍功率密度提高的是散热系统和电磁设计(包括EMI滤波器和变压器)和功率集成技术。
2.慎重选择开关频率,开关频率会极大的影响整个变化器的功率密度,而且针对不同器件,拓扑,最佳的开关频率是变化的。
3.高频确实产生很多很难解决的干扰问题,往往要找到干扰回路,然后采取一些措施。
4.为了继续维持电力电子变换器功率密度的增长趋势,高频肯定是趋势。
只是针对高频设计的电力电子技术很不成熟,相关配套芯片没有达到要求,一些高频的电磁设计理论不完善和精确,使用有限元软件分析将大大增加开发周期。