滑块左右运动方案1
滑块动作原理及拨动方式

滑块的动作原理及拔动方式
一‧滑块的动作原理
是利用成型的开模运动或顶出作用力,使
斜撑梢(拔块)与滑块产生相对运动趋势,使滑块沿
开模方向及水平方向的两种运动形式,使之脱离
倒勾,右图为斜撑梢的动作原理及设计要点:
注:
β=α+2°~3°(防止合模产生干涉以及开
模减少磨擦)
α≦25°(α为斜撑销倾斜角度)
L=1.5D (L为配合长度)
S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾)
S=L1xsina-δ/cosα(式中α为斜撑角度, δ为斜撑梢与滑块间的间隙,L1
为斜撑梢在滑块内的垂直距离)
二‧拔动方式
1.斜撑梢及锁紧方式
2.拔块(弯梢)及销紧方式。
物理一轮复习第3章牛顿运动定律微专题4动力学中的“木板_滑块”和“传送带”模型教案

微专题四动力学中的“木板-滑块”和“传送带”模型动力学中“木板-滑块”模型1.模型分析模型概述(1)滑块、滑板是上下叠放的,分别在各自所受力的作用下运动,且在相互的摩擦力作用下相对滑动.(2)滑块相对滑板从一端运动到另一端,若两者同向运动,位移之差等于板长;若反向运动,位移之和等于板长.(3)一般两者速度相等为“临界点”,要判定临界速度之后两者的运动形式。
常见情形滑板获得一初速度v0,则板块同向运动,两者加速度不同,x板>x块,Δx=x板-x块,最后分离或相对静止滑块获得一初速度v0,则板块同向运动,两者加速度不同,x板<x块,Δx=x块-x板,最后分离或相对静止开始时板块运动方向相反,两者加速度不同,最后分离滑板或滑块受到拉力作用,要判断两者是否有相对运或相对静止,Δx=x块+x板动,以及滑板与地面是否有相对运动2。
常见临界判断(1)滑块恰好不滑离木板的条件:滑块运动到木板的一端时,滑块与木板的速度相等.(2)木板最短的条件:当滑块与木板的速度相等时滑块滑到木板的一端.(3)滑块与木板恰好不发生相对滑动的条件:滑块与木板间的摩擦力为最大静摩擦力,且二者加速度相同。
[典例1]一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4。
5 m,如图(a)所示。
t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。
已知碰撞后1 s时间内小物块的v。
t图线如图(b)所示。
木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2。
求:图(a)图(b)(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.[大题拆分]第一步:分析研究对象模型.设小物块和木板的质量分别为m和M。
2024届高考物理一轮复习:实验:探究向心力大小与半径、角速度、质量的关系

第四章曲线运动实验:探究向心力大小与半径、角速度、质量的关系【考点预测】1.研究向心力大小与半径、角速度、质量的关系的目的、原理、器材2.研究向心力大小与半径、角速度、质量的关系的步骤、数据处理3. 研究向心力大小与半径、角速度、质量的关系的注意事项、误差分析【方法技巧与总结】探究方案一感受向心力1.实验原理如图1所示,在绳子的一端拴一个小沙袋(或其他小物体),另一端握在手中.将手举过头顶,使沙袋在水平面内做匀速圆周运动,此时沙袋所受的向心力近似等于手通过绳对沙袋的拉力.图12.实验步骤(1)在小物体的质量和角速度不变的条件下,改变小物体做圆周运动的半径进行实验,比较向心力与半径的关系.(2)在小物体的质量和做圆周运动的半径不变的条件下,改变小物体的角速度进行实验,比较向心力与角速度的关系.(3)换用不同质量的小物体,在角速度和半径不变的条件下,重复上述操作,比较向心力与质量的关系.3.实验结论:半径越大,角速度越大,质量越大,向心力越大.探究方案二用向心力演示器定量探究1.实验思路本实验探究了向心力与多个物理量之间的关系,因而实验方法采用了控制变量法,如图所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动,此时小球向外挤压挡板,挡板对小球有一个向内的(指向圆周运动圆心)的弹力作为小球做匀速圆周运动的向心力,可以通过标尺上露出的红白相间等分标记,粗略计算出两球所需向心力的比值.在实验过程中可以通过两个小球同时做圆周运动对照,分别分析下列情形:(1)在质量、半径一定的情况下,探究向心力大小与角速度的关系.(2)在质量、角速度一定的情况下,探究向心力大小与半径的关系.(3)在半径、角速度一定的情况下,探究向心力大小与质量的关系.2.实验器材向心力演示器、质量不等的小球.3.实验过程(1)分别将两个质量相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同即圆周运动半径相同.将皮带放置在适当位置使两转盘转动,记录不同角速度下的向心力大小(格数).(2)分别将两个质量相等的小球放在实验仪器的长槽和短槽两个小槽中,将皮带放置在适当位置使两转盘转动角速度相等、小球到转轴(即圆心)距离不同即圆周运动半径不等,记录不同半径的向心力大小(格数).(3)分别将两个质量不相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同即圆周运动半径相等,将皮带放置在适当位置使两转盘转动角速度相等,记录不同质量下的向心力大小(格数).4.数据处理分别作出F n-ω2、F n-r、F n-m的图像,分析向心力大小与角速度、半径、质量之间的关系,并得出结论.5.注意事项摇动手柄时应力求缓慢加速,注意观察其中一个标尺的格数.达到预定格数时,即保持转速恒定,观察并记录其余读数.【题型归纳目录】题型一:教材原型实验题型二:探索创新实验题型三:光电门法题型四:传感器法【题型一】教材原型实验【典型例题】例1.如图甲所示是“探究向心力的大小F与质量m、角速度ω和半径r之间的关系”的实验装置。
精选高中物理滑块模型教案

精选高中物理滑块模型教案
学科:物理
年级:高中
教学内容:滑块模型
教学目标:学生能够理解滑块模型的基本原理和运用,掌握相关公式和计算方法。
教学重点和难点:掌握滑块模型的运用,理解相关物理概念。
教学方式:讲述、实验、讨论、解题
教具准备:滑块、斜面、测量工具、实验仪器
教学内容与步骤:
一、引入:通过一个例子介绍滑块模型的应用,引出本节课的主题。
二、学习滑块模型的基本原理和公式,包括滑块在斜面上运动的相关理论知识。
三、进行实验,让学生亲自操作滑块并观察其运动规律,验证理论公式。
四、讨论和解答问题:学生可以根据实验结果和理论知识进行讨论,解答相关问题。
五、作业:布置相关练习,巩固学生对滑块模型的理解和运用。
教学反馈:通过作业的批改和课堂讨论,检查学生是否掌握了滑块模型的相关知识。
教学延伸:学生可以通过探究更复杂的问题或实验,拓展滑块模型的应用领域。
这样一份高中物理滑块模型教案,希望对您有所帮助。
祝教学顺利!。
2024届高考一轮复习物理课件(新教材鲁科版):传送带模型和“滑块—木板”模型

(2)小包裹通过传送带所需的时间t. 答案 4.5 s
根据(1)可知小包裹开始阶段在传送带上做匀减速直线运动, 用时 t1=v2-a v1=1.60-.40.6 s=2.5 s 在传送带上滑动的距离为 x1=v1+2 v2t1=0.6+2 1.6×2.5 m=2.75 m 共速后,匀速运动的时间为 t2=L-v1x1=3.950-.62.75 s=2 s,
“滑块—木板”模型
1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动, 且滑块和木板在摩擦力的作用下发生相对滑动. 2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块 和木板同向运动时,位移之差Δs=s1-s2=L(板长);滑块和木板反向运 动时,位移大小之和s2+s1=L.
所以小包裹通过传送带所需的时间为t=t1+t2=4.5 s.
考向3 传送带中的动力学图像
例3 (2023·福建省长汀县第一中学月考)如图所示,倾 角为θ的足够长传送带沿顺时针方向匀速转动,转动速 度大小为v1,一个物块从传送带底端以初速度大小v2(v2 >v1)上滑,同时物块受到平行于传送带向上的恒力F作用,物块与传送带 间的动摩擦因数μ=tan θ,最大静摩擦力等于滑动摩擦力,则物块运动 的v-t图像不可能是
小包裹的初速度v2大于传送带的速度v1,所以开 始时小包裹受到的传送带的摩擦力沿传送带向上, 因为小包裹所受滑动摩擦力大于重力沿传送带方 向上的分力,即μmgcos θ>mgsin θ,所以小包裹 与传送带共速后做匀速直线运动至传送带底端,根据牛顿第二定律 可知μmgcos θ-mgsin θ=ma,解得a=0.4 m/s2
传送带足够长
一直加速
先加速后匀速
v0<v时,一直加速
物理实验中使用滑块进行运动学分析的技巧与数据处理方法

物理实验中使用滑块进行运动学分析的技巧与数据处理方法引言物理实验中,滑块是一种经常被使用的实验工具。
滑块的运动学分析对于研究力学问题有着重要的意义。
本文将介绍物理实验中使用滑块进行运动学分析的技巧与数据处理方法。
一、实验准备在开始滑块实验之前,首先需要准备一些实验器材。
这些器材包括滑块、光电门、光电计以及一些辅助工具。
滑块的质量、形状和材质等因素将直接影响实验结果,因此需要选择合适的滑块。
而光电门和光电计则用于测量滑块的位置和时间等参数。
二、实验操作1. 简单直线运动实验最基本的实验是研究滑块在水平台面上的简单直线运动。
首先将滑块放置在光电轨道上,并通过光电门记录滑块的位置和时间。
通过多次实验,取得滑块的不同位置和时间数据,可以绘制出滑块的位置-时间图像。
根据位置-时间图像可以计算滑块的速度和加速度。
此外,还可以通过改变滑块的质量或者给滑块施加不同的力来观察滑块的运动变化。
2. 斜面运动实验接下来,可以对滑块进行斜面运动实验。
通过改变斜面的倾角或者给滑块施加不同的力,观察滑块在斜面上的运动情况。
同样地,可以利用光电轨道测量滑块的位置和时间,然后绘制出相应的位置-时间图像。
据此,可以分析滑块在斜面上的速度和加速度等参数,并与简单直线运动的实验结果进行对比。
三、数据处理在进行滑块实验时,必须进行数据处理来得出可靠的结论。
1. 数据处理方法首先需要对滑块的位置-时间图像进行数据处理。
可以利用电脑或者数学软件来拟合数据点,得到滑块的速度-时间和加速度-时间图像。
通过分析速度和加速度的变化趋势,我们可以得出滑块的运动规律。
2. 错误分析在数据处理过程中,需要对实验误差进行分析。
误差来源包括实验仪器的精度、实验操作的不确定性以及环境因素的影响等。
通过控制实验条件和合理估计误差范围,可以提高实验结果的准确性,并进行相应的误差分析。
结论物理实验中使用滑块进行运动学分析是一种常见而重要的实验方法。
通过分析滑块的位置和时间数据,我们可以得到滑块的速度和加速度等参数,并研究滑块在不同条件下的运动规律。
专题 滑块—木板模型(板块模型)(课件)高中物理课件(人教版2019必修第一册)
(1)B被敲击后的瞬间,A、B的加速度大小;
(2)A最终停在B上的位置距B右端的距离;
【答案】(1)2m/s2 4m/s2 ;
(2)3m;
(3)2.04m
【详解】(1)以向右为正方向, 被敲击后的瞬间, 、 的加速度分别为
1
=
=
−
−
1
= 2m/s2
2(
+
)
=− 4m/s2
突出---独立性、规律性、关联性
抓住---两个加速度
两个位移
三个关系
01
知识梳理
板块模型
1.概念:一个物体在另一个物体上发生相对滑动,两者之间有相对运动。
问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一
定的关系。
2.模型的特点:
滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板
当 F>(
+
)
后,A、B 分别做加速运动,AB 间滑动摩擦力为
= μmg
M
【例题】如图所示mA=1kg,mB=2 kg,A、B间动摩擦因数是0.5,水平面光滑。用10 N
10
N
水平力F拉B时,A、B间的摩擦力是_________,
用20 N水平力F拉B时,A、B间的摩
3
5N
擦力是_____。(g取10
若使A、B不发生相对运动,求F的最大值。
解析:滑块与木板发生相对运动时,它们之间的摩擦力变为滑动摩擦力f=umAg=12 N。
此时B加速度最大为
F=(mA+mB)
=
=6
Τ 2 ,滑块和木板发生相对滑动的临界值为
2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题46验证动量守恒定律实验(含详解)
【误差分析】
1.系统误差
主要来源于装置本身是否符合要求,即:
(1)碰撞是否为一维碰撞。
(2)实验是否满足动量守恒的条件:如气垫导轨是否水平,两摆球是否等大,长木板实验是否平衡掉摩擦力。
2.偶然误差
主要来源于质量m和速度v的测量。
(3)实验结论为:在误差允许的范围内,______。
2.(2022湖北十堰四模)某学习小组利用如图甲所示的装置验证动量守恒定律。挡板左侧从左到右依次固定复写纸、白纸,白纸上的O点与轨道末端的B点等高,入射小球1、被碰小球2的半径相同,质量分别为 、 。主要实验步骤如下:
①将球1从斜槽上S处由静止释放,球1从轨道末端B飞出后打到挡板上,多次从S处由静止释放球1;
①实验中,直接测定小球碰撞前后的速度是不容易的。但是,可以通过仅测量___________(填选项前的符号)间接地解决这个问题。
A.小球开始释放的高度h
B.小球抛出点距地面的高度H
C.小球平抛运动的水平射程
②图乙中O点是小球抛出点在地面上的垂直投影。实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛水平射程 。然后,把被碰小球m2静置于水平轨道末端,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复。接下来要完成的必要步骤是___________。(填选项前的符号)
接下来要完成的必要步骤是(填选项的符号)
A.用天平测量两个小球的质量 、
B.测量小球 开始释放高度h
C.测量抛出点距地面的高度h
D.分别找到 相碰后平均落地点的位置M、N
E.测量平抛射程OM,ON
③若两球相碰前后的动量守恒,其表达式可表示为(用②中测量的量表示);
滑块木板模型(原卷版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习
动量守恒的十种模型解读和针对性训练滑块木板模型模型解读1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能。
(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大。
3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统。
(2)求时间:根据动量定理求解,研究对象为一个物体。
(3)求系统产生的内能或相对位移:根据能量守恒定律Q=fΔx或Q=E初-E末,研究对象为一个系统。
【方法归纳】. “子弹打木块”(“滑块—木板”)模型,采用动量守恒定律、动能定理或能量守恒定律列方程解答。
滑块木板模型的位移关系:滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,二者位移之差等于板长。
若滑块和木板反向运动,二者位移之和等于板长。
【典例精析】【典例】(2024·广东广州校考)如图,长为L的矩形长木板静置于光滑水平面上,一质量为m 的滑块以水平向右的初速度v0滑上木板左端。
若木板固定,则滑块离开木板时的速度大小为v03;若木板不固定,则滑块恰好不离开木板。
滑块可视为质点,重力加速度大小为g。
求:(1)滑块与木板间的动摩擦因数μ;(2)木板的质量M ;(3)两种情况下,滑块从木板左端滑到右端的过程中,摩擦力对滑块的冲量大小之比I 1∶I 2。
【针对性训练】1.. (2024年5月武汉三模)一块质量为M 、长为l 的长木板A 静止放在光滑的水平面上,质量为m 的物体B (可视为质点)以初速度v 0从左端滑上长木板 A 的上表面并从右端滑下,该过程中,物体B 的动能减少量为,长木板A 的动能增加量为,A 、B 间因摩擦产生的热量为Q ,下列说法正确的是( )A. A 、B 组成的系统动量、机械能均守恒B. ,,Q 的值可能为,,C. ,,Q 的值可能为,,D. 若增大v 0和长木板A 的质量M ,B 一定会从长木板A 的右端滑下,且Q 将增大.2 .如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板质量大于物块质量,t =0时两者从图中位置以相同的水平速度v 0向右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物块一直未离开木板,则关于物块运动的速度v 随时间t 变化的图像可能正确的是( )3.(10分)(2024年4月安徽安庆示范高中联考)如图所示,一质量为M =4kg 的木板静止在水平面上,木板上距离其左端点为L =25m 处放置一个质量为m =1kg 的物块(视为质点),物块与木板之间的动摩擦因数为μ1=0.3。
实验:验证动量守恒定律课件-高二物理人教版(2019)选择性必修第一册
(1)调节导轨水平。
(2)测得两滑块的质量分别为 0.510kg 和 0.304kg。要使碰撞后两滑块运动方向相反,
应选取质量为——————kg的滑块作为 A。
(3)调节 B 的位置,使得 A 与 B 接触时,A 的左端到左边挡板的距离 s1 与B的右端到右
认为滑块A与滑块B在导轨上的碰撞为弹性碰撞。
1
2
3
4
5
t1/s
0.49
0.67
1.01
1.22
1.39
t2/s
0.15
0.21
0.33
0.40
0.46
k = v1/v2
0.31
k2
0.33
0.33
0.33
2. 某同学用如图所示的装置做“验证动量守恒定律”的实验.先将 a 球从斜槽轨道上某固
定点由静止开始滚下,在水平地面上的记录纸上留下压痕,重复10次,再把同样大小的 b
④选质量较大的小球作为入射小球(让两个小球碰撞后都向前运动);
⑤实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.
实验方案四
1. (22年甲卷23题)利用图示的实验装置对碰撞过程进行研究。让质量为 m1 的滑块 A
与质量为 m2的静止滑块 B 在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后 A
(6) 验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后
代入 m1·OP=m1·OM+m2·ON,看在误差允许的范围内动量守恒定律是否成立.
(7) 整理:将实验器材放回原处.
实验方案三
实验注意事项:
①斜槽末端的切线必须水平;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑块左右运动方案1:曲柄滑块机构
满足运动变换,加压时间较短,平稳性一般,磨损较小,机构复杂度一般,加工难度一般,成本一般,效率高
滑块左右运动方案2:槽轮滑块机构满足运动变换,加压时间较短,工作平稳性一般,但磨损剧烈,效率较高,较复杂,装配容易,成本一般,运动尺寸较小
滑块左右运动方案3:外凸轮机构满足运动变换,无増力,加压时间长,工作时又冲击,磨损剧烈,效率较高,装配难度比较复杂,加工较难,成本较高,运动尺寸大
-
6
-
滑块左右运动方案4:内凸轮机构满足运动变换,无增力,加压时间长,有冲击,效率较高,较复杂,加工装配较难,成本高,运动尺寸大。
偏滑块左右运动方案5:偏心轮机构满足运动变换,无増力,加压时间长,无冲击,磨损剧烈,效率较高,复杂性一般,加工装配难度一般,成本一般,运动尺寸大
滑块左右运动方案6:三角正弦机构满足运动变换,无增力,加压时间较短,传动角较小,稳定性一般,效率高,结构简单,容易加工装配,成本低,运动尺寸大。
7 滑块左右运动方案7:连杆复合机构满足运动变换,较强的增力,加压时间短,传动角大,工作平稳性一般,磨损一般,效率高,结构简单,加工装配难,成本一般,运动尺寸小。