2017年春季学期新版新人教版八年级数学下学期19.1.1、变量与函数学案1
人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计一. 教材分析人教版数学八年级下册《19.1.1 变量与函数》是初中数学的重要内容,主要让学生了解变量的概念,以及变量与函数的关系。
本节课通过具体的实例,引导学生理解函数的概念,并能够运用函数解决实际问题。
教材内容由浅入深,循序渐进,符合学生的认知发展规律。
二. 学情分析八年级的学生已经掌握了代数的基础知识,对数学概念有一定的理解能力。
但是,对于函数的概念和意义,以及如何运用函数解决实际问题,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生通过实例理解函数的概念,培养学生的动手操作能力和解决问题的能力。
三. 教学目标1.知识与技能:使学生理解变量与函数的概念,能够识别函数关系,并运用函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生提出问题、分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和创新精神。
四. 教学重难点1.重点:理解变量与函数的概念,掌握函数的表示方法。
2.难点:函数概念的理解,以及如何运用函数解决实际问题。
五. 教学方法采用问题驱动法、合作学习法和情境教学法。
通过设置问题情境,引导学生观察、操作、思考,培养学生的动手操作能力和解决问题的能力。
同时,鼓励学生相互讨论、交流,培养学生的团队协作意识和创新精神。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学问题和活动。
2.学生准备:预习教材,了解变量与函数的基本概念。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化,引出变量与函数的概念。
提问:什么是变量?什么是函数?引导学生思考并回答。
2.呈现(15分钟)呈现教材中的例题和练习题,让学生观察、分析,引导学生发现变量与函数之间的关系。
提问:如何判断两个变量之间存在函数关系?如何表示函数关系?3.操练(15分钟)学生分组讨论,选取一个实例,尝试用函数表示变量之间的关系。
人教版数学八年级下册19.1.1变量与函数教案

(3)运用函数解决实际问题:能够运用所学函数知识分析并解决简单的实际问题,如面积、距离、成本等问题。
另外,学生在小组讨论环节表现出了很高的热情,他们能够将所学的变量与函数知识应用到实际问题中,提出了很多有创意的想法。这让我感到很欣慰,也证明了我采取的小组讨论教学方法是有效的。在以后的教学中,我会继续采用这种形式,激发学生的积极性。
然而,我也注意到,在小组讨论过程中,有些学生发言不够积极,可能是由于他们对问题不够理解或者自信心不足。为了解决这个问题,我计划在课堂中增加一些鼓励性评价,同时针对这部分学生进行个别辅导,帮助他们树立信心,积极参与到课堂讨论中来。
(4)识别和建立函数模型:在解决实际问题时,学生可能不知道如何建立函数模型。
突破方法:教授常见函数模型(线性函数、二次函数等)的识别方法,并通过案例分析,让学生模仿并学会建立模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《变量与函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个量相互依赖的情况?”(如气温与穿衣量的关系)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索变量与函数的奥秘。
核心素养目标与课本紧密关联,注重培养学生对变量与函数概念的理解,提高学生在实际情境中运用函数知识解决问题的能力,全面促进学生的数学学科素养发展。
三、教学难点与重点
1.教学重点
(1)变量与函数的定义:准确理解变量与常量的区别,掌握函数的定义及其表示方法(列表法、解析式法、图象法)。
人教版数学八年级下册19.1.1《变量与函数》教学设计

课前准备活动:每位同学都注意留心身边事物的运动变化过程,至少记录三个实例,以备上课使用。
【教材分析】
教
学
目
标
知识
技能
1.理解变量、常量的概念以及相互之间的关系,能指出一个变化过程中的变量与常量.
2.能找出变量之间的简单关系,列出简单关系式.
过程
方法
经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.逐步感知变量间的关系.
根据上面的描述,指出其中的变量和常量,
2,放学后,你步行回家的平均速度是80米/分钟,离开学校的路程是s米,离开学校的时间是t分钟。根据以上描述,指出变量与常量并完成下表
t/分钟
1
2
3
4
...
S/米
...
请用时间t表示路程s_______。
教师出示题目,学生分节完成。首先小组内交流,然后统一展示。
补
偿
提
高
如图,在长方形ABCD中,当点P在边AD(不包括A、D两点)上从A向D移动时,有些线段的长度和三角形的面积始终保持不变,而有些则发生了变化。
(1)试分别写出长度变和不变的线段,面积变和不变的三角形。
(2)若AP=x,BC=8,AB=4,求 和
作
业
设
计
作业:
课本P72练习题
教师布置作业,提出具体要求
问题1:找出乌龟追兔子这个过程中所涉及的量。
问题2:请同学们比较一下,乌龟追兔子的过程中,距离s和时间t这两个量与乌龟的速度v有什么不同的地方吗?
问题3:请大家按照刚才的步骤,(先找出变化过程中的量,再判断一下这些量有哪些在发生变化,又有哪些是不变的。)来研究一下刚才大家举出的实例。
人教版数学八年级下册19.1.1《变量与函数》教学设计

-利用生活实例或数学问题,激发学生的好奇心,引导他们观察变量之间的变化规律。
-设计系列问题,逐步引导学生深入探讨函数的定义和性质。
2.运用合作学习、讨论交流的方法,提高学生的思维品质和解决问题的能力。
-组织学生进行小组合作,鼓励他们发表自己的观点,倾听他人的意见,共同解决问题。
-在下次课堂上,每个小组分享自己的解题过程和心得体会,促进同学之间的交流和学习。
5.思考与拓展:
-思考函数在生活中的应用,如天气预报、股票市场分析等,并简述函数在这些领域中的作用。
-探索函数的其他性质,如周期性、对称性等,并尝试举出相应的实际例子。
接着,我会引导学生思考:“如果我们想要预测未来某个时间点的气温,该怎么做呢?”从而引出变量和函数的概念。学生会发现,通过观察已经收集到的数据,可以尝试寻找气温与时间之间的关系,进而预测未来气温。这样,学生便对函数的概念有了初步的认识,为接下来的学习打下基础。
(二)讲授新知
在讲授新知环节,我会从以下几个方面展开:
-对于基础薄弱的学生,通过个别辅导和小组互助,帮助他们克服学习难点。
3.探究式学习,培养学生的思维能力
-采用问题驱动的教学方法,引导学生通过观察、实验、推理等过程,自主探究函数的定义和性质。
-设计开放性问题,鼓励学生多角度思考,培养他们的创新意识和解决问题的能力。
4.信息技术辅助,提高教学效果
-利用数学软件和多媒体工具,直观演示函数图象和变化过程,帮助学生形象地理解函数概念。
-通过网络资源,拓展学生的学习视野,使他们能够接触到更多与函数相关的实际应用。
5.实践活动,增强学生的应用能力
-安排课后实践活动,让学生在实际操作中运用函数知识,解决现实问题。
八年级数学下册 19.1.1 变量与函数导学案 (新版)新人教版

第十九章一次函数19.1 函数19.1.1 变量与函数1.认识变量、常量.2.学会用一个变量的代数式表示另一个变量.3.认识变量中的自变量与函数.4.进一步理解掌握确定函数关系式.5.会确定自变量的取值范围.自学指导:阅读教材第71页至74页,独立完成下列问题:知识探究(1)一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.①根据题意填写下表:t/时 1 2 3 4 5s/千米60 120 180 240 300②试用含t的式子表示s为s=60t;③在以上这个过程中,不变化的量是60,变化的量是s与t.(2)每张电影票的售价为10元,早场售出票150张,日场售出票205张,晚场售出票310张.①三场电影的票房收入分别是1500元,2050元,3100元.②设一场电影售票x张,票房收入y元,则用含x的式子表示y为y=10x.③在以上这个过程中,不变化的量是10,变化的量是x与y.(3)变量:在一个变化的过程中,数值变化的量;常量:在一个变化的过程中,数值不变的量.(4)一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个变化值,y都有唯一确定的值与其对应,那么就称y是x的函数,其中x是自变量,如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数. (5)对于一个已知的函数,自变量的取值范围是使这个函数有意义的一切值;对于一个实际问题,自变量的取值必须使实际问题有意义.活动1 学生独立完成例1 分别指出下列关系中的变量和常量:(1)圆面积公式S=πr2(s表示面积,r表示半径);(2)匀速运动公式s=vt(v表示速度,t表示时间,s表示在时间t内所走的路程).解:(1)r、S是变量,π是常量;(2)t、s是变量,v是常量.π是圆周率,是定值,是常量,半径r每取一个值都有唯一的S值和它对应,故S和r是变量.因为是匀速运动,所以速度v是常量,t和s是变量.例2 如图,一个矩形推拉窗高1.5m,则活动窗的通风面积S(m2)与拉开长度b(m)的关系式是S=1.5b.窗高1.5m是一边长,拉开长度b(m)是另一边长,因此通风面积S=1.5b.例3 某火力发电厂,贮存煤1000吨,每天发电用煤50吨,设发电天数为x,该电厂开始发电后,贮存煤量为y(吨).(1)写出y与x之间的函数关系式;(2)为了保障电厂正常发电,工厂每天将从外地运回煤45吨,请写出按此方案执行时,y与x之间的函数关系式,并求出发电30天时,电厂贮存煤多少吨?解:(1)y=-50x+1000;(2)y=-5x+1000,当x=30时,y=-5×30+1000=850.∴当发电30天时,电厂贮存煤850吨.电厂贮存的煤量与原贮存量,每天发电的用煤量,每天从外地运回的煤量,以及发电天数有关.活动2 跟踪训练1.设圆柱的高h不变,圆柱的体积V与圆柱的底面半径r的关系是V=πr2h,这个式子中常量是π,h,变量是V,r.2.若球体体积为V,半径为R,则V=43πR3.其中变量是R,V,常量是43,π.找准不变的量,再确定变量.3.下列变量间的关系:①人的身高与年龄;②矩形的周长与面积;③圆的周长与面积;④商品的单价一定,其销售额与销售量,其中是函数关系的有③④.一是明确已知两个变量是什么;二是看两个变量之间是否存在一一对应关系.4.某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过12米3,按每立方米a元收费;若超过12米3,则超过部分每立方米按2a元收费,某户居民五月份交水费y(元)与用水量x(米3)(x>12)之间的关系式为y=2ax-12a,若该月交水费20a元,则这个月实际用水16米3.5.若等腰三角形底角度数值为x,则顶角度数值y与x的关系式是y=-2x+180,变量是x,y,常量是-2,180.6.在△ABC中,它的底边长是a,底边上的高是h,则三角形的面积S=12ah,当底边a的长一定时,在关系式中的常量是12,a,变量是S,h.7.已知水池里有水200m3,每小时向水池里注水20m3,设注水时间为x小时,水池里共有水ym3,用含x的式子表示y,则y=20x+200,其中变量为x,y,常量为20,200.8.人的心跳速度通常与人的年龄有关,如果a表示一个人的年龄,b表示正常情况下每分钟心跳的最高次数,经过大量试验,有如下的关系:b=0.8(220-a).(1)上述关系中的常量与变量各是什么?(2)正常情况下,一名15岁的学生每分钟心跳的最高次数是多少?解:(1)常量0.8,220,变量a,b; (2)164.9.蓄水池中原有水800m3,每小时从中放出60m3的水.(1)写出池中的剩余水量Q(m3)与放水时间t(h)之间的函数关系式;(2)写出自变量t的取值范围;(3)12h后,池中还有多少水?解:(1)Q=-60t+800; (2)0≤t≤403; (3)80m3.实际问题中的函数关系,自变量除了要使函数关系式本身有意义,还要满足实际意义.此题要根据函数Q的取值范围0≤Q≤800来确定自变量t的取值范围.活动3 课堂小结1.常量和变量是普遍存在的,它们只是相对于某个变化过程而言的两个概念,因此对它们的差别应紧扣定义及相应的实际背景.2.判断变量之间是否存在函数关系,主要抓住两点:一个变量的数值随着另一个变量的数值的变化而变化;自变量的每一个确定的值,函数都有且只有一个值与之对应.3.确定自变量取值范围时,不仅要考虑函数关系式有意义,而且还要注意使实际问题有意义.教学至此,敬请使用学案当堂训练部分.。
2017-2018学年度人教版八年级数学下册 19.1.1 变量与函数 教案

课题:《19.1.1变量与函数》
教材分析:
函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”.方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系.
本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系.课本的引例较为丰富,但有些内容学生较为陌生,本设计选取了较为简单的例子.
学生分析:
常量与变量的概念把学生由常量数学的学习引入变量数学学习中.在本节教学中,试图从学生较为熟悉的现实情景入手,引领学生认识变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?”为学习函数概念作铺垫。
教学目标:
1.、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
2.了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
3、会在简单的过程中辨别常量和变量。
教学重点:对常量和变量的认识
难点:对变量的判断
教学方法与手段:以师生互动探究式教学为主。
同时充分发挥多媒体的功能。
+(4) y=-
写出下列关系式:并指出其中的常
这一过程中,什么量是常量?什么量。
人教版数学八年级下册19.1.1《变量与函数》教学设计1
人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。
学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。
本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。
但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。
因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。
三. 教学目标1.理解变量的概念,掌握常量与变量的区别。
2.理解函数的定义,掌握函数的表示方法。
3.能够运用变量和函数的知识解决实际问题。
四. 教学重难点1.重点:变量、函数的概念及其表示方法。
2.难点:函数概念的理解,函数表示方法的应用。
五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。
2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。
3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。
2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。
通过观察、讨论,让学生初步理解变量概念。
2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。
接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。
3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。
人教版八年级下册19.1.1变量与函数(教案)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是指数值可变的量,而函数则是一种特殊的关系,描述了一个变量随另一个变量变化而变化的规律。它是数学模型中的重要组成部分,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在描述物体运动中的应用,以及如何帮助我们解决问题。
举例:在解析式y = f(x)中,x为自变量,y为因变量,自变量是独立变量,而因变量随自变量变化。
(2)掌握函数的定义:使学生掌握函数的定义,了解函数的三种表示方法(列表法、解析式法、图象法)。
举例:给出一个具体函数,如y = 2x + 1,让学生学会用列表法、解析式法和图象法表示。
(3)学会绘制函数图像:培养学生通过描点、连线等方式绘制函数图像的能力。
2.教学难点
(1)函数抽象思维的培养:学生在从具体问题中抽象出函数关系时,可能存在一定的困难。
突破方法:通过生活中的实例,如气温随时间变化、物品价格与数量的关系等,引导学生理解函数的抽象概念。
(2)函数性质的判断:如何判断函数的单调性、奇偶性等性质,是学生学习的难点。
突破方法:通过具体函数的图象和解析式,引导学生观察、分析、归纳函数的性质,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
5.提高学生的数学运算能力:在学习函数相关知识的过程中,加强学生的运算训练,提高运算速度和准确性。
本节课将紧紧围绕核心素养目标,结合课本内容,注重培养学生的综合运用能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)理解变量的概念:强调自变量与因变量的区别,使学生能够准确判断变量之间的关系。
五、教学反思
在今天的教学中,我发现同学们对变量与函数的概念有了初步的认识,但仍然存在一些理解和应用上的困难。首先,对于变量的概念,尽管我通过生活中的实例进行了讲解,但部分同学在区分自变量和因变量时仍然感到困惑。在今后的教学中,我需要进一步强化变量的定义,并通过更多的实例来帮助同学们理解和掌握。
人教版八年级下册数学教案设计:19.1.1变量与函数 (1)
在以上这个过程中,变化的量是________.没有变化的量是__________.
3.试用含t的式子表示s.
总结出:在这个问题中,90是固定不变的,S的值随t的值变化而变化的.
问题2:北京某影院每张周杰伦演唱会的票售价为10元,如果早场售出票150张,午场售出200张,晚场售出300张,三场演唱会票的票房收入各多少元?
让学生自主参与到知识的发生、发展和形成的过程中;
在学生解决问题过程中,明确研究方向,进而能够探究出变量与常量的概念,并及时总结、及融合的设计
教师活动
预设学生活动
设计意图
借助交互式白板让学生欣赏自己的视频,让学生随着视频回忆七年级时的自己,从而引出本节课的学习。
课题名称:变量与函数(第1课时)----常量与变量
年级学科
八年级
教材版本
人教版
一、教学内容分析
人教版八年级下册第十九章《一次函数》是《课程标准》中“数与代数”领域的重要内容。函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习一次函数、二次函数、反比例函数的内容打下基础。本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
1.请同学们根据题意计算:
(1)早场票数150张时,收入y = (元)
(2)午场票数200张时,收入y = (元)
(3)晚场票数300张时,收入y = (元)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________。
若设一场演唱会售出票 x 张,票房收入为 y 元,怎样用含 x 的式子表示 y ?
2017年春季学期新版新人教版八年级数学下学期19.1.1、变量与函数导学案17
19.1.1 变量与函数【学习目标】理解函数的概念,能准确识别出函数关系中的自变量和函数,会用变化的量描述事物,初步学会列函数解析式,会确定自变量的取值范围.【学习重点】函数的概念及确定自变量的取值范围.【学习难点】认识函数,领会函数的意义.学习过程:一、预习导学1.请同学们再来回顾上节课几个问题,每个问题各有几个变量?同一个问题中的变量之间有什么联系?二、新知探究活动1归纳:上面每个问题中的个变量互相联系,当其中一个变量取定一个值时,另一个变量就有的值与其 .活动2观察课本第73 页实物及图片(1)心电图中心脏部位的生物电流(y值),随时间(x)的变化,问:对于x 每一个确定的值,y是否都有唯一确定的对应值?(2)我国人口数统计表中,问:对于每一个确定的年份(x)是否都对应着一个确定的人口数(y值)?归纳总结:一般地,在一个变化过程中,如果有个变量x与y,并且对于x的值,y都有确定的值与其对应,那么就说是自变量,把y叫做x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.三、例题讲解例1,一辆汽车的油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位L)随行驶里程x(单位km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子;(2)指出自变量x的取值范围;(3)汽车行驶200km时,油箱中还有多少汽油?四、当堂练习1.课本74页练习1、2题.2.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,•则汽车距天津的路程S(千米)与行驶时间t(时)的函数关系及自变量的取值范围是( • )A.S=120-30t(0≤t≤4) B.S=30t(0≤t≤4)C.S=120-30t(t>0) D.S=30t(t=4)3. 如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.五、总结反思六、板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 函数
【学习目标】
1.理解函数的概念,会确定简单函数的关系式及自变量的取值范围.
2.通过对实际问题的分析、对比,归纳函数的概念,在此基础上理解掌握函数的概念.
【学习重点】
会确定简单函数的关系式以及自变量的取值范围.
【学习难点】
函数的概念.
情景导入 生成问题
如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化 ,随着半径的确定而确定.
你能举出一些类似的实例吗?这就是我们要研究的和此有关的问题——函数.
自学互研 生成能力
知识模块一 函数的定义
【自主探究】
阅读教材P 73,完成下面的内容:
函数的定义:一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.
【合作探究】
下列变量间的关系不是函数关系的是( C )
A .长方形的宽一定,其长与面积
B .正方形的周长与面积
C .等腰三角形的底边长与面积
D .圆的周长与半径
知识模块二 自变量的值与函数值
【自主探究】
阅读教材P 73,完成下面的内容:
1.函数值的定义:如果y 是关于x 的函数,那么当x =a 时,y =b ,此时b 叫做x =a 的函数值.
2.当自变量的值为-6时,函数y =3-x 的函数值为y =3.
3.根据如图所示程序计算函数值,若输入x 的值为52
,则输出的函数值为( B )
A .32
B .25
C .425
D .254
【合作探究】
小强想给爷爷买双鞋,爷爷说他自己的脚长25.5 cm ,若用x(单位: cm )表示脚长,用y(单位:码)表示鞋码,则有2x -y =10,根据上述关系式,小强应给爷爷买41码的鞋.
解析:∵用x 表示脚长,用y 表示鞋码,则有2x -y =10,而x =25.5,则51-y =10,解得y =41. 知识模块三 确定实际问题中函数解析式的取值范围
【自主探究】
自学教材P 73例1,完成下面的内容:
在函数y =1x -2中,自变量x 的取值范围是( D ) A .x =2 B .x>2 C .x<2 D .x ≠2
【合作探究】
1.写出下列函数中自变量x 的取值范围:
(1)y =2x -3;(2)y =31-x ;(3)y =4-x ;(4)y =x -1x -2
. 解:(1)全体实数;
(2)分母1-x≠0,即x≠1;
(3)被开方数4-x≥0,即x≤4;
(4)由题意得⎩
⎪⎨⎪⎧x -1≥0,x -2≠0,解得x≥1且x≠2. 2.水箱内原有水200 L ,7:30打开水龙头,以2 L /min 的速度放水,设经t min 时,水箱内存水y L .
(1)求y 关于t 的函数关系式和自变量的取值范围;
(2)7:55时,水箱内还有多少水?
(3)几点几分水箱内的水恰好放完?
解:(1)∵水箱内存有的水=原有水-放掉的水.∴y =200-2t.∵y≥0,∴200-2t ≥0,解得t≤100.∴0≤t≤100;
(2)∵7:55-7:30=25(min ),∴当t =25 min 时,y =200-2t =200-50=150(L ).∴当7:55时,水箱内还有水150L ;
(3)当y =0时,200-2t =0,解得t =100.而100分=1小时40分,7点30分+1小时40分=9小时10分.故9点10分水箱内的水恰好放完.
交流展示 生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
【展示提升】
知识模块一 函数的定义
知识模块二 自变量的值与函数值
知识模块三 确定实际问题中函数解析式的取值范围
检测反馈 达成目标
【当堂检测】
1.下列关于变量x、y的关系式:①3x-2y=5;②y=|x+1|;③2x-y2=10,其中表示y是x的函数的是( B)
A.①②③B.①②C.①③D.②③
2.已知函数y=3x-1,当x=3时,y的值是( C)
A.6 B.7 C.8 D.9
3.拖拉机的油箱装油50 L,犁地平均每小时耗油5 L,则油箱内剩余油量Q(L)与时间 t(h)之间的函数关系式是Q=50-5t,自变量t的取值范围是0≤t≤10.
【课后检测】见学生用书
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。