江苏省苏州市2017届九年级(上)期末数学模拟试卷(解析版)(3)

合集下载

苏州市初三数学九年级上册期末模拟试题(卷)与答案解析

苏州市初三数学九年级上册期末模拟试题(卷)与答案解析

苏州市初三数学九年级上册期末模拟试题(卷)与答案解析一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3 B .2:3C .4:9D .16:812.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-24.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .125.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤7.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19B .19,19C .18,4D .5,48.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .69.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++10.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .3511.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值312.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223313.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7214.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1215.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .18.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___. 19.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.20.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.21.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.22.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.23.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 24.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 28.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.三、解答题31.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.32.二次函数y =ax 2+bx +c 中的x ,y 满足下表 x … -1 0 1 3 … y…31…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质: (1) ; (2) ; (3) .33.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC .34.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.35.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.四、压轴题36.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?37.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.38.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.39.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 40.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9, ∴它们的周长比为4923. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.B解析:B【解析】 【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】 解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3.C解析:C 【解析】 【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m 值的范围. 【详解】解:抛物线的对称轴为直线221m x m∵10a =-<,抛物线开口向下,∴当x m < 时,y 的值随x 值的增大而增大, ∵当2x <-时,y 的值随x 值的增大而增大, ∴2m ≥- , 故选:C . 【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.4.B解析:B 【解析】试题解析:可能出现的结果的结果有1种,则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.5.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.A解析:A 【解析】 【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤. 【详解】∵抛物线开口向下, ∴a <0,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方, ∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确;∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.7.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192+=19(岁), 故选:A .【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.8.C解析:C【解析】【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答.【详解】如图,作直径BD ,连接CD ,∵∠BDC 和∠BAC 是BC 所对的圆周角,∠BAC =30°,∴∠BDC =∠BAC =30°,∵BD 是直径,∠BCD 是BD 所对的圆周角,∴∠BCD =90°,∴BD =2BC =4,故选:C .【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.9.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D 解析:D 【解析】【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,∴n =360°÷30°=12;故选:D .【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.15.A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题16.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 17.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BEN K 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为603180π⨯=π. 故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键. 19.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k ,∴21 +22k k2221k k k 224k k224k k当21 +22k k时,224k k142=-+72=故答案为:7 2 .【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.20.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴解析:1 2【解析】【分析】设BC=EC=a,根据相似三角形得到222aa=+,求出a的值,再利用tan DAE∠=tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF ==12. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义.21.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.22.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E , 连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD =32, ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π ∵S △ABC =1233∴纸片能接触到的最大面积为:33=3+π.故答案为3.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式. 23.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.24.【解析】【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求解析:4 12333π--【解析】【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆O的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出∠AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和∠EOF,最后利用S阴影=S梯形AFCD-S△AOE-S扇形EOF计算即可.【详解】解:设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE∵四边形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=23AB=∴AF为圆O的直径∵23AB=cm,圆O的半径为2cm,∴AF=4cm在Rt△ABF中sin∠AFB=3ABAF,BF=222AF AB-=∴∠AFB=60°,FC=BC -BF=()2cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF =()21112022360OE CD FC AD AE OG π•+-•-=(21112022222360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键. 25.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm 2). 故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 27.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 28.1250cm2【分析】 设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量30.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1),30;(2)CE =;(3)CC '的长3=【解析】【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC =+=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒ (2)由已知条件得出,A 2B '=,D 2B '=,D 62C '=- 易证AB D DC E ''∆∆∽∴C E DC BD AB ''='' ∴6222CE -= ∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长60221803π⋅== 【点睛】。

2017届江苏省苏州市九年级上期末模拟数学试卷(带解析)

2017届江苏省苏州市九年级上期末模拟数学试卷(带解析)

试卷第1页,共9页2017届江苏省苏州市九年级上期末模拟数学试卷(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,已知在Rt △ABC 中,∠C=90°,BC=1,AC=2,则tanA 的值为( )A .2B .C .D .2、根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2017年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是( ) A .25,27 B .25,25 C .30,27 D .30,25试卷第2页,共9页………○…3、从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不是正数的概率是( )A. B. C. D.4、如图,PA切⊙O于点A,PO交⊙O于点B,若PA=6,BP=4,则⊙O的半径为()A. B. C.2 D.55、如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个侧锥的底面半径为()A. B. C. D.6、二次函数,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大试卷第3页,共9页C .二次函数的最小值是﹣2D .抛物线的对称轴是7、点P 是⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠P=70°,点C 是⊙O 上的点(不与点A 、B 重合),则∠ACB 等于( )A .70°B .55°C .70°或110°D .55°或125°8、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x ,根据题意列方程得( )A .10(1+x )2=16.9B .10(1+2x )=16.9C .10(1﹣x )2=16.9D .10(1﹣2x )=16.99、如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .C .D .10、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①c <0,②abc >0,③a ﹣b+c >0,④2a ﹣3b=0,⑤c ﹣4b >0.其中正确结论的个数有( )试卷第4页,共9页A .1个B .2个C .3个D .4个试卷第5页,共9页第II 卷(非选择题)二、填空题(题型注释)11、使有意义的x 的取值范围是 .12、某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S 甲2=1.9,乙队队员身高的方差是S 乙2=1.2,那么两队中队员身高更整齐的是__队.(填“甲”或“乙”)13、一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离10米,则此人下降的高度为 米.14、关于x 的一元一二次方程mx 2﹣2x+l=0有两个实数根,则m 的取值范围是 .15、已知二次函数y=﹣3x 2+6x ﹣5图象上两点P 1(x l ,y 1),P 2(x 2,y 2),当0≤x 1<l ,2≤x 2<3时,y 1与y 2的大小关系为y 1 y 2.16、如图,在平行四边形ABCD 中,AB=3,AD=4,AF 交BC 于E ,交DC 的延长线于F ,且CF=1,则CE 的长为_________.17、如图,OAB 是半径为6、圆心角∠AOB=30°的扇形,AC 切弧AB 于点A 交半径OB 的延长线于点C ,则图中阴影部分的面积为 (答案保留π).试卷第6页,共9页18、如图,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O 的直径是 .三、计算题(题型注释)19、计算:sin30°﹣cos45°+tan 260°.四、解答题(题型注释)20、解不等式组:.21、如图,抛物线y=x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于点C . (1)点A 的坐标为 ,点B 的坐标为 ,点C 的坐标为 . (2)设抛物线y=x 2﹣2x ﹣3的顶点为M ,求四边形ABMC 的面积.22、如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,AC= ;试卷第7页,共9页(2)判断:△ABC 与△DEF 是否相似,并证明你的结论.23、已知二次函数的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.24、某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.试卷第8页,共9页(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B .C .D .E ).25、如图,为了测出旗杆AB 的高度,在旗杆前的平地上选择一点C ,测得旗杆顶部A 的仰角为45°,在C 、B 之间选择一点D (C 、D 、B 三点共线),测得旗杆顶部A 的仰角为75°,且CD=8m . (1)求点D 到CA 的距离; (2)求旗杆AB 的高. (注:结果保留根号)26、如图,在△BCE 中,点A 时边BE 上一点,以AB 为直径的⊙O 与CE 相切于点D ,AD ∥OC ,点F 为OC 与⊙O 的交点,连接AF . (1)求证:CB 是⊙O 的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.27、如图,抛物线的图象经过点A (﹣2,0),点B (4,0),点D(2,4),与y 轴交于点C ,作直线BC ,连接AC ,CD . (1)求抛物线的函数表达式;(2)E 是抛物线上的点,求满足∠ECD=∠ACO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线BC 上,点P 为第一象限内抛物线上试卷第9页,共9页一点,若以点C ,M ,N ,P 为顶点的四边形是菱形,求菱形的边长.参考答案1、B.2、D3、D4、B.5、B.6、D.7、D.8、A.9、D.10、D.11、x≥.12、乙.13、5.14、m≤1且m≠0.15、≥.16、.17、.18、6cm.19、1.20、﹣2≤x≤6.21、(1)A(﹣1,0),B(3,0),C(0,﹣3);(2)9.22、(1)135,;(2)△ABC∽△DEF.23、(1),D(,);(2)<x<.24、(1)280;(2)108°;(3).25、(1);(2).26、(1)证明见解析;(2).27、(1);(2)E(1,),(3,);(3).【解析】1、试题分析:∵∠C=90°,BC=1,AC=2,∴tanA==.故选B.考点:锐角三角函数的定义.2、试题分析:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.考点:1.众数;2.中位数.3、试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:.故选D.考点:1.概率公式;2.绝对值.4、试题分析:连接OA,∵PA切⊙O于点A,则∠OAP=90°,∴PA2+OA2=OP2.∵PA=6,BP=4,∴36+OA2=(OB+4)2,解得OA=.故选B.考点:1.切线的性质;2.勾股定理.5、试题分析:由图形可知,∠AOB=90°,OA=,则圆锥的底面周长为:,所以圆锥的底面半径==,故选B.考点:1.圆锥的计算;2.勾股定理.6、试题分析:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A.a=1>0,抛物线开口向上,A不正确;B.,当x≥时,y随x的增大而增大,B不正确;C.y=x2+5x+4=,二次函数的最小值是,C不正确;D.,抛物线的对称轴是x=,D正确.故选D.考点:二次函数的性质.7、试题分析:如图,∵PA、PB分别切⊙O于点A、B,∴∠OAP=∠OBP=90°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=55°,当点C在劣弧AB上,∵∠AOB=110°,∴弧ACB的度数为250°,∴∠ACB=125°.故选D.考点:弦切角定理.8、试题分析:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选A.考点:由实际问题抽象出一元二次方程.9、试题分析:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k= (4﹣k),解得:k=.故选D.考点:抛物线与x轴的交点.10、试题分析:抛物线的开口向上,则a>0;对称轴为x==,即3b=﹣2a,故b<0;抛物线交y轴于负半轴,则c<0;①由以上c<0,正确;②由a>0,b<0,c<0,得abc>0,正确;③由图知:当x=﹣1时,y>0,则a﹣b+c>0,正确;④由对称轴知:3b=﹣2a,即3b+2a=0,错误;⑤由对称轴知:3b=﹣2a,即a=b,函数解析式可写作y=bx2+bx+c;由图知:当x=2时,y>0,即b×4+2b+c>0,即c﹣4b>0,故⑤正确;∴正确的结论有四个:①②③⑤.故选D.考点:二次函数图象与系数的关系.11、试题分析:由条件得:3x﹣1≥0,解得:x≥,故答案为:x≥.考点:二次根式有意义的条件.12、试题分析:∵S甲2=1.9,S乙2=1.2,∴S甲2=1.9>S乙2=1.2,∴两队中队员身高更整齐的是乙队;故答案为:乙.考点:方差.13、试题分析:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=10×sin30°=5(米).故答案为:5.考点:解直角三角形的应用-坡度坡角问题.14、试题分析:∵关于x的一元一二次方程mx2﹣2x+l=0有两个实数根,∴△=b2﹣4ac=(﹣2)2﹣4m=4﹣4m>0,∴m<1.又∵mx2﹣2x+l=0是一元二次方程,∴m≠0,故m 的取值范围是m≤1且m≠0.故答案为:m≤1且m≠0.考点:根的判别式.15、试题分析:由二次函数y=﹣3x2+6x﹣5可知,其图象开口向下,其顶点坐标为(1,﹣2),∵0≤x1<lP12≤x2<3,∴P1(x l,y1),P2(x2,y2)在对称轴两侧侧,∵P1关于对称轴的横坐标为1≤x1+1<2<x2,∵在对称轴的右侧此函数为减函数,∴y1≥y2.故答案为:≥.考点:二次函数图象上点的坐标特征.16、试题分析:∵四边形ABCD为平行四边形,∴AB=CD=3,BC∥AD,∵E为BC上一点,∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴,又∵CD=3,CF=1,AD=,∴CE=,故答案为:.考点:1.相似三角形的判定与性质;2.平行四边形的性质.17、试题分析:∵AC切弧AB于点A,∴∠OAC=90°,而∠AOB=30°,OA=6,∴AC=OA=×6=,∴S阴影部分=S△OAC﹣S扇形OAB==.故答案为:.考点:扇形面积的计算.18、试题分析:作⊙O的直径AE,连CE,如图,∵AE为直径,∴∠ACE=90°,又∵∠E=∠B,∴Rt△AEC∽Rt△ABD,∴,而AD=2cm,AB=4cm,AC=3cm,∴AE==×4cm=6cm.所以⊙O的直径是6cm.故答案为:6cm.考点:1.相似三角形的判定与性质;2.圆周角定理.19、试题分析:将特殊角的三角函数值代入求值即可.试题解析:原式===1.考点:特殊角的三角函数值.20、试题分析:分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.试题解析:解(1)得到x≥﹣2,解(2)得到x≤6,则不等式组的解集是﹣2≤x≤6.考点:解一元一次不等式组.21、试题分析:(1)把y=0和x=0分别代入解析式即可求出A、B、C的坐标;(2)把解析式化成顶点式即可求出M的坐标,过M作MN⊥X轴于N,这样四边形ACMB的面积就转化成△ACO、梯形OCMN、△BMN的面积,根据点的坐标求出各个面积代入即可.试题解析:(1)当y=0时,x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点A的坐标是(﹣1,0),点B的坐标是(3,0),当x=0时,y=﹣3,∴点C的坐标是(0,﹣3),故答案为:A(﹣1,0),B(3,0),C(0,﹣3);(2)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,﹣4),过M作MN⊥X轴于N,则:ON=1,MN=4,BN=3﹣1=2,OA=1,OC=3,∴四边形ABMC的面积S=S△COA+S梯形+S△BNM=OA×OC+×(OC+MN)×ON+×MN×BN=×1×3+×(3+4)×1+ CONM×2×4=9.答:四边形ABMC的面积是9.考点:1.二次函数综合题;2.二次函数图象上点的坐标特征;3.三角形的面积.22、试题分析:(1)先在Rt△BCG中根据等腰直角三角形的性质求出∠GBC的度数,再根据∠ABC=∠GBC+∠ABG即可得出∠ABC的度数;在Rt△ACH中利用勾股定理即可求出AC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF 相似.试题解析:(1)∵△BCG是等腰直角三角形,∴∠GBC=45°,∵∠ABG=90°,∴∠ABC=∠GBC+∠ABG=90°+45°=135°;∵在Rt△AHC中,AH=4,CH=2,∴AC===.故答案为:135,;(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=∠DEF=135°,∴∠ABC=∠DEF.∵AB=2,BC=,FE=2,DE=,∴=,=,∴,∴△ABC∽△DEF.考点:相似三角形的判定.23、试题分析:(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.试题解析:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入得:b=﹣1,∴抛物线的解析式为,∴,∴抛物线的顶点坐标D(,).(2)二次函数的图形沿x轴向左平移个单位长度得:.令y=0得:,解得:,.∵a>0,∴当y<0时,x的取值范围是<x<.考点:1.抛物线与x轴的交点;2.二次函数图象与几何变换.24、试题分析:(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.试题解析:(1)56÷20%=280(名).答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°.答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.25、试题分析:(1)作DE⊥AC于点E,根据sinC=即可得DE;(2)由∠C=45°可得CE,由tan∠EAD=可得AE,即可得AC的长,再在Rt△ABC 中,根据sinC=即可得AB的长.试题解析:(1)如图,作DE⊥AC于点E,再Rt△CDE中,sinC=,∴,∴DE=.答:点D到CA的距离为;(2)在Rt△CDE中,∠C=45°,∴△CDE为等腰直角三角形,∴CE=DE=,∵∠ADB=75°,∠C=45°,∴∠EAD=∠ADB﹣∠C=30°,∴在Rt△ADE中,tan∠EAD=,∴,∴AE=,∴AC=AE+CE=,在Rt△ABC中,sinC=,∴,∴AB=.答:旗杆AB的高为()m.考点:解直角三角形的应用-仰角俯角问题.26、试题分析:(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.(2)首先证明S阴=S扇形ODF,然后利用扇形面积公式计算即可.试题解析:(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2,∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2,在△CDO和△CBO中,∵CO=CO,∠1=∠2,OD=OC,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切线.(2)由(1)可知∠3=∠BCO,∠1=∠2,∵∠ECB=60°,∴∠3=∠ECB=30°,∴∠1=∠2=60°,∴∠4=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=OF,∵∠1=∠ADO,在△ADG和△FOG中,∵∠1=∠ADG,∠FGO=∠AGD,AD=OF,∴△ADG≌△FOG,∴S△ADG=S△FOG,∵AB=6,∴⊙O的半径r=3,∴S阴=S扇形ODF==.考点:1.切线的判定与性质;2.扇形面积的计算.27、试题分析:(1)用待定系数法求出抛物线解析式即可.(2)分①点E在直线CD上方的抛物线上和②点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分①CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算;试题解析:(1)∵抛物线的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=,∴抛物线解析式为y=(x+2)(x﹣4),即;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4).∵点E′在抛物线上,∴,∴h=0(舍)h=,∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,);(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′==,∴,∴m=0(舍)或m=,菱形CM′P′N′的边长为=.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,),∴CQ=n,OQ=n+2,∴,∴n=0(舍),∴此种情况不存在,∴菱形的边长为.考点:1.二次函数综合题;2.分类讨论;3.压轴题.。

九年级数学上学期期末模拟试卷3含解析苏科版

九年级数学上学期期末模拟试卷3含解析苏科版

江苏省苏州市太仓市浮桥中学2016-2017学年九年级(上)期末数学模拟试卷(3)一、选择题(本题共30分,每小题3分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定3.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm24.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:听说读写张明 90 80 83 82若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为()A.82 B.83 C.84 D.855.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8 C.16 D.166.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能7.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3) B.(﹣2,﹣2) C.(﹣1,﹣3) D.(0,﹣6)8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm9.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm10.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.二、填空题(本题共24分,每小题3分)11.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O .12.若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1+x2的值是.13.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是.14.如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB、DC于点E、F,则图中阴影部分的面积为.15.如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH= .16.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA= °.17.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.18.如图,△ABC中,∠B=90°,AB=11,BC=10,若⊙O的半径为5且与AB、BC相切,以下说法不正确的是.①圆心O是∠B的角平分线与AC的交点;②圆心O是∠B的角平分线与AB的垂直平分线的交点;③圆心O是AB的垂直平分线与BC的垂直平分线的交点;④圆心O是∠B的角平分线与BC的垂直平分线的交点.三、解答题(共10题,76分)19.(8分)解下列一元二次方程.(1)x2+6x+5=0;(2)x2+x﹣1=0.20.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?21.(6分)已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.22.(6分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是;(2)随机选取2名同学,求其中有乙同学的概率.23.(6分)在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DE并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.24.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.25.(8分)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)26.(8分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?27.(10分)问题呈现:如图1,⊙O是Rt△ABC的外接圆,∠AB C=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.问题分析:连接OB,要证明BE是⊙O的切线,只要证明OB BE,由题意知∠E=90°,故只需证明OB DE.解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以,因为BD=BA,所以,利用同弧所对的圆周角相等和等量代换,得到,所以DE∥OB,从而证明出BE是⊙O的切线.(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).28.(10分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.2016-2017学年江苏省苏州市太仓市浮桥中学九年级(上)期末数学模拟试卷(3)参考答案与试题解析一、选择题(本题共30分,每小题3分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.2.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是代入方程的系数求出△=0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式得正负确定方程解得个数是关键.3.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.4.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:听说读写张明 90 80 83 82若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为()A.82 B.83 C.84 D.85【考点】加权平均数.【分析】根据加权平均数的计算公式进行计算即可.【解答】解:张明的平均成绩为:(90×3+80×3+83×2+82×2)÷10=84;故选C.【点评】此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.5.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8 C.16 D.16【考点】弧长的计算.【分析】由三角形的内角和公式求出∠A,即可求得圆心角∠BOC=90°,由弧长公式求得半径,再由勾股定理求得结论.【解答】解:连接OB,OC,∵∠B=75°,∠C=60°,∴∠A=45°,∴∠BOC=90°,∵的长度为4π,∴=4π,∴OB=8,∴BC===8,故选B.【点评】本题主要考查了三角形内角和定理,弧长公式,圆周角定理,勾股定理,熟记弧长公式是解决问题的关键.6.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【考点】垂径定理的应用.【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选A.【点评】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.7.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3) B.(﹣2,﹣2) C.(﹣1,﹣3) D.(0,﹣6)【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O 的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.【点评】本题考查了圆心角、弧、弦的关系,等边三角形的判定.该题利用“有一内角是60度的等腰三角形为等边三角形”证得△AOD是等边三角形.9.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意结合图形,分情况讨论:①0≤x≤4时,根据四边形PBDQ的面积=△ABD的面积﹣△APQ的面积,列出函数关系式,从而得到函数图象;②4≤x≤8时,根据四边形PBDQ的面积=△BCD的面积﹣△CPQ的面积,列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①0≤x≤4时,∵正方形的边长为4cm,∴y=S△ABD﹣S△APQ,=×4×4﹣•x•x,=﹣x2+8,②4≤x≤8时,y=S△BCD﹣S△CPQ,=×4×4﹣•(8﹣x)•(8﹣x),=﹣(8﹣x)2+8,所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有B选项图象符合.故选:B.【点评】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(本题共24分,每小题3分)11.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O 外.【考点】点与圆的位置关系.【分析】由条件可求得圆的半径为1,由条件可知点P到圆心的距离大于半径,可判定点P在圆外.【解答】解:∵⊙O的直径为2,∴⊙O的半径为1,∵OP=2>1,∴点P在⊙O外,故答案为:外.【点评】本题主要考查点与圆的位置关系,利用点到圆心的距离d与半径r的大小关系判定点与圆的位置关系是解题的关键.12.若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1+x2的值是﹣2 .【考点】根与系数的关系.【分析】根据根与系数的关系即可得出x1+x2的值,此题的解.【解答】解:∵一元二次方程2x2+4x+1=0的两根是x1、x2,∴x1+x2=﹣=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系,熟练掌握两根之和为﹣是解题的关键.13.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是.【考点】概率公式.【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【解答】解:∵有2个红球、3个白球,∴共有2+3=5个球,∴摸到红球的概率是;故答案为:.【点评】此题主要考查了概率公式的应用,关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14.如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB、DC于点E、F,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】先根据OD=OF得出∠DOF=60°,同理可得出∠AOE=60°,进而得出∠EOF的度数,根据扇形的面积公式即可得出结论.【解答】解:∵OD=1,OF=OG=2,∴cos∠DOF==,∴∠DOF=60°.同理,∠AOE=60°,∴∠EOF=180°﹣60°﹣60°=60°,∴图中阴影部分的面积==.故答案为:.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.15.如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH= 8 .【考点】垂径定理;勾股定理.【分析】取AB的中点O,连接OD,设OD=r,则OH=r﹣2,再根据勾股定理求出r的值,进而可得出结论.【解答】解:取AB的中点O,连接OD,设OD=r,则OH=r﹣2,在Rt△ODH中,∵OH2+DH2=OD2,即(r﹣2)2+42=r2,解得r=5,∴AH=AB﹣BH=10﹣2=8.故答案为:8.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.16.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA= 20 °.【考点】圆周角定理.【分析】根据三角形的内角和得到∠CAB=180°﹣80°﹣30°=70°,连接BC,由AB为⊙O 的直径,得到∠ACB=90°,根据圆周角定理即可得到结论.【解答】解:∵∠C=80°,∠CEA=30°,∴∠CAB=180°﹣80°﹣30°=70°,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=20°,∴∠CDA=∠B=20°,故答案为:20.【点评】本题考查了圆周角定理,三角形的内角和,正确的作出辅助线是解题的关键.17.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为22.5 °.【考点】圆周角定理.【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°﹣30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【解答】解:连结OA、OB,如图,∵点A、B的读数分别为65°,20°,∴∠AOB=65°﹣20°=45°,∴∠ACB=∠AOB=22.5°.故答案为:22.5.【点评】本题考查了圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,会使用量角器是解决本题的关键.18.如图,△ABC中,∠B=90°,AB=11,BC=10,若⊙O的半径为5且与AB、BC相切,以下说法不正确的是①②③.①圆心O是∠B的角平分线与AC的交点;②圆心O是∠B的角平分线与AB的垂直平分线的交点;③圆心O是AB的垂直平分线与BC的垂直平分线的交点;④圆心O是∠B的角平分线与BC的垂直平分线的交点.【考点】切线的性质;线段垂直平分线的性质.【分析】首先连接OD,OE,易得四边形ODBE是正方形,即可得点O在∠B的平分线上,OE 是BC的垂直平分线,OD不是AB的垂直平分线,O不在AC的垂直平分线上,点O不在AC 上.【解答】解:∵⊙O的半径为5且与AB、BC相切,∴OD⊥AB,OE⊥BC,OD=OE=5,∵∠B=90°,∴四边形ODBE是正方形,∴BE=BD=OE=OD=5,∴点O在∠B的平分线上,CE=BC﹣BE=5,AD=AB﹣BD=11﹣5=6,∴OE是BC的垂直平分线,OD不是AB的垂直平分线,∵OA==,OC==5,∴OA≠OC,即O不在AC的垂直平分线上;∵AC==,∴点O不在AC上.∴①②③错误,④正确.故答案为:①②③.【点评】此题考查了切线的性质、角平分线的性质以及线段垂直平分线的性质.注意证得四边形ODBE是正方形是关键.三、解答题(共10题,76分)19.解下列一元二次方程.(1)x2+6x+5=0;(2)x2+x﹣1=0.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)(x+1)(x+5)=0,∴x+1=0或x+5=0,解得:x=﹣1或x=﹣5;(2)∵a=1,b=1,c=﹣1,∴b2﹣4ac=1+4=5,∴x=,∴x1=,x2=.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:中位数/环众数/环方差平均成绩/环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.21.已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【考点】根与系数的关系;根的判别式.【分析】(1)分类讨论:当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,计算判别式得到△=(m﹣2)2≥0,则方程有两个实数解,于是可判断不论m为何值,方程总有实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=,然后解关于t 与m的方程组即可.【解答】(1)证明:当m=0时,方程变形为﹣2x+2=0,解得x=1;当m≠0时,△=(m+2)2﹣4m•2=(m﹣2)2≥0,方程有两个实数解,所以不论m为何值,方程总有实数根;(2)设方程的另一个根为t,根据题意得2+t=,2t=,则2+t=1+2t,解得t=1,所以m=1,即m的值位1,方程的另一个根为1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.22.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是;(2)随机选取2名同学,求其中有乙同学的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【解答】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DE并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.【考点】切线的性质;垂径定理.【分析】(1)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(2)根据OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.【解答】解:(1)如图①,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【点评】本题考查了切线的性质,解题的关键是能够利用圆的切线垂直于经过切点的半径得到直角三角形.24.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.【解答】解:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠B CO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4.【点评】本题考查直线与圆的位置关系、扇形面积、三角形面积等知识,解题的关键是记住切线的判定方法,扇形的面积公式,属于中考常考题型.25.某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= 1.5 m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【考点】解直角三角形的应用.【分析】(1)根据余弦定理先求出OE,再根据AF=OB+BD,求出DE,即可得出h的值;(2)过C点作CM⊥DF,交DF于点M,根据已知条件和余弦定理求出OE,再根据CM=OB+DE ﹣OE,求出CM,再与成人的“安全高度”进行比较,即可得出答案.【解答】解:(1)在Rt△ANO中,∠ANO=90°,∴cos∠AON=,∴ON=OA•cos∠AON,∵OA=OB=3m,∠AON=45°,∴ON=3•cos45°≈2.12m,∴ND=3+0.6﹣2.12≈1.5m,∴h=ND=AF≈1.5m;故答案为:1.5.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3•cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.【点评】此题考查了解直角三角形的应用,用到的知识点是锐角三角函数,关键是根据题意作出辅助线,构造直角三角形.26.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?【考点】二次函数的应用;一次函数的应用.【分析】(1)设y与x满足的函数关系式为:y=kx+b.,由题意可列出k和b的二元一次方程组,解出k和b的值即可;(2)根据题意:每天获得的利润为:P=(﹣3x+108)(x﹣20),转换为P=﹣3(x﹣28)2+192,于是求出每天获得的利润P最大时的销售价格.【解答】解:(1)设y与x满足的函数关系式为:y=kx+b.由题意可得:解得答:y与x的函数关系式为:y=﹣3x+108.(2)每天获得的利润为:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192.∵a=﹣3<0,∴当x=28时,利润最大,答:当销售价定为28元时,每天获得的利润最大.【点评】本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质以及最值得求法,此题难度不大.27.(10分)(2016秋•太仓市校级期末)问题呈现:如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.问题分析:连接OB,要证明BE是⊙O的切线,只要证明OB ⊥BE,由题意知∠E=90°,故只需证明OB ∥DE.解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以∠CBO=∠BCO ,因为BD=BA,所以∠BAD=∠BDA ,利用同弧所对的圆周角相等和等量代换,得到∠ECB=∠CBO ,所以DE∥OB,从而证明出BE是⊙O的切线.(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).。

江苏省苏州市立达中学2017届九年级(上)期末数学试卷(解析版)

江苏省苏州市立达中学2017届九年级(上)期末数学试卷(解析版)

2016-2017学年江苏省苏州市立达中学九年级(上)期末数学试卷一、选择题.(3*10=30分)1.方程x2﹣2x=0的解为()A.x=2 B.x=0C.x1=0 或x2=2 D.x1=0 或x2=﹣22.一组数据1,2,3,0,﹣2,﹣3的极差是()A.6 B.5 C.4 D.33.如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A.B.C.D.4.一元二次方程x2+x﹣3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根5.对于二次函数y=(x﹣1)2+2 的图象,下列说法正确的是()A.开口向下B.顶点坐标是(﹣1,2)C.对称轴是x=1 D.与x轴有两个交点6.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x,根据题意可列方程为()A.81(1﹣x)2=100 B.100(1+x)2=81 C.81(1+x)2=100 D.100(1﹣x)2=817.下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1 个B.2 个C.3 个D.4 个8.二次函数y=ax2+bx+2(a≠0)的图象经过点(﹣1,1),则代数式1﹣a+b的值为()A.﹣3 B.﹣1 C.2 D.59.如图,AB 为⊙O 的切线,切点为B,连接AO 与⊙O 交与点C,BD 为⊙O 的直径,连接CD,若∠A=30°,OA=2,则图中阴影部分的面积为()A. B.C.D.10.如图,在扇形铁皮AOB中,OA=20,∠AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第一次落在l上时,停止旋转.则点O所经过的路线长为()A.20πB.22πC.24πD.20π+10﹣10二、填空题.(3*8=24分)11.二次函数y=x2﹣3的顶点坐标是.12.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是.13.甲、乙两人5 次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;甲乙两人的平均数均为8,则这两人5次射击命中的环数的方差S2甲S2乙(填“>”“<”或“=”).14.正六边形的边心距与边长之比为.15.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=.16.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.17.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示).(1)图象的对称轴是直线x=1(2)当x>1时,y随x的增大而减小(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3(4)当﹣1<x<3时,y<0.18.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三.简答题.19. (﹣π)0﹣(1﹣sin30°)﹣1+2tan60°.20.解方程(1)x2﹣2x=4(2)2(x﹣3)=3x(x﹣3)21.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.22.已知关于x的一元二次方程mx2﹣(m+2)x+2=0(1)若方程的一个根为3,求m的值及另一个根;(2)若该方程根的判别式的值等于1,求m的值.23.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)24.已知二次函数y=﹣x2+2x.(1)在给定的平面直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.25.某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)26.如图,AC是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC 于点F,∠ABC=2∠EAC.(1)求证:AB是⊙O的切线;(2)若tanB=,BD=6,求CF的长.27.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,点M 的坐标为(3,0),以M 为圆心,5 为半径的圆与坐标轴分别交于点A,B,C,D.(1)求证:△AOD∽△COB;(2)如图2,弦DE交x轴于点P,若BP:DP=3:2,求tan∠EDA的值;(3)如图3,过点D作圆M的切线,交x轴于点Q,点G是圆M上的一个动点,问的比值是否随着G的移动而变化?若不变,请求出此值,若变化请说明理由.2016-2017学年江苏省苏州市立达中学九年级(上)期末数学试卷参考答案与试题解析一、选择题.(3*10=30分)1.方程x2﹣2x=0的解为()A.x=2 B.x=0C.x1=0 或x2=2 D.x1=0 或x2=﹣2【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,解得:x=0或x=2,故选:C.2.一组数据1,2,3,0,﹣2,﹣3的极差是()A.6 B.5 C.4 D.3【考点】极差.【分析】根据极差的定义,最大值减去最小值即可求得.【解答】解:由题意可知,极差为3﹣(﹣3)=6.故选A.3.如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】本题可以利用锐角三角函数的定义求解,sinA为∠A的对边比上斜边,求出即可.【解答】解:∵在△ABC中,∠C=90°,AB=13,BC=5,∴sinA===.故选A.4.一元二次方程x2+x﹣3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【考点】根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=12﹣4×(﹣3)=13>0,∴方程有两个不相等的两个实数根.故选A.5.对于二次函数y=(x﹣1)2+2 的图象,下列说法正确的是()A.开口向下B.顶点坐标是(﹣1,2)C.对称轴是x=1 D.与x轴有两个交点【考点】二次函数的性质.【分析】由抛物线解析式可求得其开口方向、顶点坐标、对称轴,再结合一元二次方程与函数图象与x轴的交点的关系可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线开口向上,顶点坐标为(1,2),对称轴为x=1,令y=0可得(x﹣1)2+2=0,该方程无实数根,∴抛物线与x轴没有交点,故选C.6.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x,根据题意可列方程为()A.81(1﹣x)2=100 B.100(1+x)2=81 C.81(1+x)2=100 D.100(1﹣x)2=81【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:100×(1﹣x)2=81.故选:D.7.下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1 个B.2 个C.3 个D.4 个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:(1)不在同一直线的三点确定一个圆,故本选项错误;(2)当被平分的弦为直径时,两直径不一定垂直,故本选项错误;(3)在同圆或等圆中相等的圆心角所对的弧相等,故本选项错误;(4)正五边形是轴对称图形,故本选项正确;正确的个数有1个;故选A.8.二次函数y=ax2+bx+2(a≠0)的图象经过点(﹣1,1),则代数式1﹣a+b的值为()A.﹣3 B.﹣1 C.2 D.5【考点】二次函数图象上点的坐标特征.【分析】把点(﹣1,1)代入函数解析式求出a﹣b+2,然后即可得解.【解答】解:∵二次函数y=ax2+bx+2(a≠0)的图象经过点(﹣1,1),∴a﹣b+2=1,∴1﹣a﹣b=2.故选C.9.如图,AB 为⊙O 的切线,切点为B,连接AO 与⊙O 交与点C,BD 为⊙O 的直径,连接CD,若∠A=30°,OA=2,则图中阴影部分的面积为()A. B.C.D.【考点】切线的性质;扇形面积的计算.【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解【解答】解:如图,过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵OA=2,∴⊙O的半径为1,∴OE=,CE=DE=,∴CD=2CE=2×=,∴S 阴影=S 扇形COD ﹣S △COD =﹣××=﹣,故选A .10.如图,在扇形铁皮AOB 中,OA=20,∠AOB=36°,OB 在直线l 上.将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 第一次落在l 上时,停止旋转.则点O 所经过的路线长为( )A .20πB .22πC .24πD .20π+10﹣10【考点】弧长的计算;旋转的性质.【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,20为半径,圆心角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,20为半径,圆心角为90°的弧,从而得出答案.【解答】解:点O 所经过的路线长=++==24π. 故选C .二、填空题.(3*8=24分)11.二次函数y=x 2﹣3的顶点坐标是 (0,﹣3) .【考点】二次函数的性质.【分析】根据顶点式y=a(x﹣h)2+k的顶点坐标是(h,k),找出h,k即可得出答案.【解答】解:二次函数y=x2﹣3的顶点坐标为(0,﹣3),故答案为(0,﹣3).12.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是5.【考点】算术平均数;众数.【分析】首先根据众数为5得出x=5,然后根据平均数的概念求解.【解答】解:∵这组数据的众数是5,∴x=5,则平均数为:=5.故答案为:5.13.甲、乙两人5 次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;甲乙两人的平均数均为8,则这两人5次射击命中的环数的方差S2甲>S2乙(填“>”“<”或“=”).【考点】方差;算术平均数.【分析】根据方差的计算公式先求出甲和乙的方差,再进行比较即可.【解答】解:∴甲的方差是: [(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=2,乙的方差是: [(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=,∴S甲2>S乙2;故答案为:>.14.正六边形的边心距与边长之比为:2.【考点】正多边形和圆.【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==,∴正六边形的边心距与边长之比为:a:a=:2.故答案为::2.15.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= 2016.【考点】根与系数的关系.【分析】先利用一元二次方程根的定义得到m2=﹣2m+2018,则m2+3m+n可化简为2018+m+n,再根据根与系数的关系得到m+n=﹣2,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+2x﹣2018=0的实数根,∴m2+2m﹣2018=0,即m2=﹣2m+2018,∴m2+3m+n=﹣2m+2018+3m+n=2018+m+n,∵m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,∴m+n=﹣2,∴m2+3m+n=2018﹣2=2016.16.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.【考点】圆周角定理.【分析】连接AQ,BQ,根据圆周角定理可得出∠QAB=∠P=45°,∠AQB=90°,故△ABQ是等腰直角三角形,根据勾股定理即可得出结论.【解答】解:连接AQ,BQ,∵∠P=45°,∴∠QAB=∠P=45°,∠AQB=90°,∴△ABQ是等腰直角三角形.∵AB=2,∴2BQ2=4,∴BQ=.故答案为:.17.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)(1)(2)(3).(1)图象的对称轴是直线x=1(2)当x>1时,y随x的增大而减小(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3(4)当﹣1<x<3时,y<0.【考点】抛物线与x轴的交点.【分析】直接利用二次函数的性质结合图象分别分析得出答案.【解答】解:∵抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,∴图象的对称轴是直线x==1,故(1)正确;∵图象的对称轴是直线x=1,开口向下,∴当x>1时,y随x的增大而减小,故(2)正确;∵抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,∴一元二次方程ax2+bx+c=0的两个根是﹣1和3,故(3)正确;如图所示:当﹣1<x<3时,y>0,故此选项错误.故答案为:(1)(2)(3).18.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是6.【考点】三角形的外接圆与外心.【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.三.简答题.19. (﹣π)0﹣(1﹣sin30°)﹣1+2tan60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣2+2=2﹣1.20.解方程(1)x2﹣2x=4(2)2(x﹣3)=3x(x﹣3)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)利用配方法解方程;(2)先移项得到2(x﹣3)﹣3x(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣2x+1=5,(x﹣1)2=5,x﹣1=±,所以x1=1+,x2=1﹣;(2)2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,所以x1=3,x2=.21.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.22.已知关于x的一元二次方程mx2﹣(m+2)x+2=0(1)若方程的一个根为3,求m的值及另一个根;(2)若该方程根的判别式的值等于1,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)根据一元二次方程的解的定义,将x=3代入一元二次方程mx2﹣(m+2)x+2=0,求得m值,然后将m值代入原方程,利用根与系数的关系求另一根;(2)只要让根的判别式△=b2﹣4ac=1,求得m的值即可.【解答】解:(1)设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3,∴x=3是原方程的解,∴9m﹣(m+2)×3+2=0,解得m=;又由韦达定理,得3×x2=,∴x2=1,即原方程的另一根是1;(2)∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.23.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.24.已知二次函数y=﹣x2+2x.(1)在给定的平面直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.【考点】二次函数图象与几何变换;二次函数的图象;二次函数的性质.【分析】(1)确定出顶点坐标和与x轴的交点坐标,然后作出大致函数图象即可;(2)根据函数图象写出二次函数图象在x轴下方的部分的x的取值范围;(3)根据向左平移横坐标减,向下平移纵坐标减求出平移后的二次函数图象的顶点坐标,然后利用顶点式形式写出即可.【解答】解:(1)函数图象如图所示;(2)当y<0时,x的取值范围:x<0或x>2;(3)∵图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,∴平移后的二次函数图象的顶点坐标为(﹣2,0),∴平移后图象所对应的函数关系式为:y=(x+2)2.(或y=﹣x2﹣4x﹣4)25.某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)【考点】二次函数的应用.【分析】(1)设售价定为x元时,每天的利润为140元,根据题意列方程即可得到结论;(2)根据题中等量关系为:利润=(售价﹣进价)×售出件数,根据等量关系列出函数关系式,将函数关系式配方,根据配方后的方程式即可求出y的最大值.【解答】解:(1)设售价定为x元时,每天的利润为140元,根据题意得:(x﹣5)[32﹣×8(x﹣9)]=140,解得:x1=12,x2=10,答:售价定为12元或10元时,每天的利润为140元;(2)根据题意得;y=(x﹣5)[32﹣(x﹣9)],即y=﹣4x2+88x﹣340;y=﹣4(x﹣11)2+144,故当x=11时,y最大=144元,答:售价为11元时,利润最大,最大利润是144元.26.如图,AC是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC 于点F,∠ABC=2∠EAC.(1)求证:AB是⊙O的切线;(2)若tanB=,BD=6,求CF的长.【考点】切线的判定.【分析】(1)连结AD,如图,根据圆周角定理,由E是的中点,得到∠EAC=∠EAD,由于∠ABC=2∠EAC,则∠ABC=∠DAC,再利用圆周角定理得到∠ADB=90°,则∠DAC+∠ACB=90°,所以∠ABC+∠ACB=90°,于是根据切线的判定定理得到AB 是⊙O的切线;(2)作FH⊥AC于H,如图,利用余弦定义,在Rt△ABD中可计算出AD=8,利用勾股定理求得AB=10,在Rt△ACB中可计算出AC=,根据勾股定理求得BC=,则,CD=BC﹣BD=,接着根据角平分线性质得FD=FH,于是设CF=x,则DF=FH=﹣x,然后利用平行线得性质由FH∥AC得到∠HFB=∠C,所以cos∠BFH=cosB==,再利用比例性质可求出CF.【解答】(1)证明:连接AD,∵AC是⊙O的直径,∴AD⊥BC,∴∠DAC+∠C=90°,∵E是的中点,∴∠EAC=∠EAD,∴∠DAC=2∠EAC,∵∠ABC=2∠EAC,∴∠ABC=∠DAC,∴∠ABC+∠C=90°,∴∠BAC=90°,∴CA⊥AB,∴AB是⊙O的切线;(2)解:作FH⊥AC于H,如图,在Rt△ABD中,∵tanB==,BD=6,∴AD=8,∴AB==10,在Rt△ACB中,∵tanB==,∴AC=×10=,∴BC==,∴CD=BC﹣BD=﹣6=,∵∠EAC=∠EAD,即AF平分∠CAD,而FD⊥AD,FH⊥AB,∴FD=FH,设CF=x,则DF=FH=﹣x,∵FH∥AC,∴∠HFC=∠B,在Rt△CFH中,∵tan∠CFH=tanB==,∴==,解得x=,即CF的长为.27.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将(0,2)代入抛物线解析式求得a的值,从而得出抛物线的解析式,再令y=0,得出x的值,即可求得点A、B的坐标;(2)如图2,作A'H⊥x轴于H,可证明△AOC∽△COB,得出∠ACO=∠CBO,由A'H∥OC,即可得出A′H的长,即可求得A′的坐标;(3)分两种情况:①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P (BC的下方),由圆周角定理得出点P坐标;②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,点A的对称点为A',以A'B为直径作⊙M',⊙M'交抛物线的对称轴于P'(BC的上方),作M'E⊥A'H于E,交对称轴于F,求得M'F,在Rt△M'P'F中,由勾股定理得出P'F得的长,从而得出点P的坐标即可.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得﹣4a=2,解得.所以抛物线的解析式为.令,可得:x1=﹣1,x2=4.所以A(﹣1,0),B(4,0).(2)如图2,作A'H⊥x轴于H,因为,且∠AOC=∠COB=90°,所以△AOC∽△COB,所以∠ACO=∠CBO,可得∠ACB=∠OBC+∠BCO=90°,由A'H∥OC,AC=A'C得OH=OA=1,A'H=2OC=4;所以A'(1,4);(3)分两种情况:①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P(BC的下方),由圆周角定理得∠CPB=∠CAB,易得:MP=AB.所以P(,).②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,点A的对称点为A',以A'B为直径作⊙M',⊙M'交抛物线的对称轴于P'(BC的上方),则∠CP2B=∠CA'B=∠CAB.作M'E⊥A'H于E,交对称轴于F.则M'E=BH=,EF==.所以M'F==1.在Rt△M'P'F中,P'F=,所以P'M=2+.所以P'(,2+).综上所述,P的坐标为(,)或(,2+).28.如图1,在平面直角坐标系中,点M 的坐标为(3,0),以M 为圆心,5 为半径的圆与坐标轴分别交于点A,B,C,D.(1)求证:△AOD∽△COB;(2)如图2,弦DE交x轴于点P,若BP:DP=3:2,求tan∠EDA的值;(3)如图3,过点D作圆M的切线,交x轴于点Q,点G是圆M上的一个动点,问的比值是否随着G的移动而变化?若不变,请求出此值,若变化请说明理由.【考点】圆的综合题.【分析】(1)如图1,根据对顶角相等得到∠AOD=∠COB,根据圆周角定理得到∠ADO=∠OBC,则可判断△AOD∽△COB;(2)连结AE、BE、MD,如图2,先计算出OD=2,再利用勾股定理计算出OD=4,AD=2,接着证明△PBE∽△PDA,利用相似比可计算出BE=3,然后根据勾股可计算出AE=,再利用正切的定义得到tan∠ABE=,于是得到tan∠EDA=;(3)如图3,连结MD、MG,根据切线的性质得∠MDQ=90°,由∠ODM=∠OQD,则可判断Rt△ODM∽Rt△OQD,利用相似比可计算出OQ=,讨论:当G点与A点重合时,易得;当G点与B点重合时,;当G点不与A、B重合时,先证明△MOD∽△MDQ得到即MD2=MO•MQ,由于MD=MG,则MG2=MO•MQ,加上∠OMG=∠GMQ,则可判断△MOG∽△MGQ,利用相似比可得,于是得到的值不变,比值.【解答】(1)证明:如图1,∵∠AOD=∠COB,∠ADO=∠OBC,∴△AOD∽△COB;(2)解:连结AE、BE、MD,如图2,∵点M的坐标为(3,0),MA=MB=MD=5,∴OD=2,在Rt△ODM中,OD==4,在Rt△OAD中,AD==2,∵∠PEB=∠PAD,∠PBE=∠PDA,∴△PBE∽△PDA,∴,∴BE=×2=3,在Rt△ABE中,AE==,∴tan∠ABE=,∵∠EDA=∠ABE,∴tan∠EDA=;(3)解:的值不变,比值,理由如下:如图3,连结MD、MG,∵DQ为切线,∴MD⊥QD,∴∠MDQ=90°,∵∠ODM=∠OQD,∴Rt△ODM∽Rt△OQD,∴OD:OQ=OM:OD,即4:OQ=3:4,∴OQ=,当G点与A点重合时,=;当G点与B点重合时,;当G点不与A、B重合时,∵∠OMD=∠DMQ,∴△MOD∽△MDQ,∴,即MD2=MO•MQ,而MD=MG,∴MG2=MO•MQ,∵∠OMG=∠GMQ,∴△MOG∽△MGQ,∴,综上所述,的值不变,比值,2017年2月28日。

苏州市2017初中数学毕业考试模拟卷及答案

苏州市2017初中数学毕业考试模拟卷及答案

苏州市2017年初中毕业暨升学考试模拟数学试卷本试卷由选择题、填空题和解答题三大题构成,共29小题,考试时间为120分钟,试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水署名笔将自己的姓名、准考据号填写在答题卷的相应地点上.2.答选择题一定用2B铅笔将答题卷上对应题目中的选项标号涂黑.如需变动,请用橡皮擦洁净后,再选涂其余答案.答非选择题一定用0.5毫米黑色墨水署名笔写在答题卡指定的地点上,不在答题地区内的答案一律无效,不得用其余笔答题.3.考生答题一定答在答题卷上,保持卷面洁净,答在试卷和底稿纸上一律无效。

一、选择题(本大题共l0小题.每题3分.共30分.在每题所给出的四个选项中,只有一项为哪一项切合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的地点上)1.2的倒数是(▲) A.2B.-2C.1D.-1222.以下运算中,结果正确的选项是(▲)A.a4a4a8B.a3a2a5C.a8a2a4D.2a236a6 3.以下图形中,既是轴对称图形,又是中心对称图形的是(▲)4.抛物线y(x8)22的极点坐标是(▲) A.(—8,2)B.(—8,—2)C.(2,8)D.(8,2)5.一组数据1.2,1.3,1.6,1.6,1.8的众数是(▲)A.1.2B.1.3C.1.6D.1.86.2016年一季度全国城镇新增就业人数3320000人,用科学记数法表示(▲)A.332104B.0.332107C.3.32106D.3.32107 7.若m、n是一元二次方程x25x20的两个实数根,则m nmn的值是(▲)A.7B.-7C.3D.-38.如图,△ABC内接于⊙O,连结OA,OB,∠OBA=40°,则∠C的度数是(▲)A.60°B.50°C.45°D.40°9.如图,矩形ABCD的对角线AC和BD订交于点点E、F,AB=2,BC=3,则图中暗影部分的面积为O,过点O的直线分别交(AD▲和)BC于A.6B.3C.2D.1A E DCO OABFCB(第8题)(第9题)(第10题)10.如图,平面直角坐标系中,在边长为1的菱形ABCD的边上有一动点P从点A出发沿A BCDA匀速运动一周,则点P的纵坐标y与点P走过的行程S之间的函数关系用图象表示大概是(▲)A B C D二、填空题(本大题共 8小题,每题3分,共24分.把答案直接填在答题卡上相应的地点上)11.函数y x 3中,自变量x取值范围是▲.12.因式分解:2x28=▲.13.如图,在△ABC中,D,E分别是边AC、BC的中点,若DE=3,则AB=▲.14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有▲人.15.半径为2,圆心角为120°的扇形的面积为▲(结果保存).(第13题)(第16题)416.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A按顺时针3方向旋转90°后获得△AO1B1,则点B1的坐标是▲.17.以下图的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟对付电话费▲元.18.已知点A、B分别在反比率函数28y=(x>0),y=(x>0)的图像上,且OA⊥OB,则tanB x x为▲.AOB(第17题)(第18题)三、解答题(本大题共11小题.共76分.把解答过程写在答题卡相对应的地点上,解答时应写出必需的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水署名笔)19.(此题满分5分)计算: 2 (3)0920.(此题满分3x145分)解不等式组x,并把它的解集表示在数轴上2x221.(此题满分5分)先化简,再求值:a24a24a4,此中a=32a22a a22.(此题满分116分)解分式方程:x2x1123.(此题满分6分)已知:如图,在等腰梯形ABCD中,AB//CD,点E、F分别在AD、BC上,且DE=CF.求证:AF=BED CE FA B(第23题)24.(此题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完整同样.现随机从两个信封中各拿出一张卡片,与信封外的卡片放在一同,用卡片上注明的数目分别作三条线段的长度.1)求这三条线段能构成三角形的概率(画出树状图);2)求这三条线段能构成直角三角形的概率.A B5cm(第24题)25.(此题满分8分)某工程队承包了某段过江地道施工任务,甲、乙两个班组分别从东、西两头同时掘进.已知甲组比乙组均匀每日多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组均匀每日各掘进多少米?26.(此题满分8分)城市规划时期,欲拆掉一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=1:2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.1)求BF的长;2)在拆掉电线杆AB时,为保证行人安全,能否需要将这人行道封上?请说明原因.(在地面上,以点B为圆心,以AB?长为半径的圆形地区为危险地区)(3≈1.732,2≈1.414)AG300C 1:2人B E行D F道(第26题)27.(此题满分8分)如图,AB是⊙O的直径,CD 是⊙O 的切线,切点为C .延伸 AB交CD 于点E .连结AC ,作∠DAC =∠ACD ,作AF ⊥ED 于点F ,交⊙O 于点G .1)求证:AD 是⊙O 的切线;2)假如⊙O 的半径是6cm ,EC =8cm ,求GF 的长.AOEBCGFD28.(此题满分9分)(第如图,现有一张边长为27题)4的正方形纸片ABCD,点P 为正方形AD边上的一点(不与点A 、点 D重合)将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于H ,折痕为EF ,连结BP 、BH . 1)求证:∠APB=∠BPH ;2)当点P 在边AD 上挪动时,△PDH 的周长能否发生变化?并证明你的结论;(3)设AP 为x ,四边形 EFGP 的面积为 S ,求出S 与x 的函数关系式,试问 S 能否存在最小值?若存在,求出 这个最小值;若不存在,请说明原因.APDA P DEEHHGGFF BCB(备用图)C(第28题)29.(此题满分 10分)如图1,已知直线y=kx 与抛物线y=4 x 2 22 交于点A (3,6).273(1)求直线y=kx 的分析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点 P 作直线PM ,交x 轴于点M (点M 、O不重合),交直线OA 于点Q ,再过点 Q 作直线PM 的垂线,交 y 轴于点N .尝试究: 线段QM 与线段QN 的长度之比能否为定值?假如是,求出这个定值;假如不是,说 明原因;(3)如图2,若点B为抛物线上对称轴右边的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且知足∠BAE=∠BED=∠AOD.持续研究:m在什么范围时,切合条件的E点的个数分别是1个、2个?(第29题)参照答案一.选择题(每题3分,共30分)题号12345678910选项C B B D C C A B B A二.填空题(每题3分,共24分)11、x312、2(x2)(x2)13、614、204 16、(7,3)17、7.4115、18、32三.解答(本大共 11,共76分)19、解:原式=2-1+3⋯⋯⋯⋯3分 =4⋯⋯⋯⋯5分20、解:由①得 x >-1⋯⋯⋯⋯1分 由②得x <2⋯⋯⋯⋯2分∴原不等式的解集-1<x <2⋯⋯3分数略⋯⋯⋯⋯5分21、解:原式=a 24 a 22 ⋯⋯1分a2a2 aa 2 a2a⋯⋯2分a 2 a22aa 2⋯⋯3分当a32,原式=32⋯⋯4分33 23 ⋯⋯5分3110 ⋯⋯1分22、解:(x1)(x 1)x1x11 0⋯⋯3分x 0⋯⋯4分 ,x=0是原方程的解⋯⋯6分23、解:∵四形ABCD 是等腰梯形∴AD=BC, DAB=CBA⋯⋯⋯2分∵DE=CF∴AE=BF ⋯⋯⋯⋯3分又∵AB=BA∴△ABE ≌△BAF⋯⋯⋯5分∴AF=BE⋯⋯⋯6分24、解:(1)5A 信封73B 信封246 246⋯⋯⋯2分P (能成三角形)2⋯⋯⋯4分=3(2)P (能成直角三角形)1 ⋯⋯⋯6分=625、解:甲、乙班均匀每日掘 x 米,y 米, ⋯⋯⋯1分xy 0.6⋯⋯⋯5分依据意,得y)455(xx 4.8 ⋯⋯⋯7分解得4.2y答:甲班均匀每日掘4.8米,乙班均匀每日掘4.2米.⋯⋯⋯8分26、解:(1)∵Rt △CFD 中,CF=2,坡度i=1:2A∴DF=4⋯⋯⋯1分 ∴BF=BD+DF=14+4=18⋯⋯⋯2分(2)需要将这人行道封上⋯⋯⋯3分G300C∵BF=181:2∴CG=18人BE 行DF又∵Rt △CGA 中,∠ACG=30°道∴AG=18×tan30=18°×363⋯⋯⋯5分3632∴AB=AG+GB=AG+CF=≈6×1.732+2≈12.392⋯⋯⋯6分又∵BE=BD-ED=14-2=12 ⋯⋯⋯7分∴AB >BE所以,需要将这人行道封上⋯⋯⋯8分27、解:(1)接OC∵CD 是⊙O 的切∴∠OCD=90° ⋯⋯⋯1分∵OA=OC∴∠OCA=∠OAC ⋯⋯⋯2分又∵∠DAC=∠ACD∴∠OAD=∠OCD=90°∴AD 是⊙O 的切⋯⋯⋯3分(2)接BG∵OC=6cm ,EC=8cm∴在Rt △CEO 中,OE= OC 2+EC 2=10⋯⋯⋯4分 AE=OE+OA=16AF ⊥ED∴∠AFE=∠OCE=90°,∠E=∠E ∴Rt △AEF ∽Rt △OEC⋯⋯⋯5分∴AFAE 即AF 16 OCOE610∴AF=9.6⋯⋯⋯6分∵AB 是⊙O 的直径 ∴∠AGB=90° ∴∠AGB=∠AFE ∵∠BAG=∠EAF∴Rt △ABG ∽Rt △AEF ⋯⋯⋯7分∴AGAB即AG12AF AE 9.616AG=7.2GF=AFAG=9.67.2=2.4(cm)⋯⋯⋯8分28、解:(1)∵折叠PE=BE∴EBP=EPB⋯⋯⋯⋯⋯1分又∵EPH=EBC=90°∴PBC=BPH⋯⋯⋯⋯⋯2分又∵AD∥BC∴APB=PBC∴APB=BPH⋯⋯⋯⋯⋯3分(2)△PHD的周不,定8A B作BQ⊥PH,垂足Q由(1)知APB=BPH又∵A=E BQP=90°,BP=BP∴△ABP≌△QBP∴AP=QP,AB=BQ⋯⋯⋯⋯4分又∵AB=BC B ∴BC=BQ又∵C=BQH=90°,BH=BH∴△BCH≌△BQH∴CH=QH⋯⋯⋯⋯⋯5分∴△PHD的周:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. 3)F作FM⊥AB,垂足M,FM=BC=AB又EF折痕,∴EF⊥BP PD QH G FC 6分∴∠EFM+∠MEF=∠ABP+∠BEF=90°∴∠EFM=∠ABP又∵A=EMF=90°∴△EFM≌△BPA∴EM=AP=x⋯⋯⋯⋯⋯⋯7分∴在Rt△APE中,(4BE)2x2BE2BE2x2解得8CF BE EM2x2x8∴⋯⋯⋯⋯⋯⋯8分又四形PEFG与四形BEFC全等S 1CF)BC1x2x)4 (BE(44∴221x2262∴当x=2,S有最小6⋯⋯⋯⋯⋯9分29、解:(1)把点A(3,6)代入y=kx得∵6=3k∴k=2AEMBPDHGFC(∴y=2x ⋯⋯⋯⋯⋯1分OA= 32 62 35 ⋯⋯⋯⋯⋯2分 2)QM是一个定,原因以下:QN如答1,点Q 作QG ⊥y 于点G ,QH ⊥x 于点H ①当QH 与QM 重合,然QG 与QN 重合 此QM QH QH tan AOM 2QN QG OH②当QH 与QM 不重合 QN ⊥QM ,QG ⊥QH不如点 H ,G 分在x 、y 的正半上 ∴∠MQH=∠GQN又∵∠QHM=∠QGN=90°∴△QHM ∽△QGN ∴QMQH QH tanAOM2 QNQG OH当点P 、Q 在抛物和直上不一样地点,同理可得QM2⋯⋯⋯⋯⋯6分QN3)如答2,延AB 交x 于点F ,点F 作FC ⊥OA 于点C ,点A 作AR ⊥x 于点R∴ ∵∠AOD=∠BAEAF=OF1352OC=AC=OA2∵∠ARO=∠FCO=90°,∠AOR=∠FOC ∴△AOR ∽△FOC∴OFAO 3 55OC OR 3∴OF=35 515∴点F (15,0)222直AF y=kx+b (k ≠0)把A (3,6),F (15,0)代入得2k=4,b=10,即y4x1033∴4x103y4 x 2 22273x 3 x 6∴(舍去),2y6y∴B (6,2) ∴AB=5⋯⋯⋯⋯7分(其余方法求出AB 的酌情分)精选文档11在△ABE 与△OED 中 ∵∠BAE=∠BED∴∠ABE+∠AEB=∠DEO+∠AEB , ∴∠ABE=∠DEO ∵∠BAE=∠EOD ∴△ABE ∽△OEDOE=x ,AE=3 5x (0<x <3 5)由△ABE ∽△OED 得AEAB 即3 5-x 5ODOE mx∴m1x(35x)1 (x 35)2 9⋯⋯⋯⋯8分552 4∴点(35,9)24∴如答3,当m9 ,OE=x=35,此E 点有1个⋯⋯⋯⋯⋯9分42当0<m <9,任取一个m 的都着两个x ,此E 点有2个⋯10分4。

江苏省苏州市吴江区2017届九年级数学上学期期末考试试题无答案201710271195

江苏省苏州市吴江区2017届九年级数学上学期期末考试试题无答案201710271195

2016-2017学年第一学期期末考试试卷九年级数学本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号等信息用0.5毫米黑色墨水签字笔填写在答题纸的相应位置上;2.答选择题必须用2B铅笔把答题纸上时应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1. sin 30°的值是A. 0B. 12C.22D.322. 下列说法正确的是A.长度相等的弧是等弧B.三点确定一个圆C.圆周角是圆心角的一半D.直径所对的圆周角是直角3. 关于二次函数y2x21说法正确的是A.有最大值-1B.有最大值2C.有最小值-1D.有最小值24. 方程2x2x10的两根之和是A. -2B. -1C.1 D. 1225. 已知一条圆弧所在圆的半径为24,所对的圆心角为60°,则这条弧长为A. 4B.4C. 8D.86. 设tan 69.83°=a,则tan 20.17°用a可表示为A.aB. 1a C. a3D. a7. 一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,,则平均每次降价的百分比1是 A. 1%B. 10%C. 1.9%D. 19%8. 已 知 二 次 方 程 x 2 2x 5 0 的 两 根 分 别 为x 、 1x ( 2xx ), 若 整 数 k 满足12k x 1k 1,则 k 的值是A.-4B.-3C. 1D. 29. 如图,点 B 在线段 AC 上,且B CAB,设 AC = 1,则 AB 的长是AB ACA.51 2B.51 2C.3 5 2D.3 5 210.如图,在四边形 ABCD 中,点 E 在 AD 上, EC // AB , EB // DC ,若 ABE 面积为 3 ,ECD的面积为 1,则 BCE 的面积是A. 2B.3 2C. 3D. 2二、填空题(本大题共 8小题,每小题 3分,共 24分.)11. 战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里 的“中”字的意思可以理解为 .12. 满足 tan=1的锐角 的度数是.13. 把二次函数 y 2x 2 的图象向右平移 1个单位,所得的图象函数表达式是. x y ,且 x y24 ,则 x y 的值是.14. 己知3 515. 关于一元二次方程 ax 2b (ab 0) 的两个根分别是 m +3和-1,则ba=.16. 若一个圆的内接正六边形的面积是 24 3 ,则这个圆的周长是.17. 如图, AB 是⊙O 的直径,C 是 BA 延长线上一点,点 D 在⊙O 上,且CD OA ,CD 的2延长线交⊙O于点E,若C20,则BOE= .18. 如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧作等边APM和等边BPN,则MNP外接圆半径的最小值为.三、解答题(本大题共11小题,共76分,把解答过程写在答题纸相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19. (本题满分4分)解方程: x22x820. (本题满分5分)计算: (cos60)24c os30t an60.21. (本题满分6分)己知抛物线y x2bx c经过点(-1,0)和(3,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点,并指出抛物线的开口方向和对称轴.22.(本题满分6分)如图,已知扇形AOB的圆心角为90°,面积为16.(1)求扇形的弧长;(2)若将此扇形卷成一个无底圆锥形筒,试求这个圆锥形筒的高OH.3(注:结果保留根号或.)23. (本题满分 7分) 如图,在ABC 中, AB 20, BC 12, D 是 AC 上一点,过点 D 作 DE // BC 交 AB 于 E ,作 DF // AB 交 BC 于 F ,设四边形 BEDF 为菱形.(1)求菱形的边长;(2)求菱形 BEDF 的面积与ABC 的面积之比.24. (本题满分 8分)已知 x 、 1x 是关于 x 的方程 x 22(m 1)x m 2 5 0的两个不相等的实数根.2(1)求实数 m 的取值范围; (2)若(x1)(x1) 7 ,求实数 m 的值;12(3)已知等腰 ABC 的一边长为 7,若 x 、 1x 恰好是 ABC 另外两边长,求这个三角形的2周长.4如图,在ABC中,AB AC,A36,BD是ABC的角平分线.(1)求证: ABC∽BDC;(2)求证:点D是线段AC的黄金分割点.26. (本题满分10分)河上有一座桥孔为抛物线形的拱桥(如图1),水面宽6m时,水面离桥孔顶部3m,因降暴雨水面上升1 m.(1)建立适当的坐标系,并求暴雨后水面的宽;(2)一艘装满物资的小船,露出水面部分高为0.5 m、宽4m(横断面如图2所示),暴雨后这艘船能从这座拱桥下通过吗?(注:结果保留根号.)5如图,点A、B、C、D在⊙O上,且»A D B»C,E是AB延长线上一点,且BE AB,F 是EC的中点.(1)探索BF与BD之间的数量关系,并说明理由;(2)设G是BD的中点,在⊙O上是否存在点P(点B除外),使得PG PF?试证明.28. (本题满分12分)抛物线C的顶点为原点O,且过点G(2,1).如图,过点P(0,2)分别作两条直线,0l1:y k1x 2和2:22l y k x (其中k k ),两直线分别与抛物线、x轴相交于点A、120B、E和D、C、F,且M、N分别是AB、CD的中点.(1)求抛物线C的方程;(2)若l l,试分别用12k、1k表示E、F的坐标,并据此探究2k、1k满足的等量关系;2k k ,且AP 2PB,求线段MN的长.120(3)若67。

2016-2017年江苏省苏州市吴江市初三上学期期末数学试卷含答案解析

2016-2017年江苏省苏州市吴江市初三上学期期末数学试卷含答案解析

2016-2017学年江苏省苏州市吴江市初三上学期期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.(3分)sin30°=()A.B.C.D.2.(3分)下列说法正确的是()A.长度相等的弧是等弧B.三点确定一个圆C.圆周角是圆心角的一半D.直径所对的圆周角是直角3.(3分)关于二次函数y=2x2﹣1说法正确的是()A.有最大值﹣1B.有最大值2C.有最小值﹣1D.有最小值2 4.(3分)方程2x2﹣x﹣1=0的两根之和是()A.﹣2B.﹣1C.D.5.(3分)已知一条圆弧所在圆的半径为24,所对的圆心角为60°,则这条弧长为()A.4B.4πC.8D.8π6.(3分)设tan 69.83°=a,则tan 20.17°用a可表示为()A.﹣a B.C.D.7.(3分)一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是()A.1%B.10%C.1.9%D.19%8.(3分)已知二次方程x2+2x﹣5=0的两根分别为x1、x2(x1<x2),若整数k满足k<x1<k+1,则k的值是()A.﹣4B.﹣3C.1D.29.(3分)如图,点B在线段AC上,且,设AC=1,则AB的长是()A.B.C.D.10.(3分)如图,在四边形ABCD中,点E在AD上,EC∥AB,EB∥DC,若△ABE面积为3,△ECD的面积为1,则△BCE的面积是()A.B.C.D.2二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.12.(3分)满足tanα=1的锐角α的度数是.13.(3分)把二次函数y=2x2的图象向右平移1个单位,所得的图象函数表达式是.14.(3分)已知=,且x+y=24,则x﹣y的值是.15.(3分)关于一元二次方程ax2=b(ab>0)的两个根分别是m+3和﹣1,则=.16.(3分)若一个圆的内接正六边形的面积是24,则这个圆的周长是.17.(3分)如图,AB是⊙O的直径,C是BA延长线上一点,点D在☉O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.18.(3分)如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧作等边△APM和等边△BPN,则△MNP外接圆半径的最小值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题纸相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(4分)解方程:x2﹣2x=8.20.(5分)计算:(cos60°)﹣2+4cos30°﹣tan60°.21.(6分)已知抛物线y=x2+bx+c经过点(﹣1,0)和(3,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点,并指出抛物线的开口方向和对称轴.22.(6分)如图,已知扇形AOB的圆心角为90°,面积为16π.(1)求扇形的弧长;(2)若将此扇形卷成一个无底圆锥形筒,试求这个圆锥形筒的高OH.(注:结果保留根号或π.)23.(7分)如图,在△ABC中,AB=20,BC=12,D是AC上一点,过点D作DE ∥BC交AB于E,作DF∥AB交BC于F,设四边形BEDF为菱形.(1)求菱形的边长;(2)求菱形BEDF的面积与△ABC的面积之比.24.(8分)已知x1、x2是关于x的方程x2﹣2(m+1)x+m2+5=0的两个不相等的实数根.(1)求实数m的取值范围;(2)若(x1﹣1)(x2﹣1)=7,求实数m的值;(3)已知等腰△ABC的一边长为7,若x1、x2恰好是△ABC另外两边长,求这个三角形的周长.25.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线.(1)求证:△ABC∽△BDC;(2)求证:点D是线段AC的黄金分割点.26.(10分)河上有一座桥孔为抛物线形的拱桥(如图1),水面宽6m时,水面离桥孔顶部3m,因降暴雨水面上升1m.(1)建立适当的坐标系,并求暴雨后水面的宽;(2)一艘装满物资的小船,露出水面部分高为0.5m、宽4m(横断面如图2所示),暴雨后这艘船能从这座拱桥下通过吗?(注:结果保留根号.)27.(10分)如图,点A、B、C、D在⊙O上,且=,E是AB延长线上一点,且BE=AB,F是EC的中点.(1)探索BF与BD之间的数量关系,并说明理由;(2)设G是BD的中点,在⊙O上是否存在点P(点B除外),使得PG=PF?试证明.28.(12分)抛物线C0的顶点为原点O,且过点G(2,1).如图,过点P(0,2)分别作两条直线,l1:y=k1x+2和l2:y=k2x+2(其中k1•k2≠0),两直线分别与抛物线、x轴相交于点A、B、E和D、C、F,且M、N分别是AB、CD的中点.(1)求抛物线C0的方程;(2)若l1⊥l2,试分别用k1、k2表示E、F的坐标,并据此探究k1、K2满足的等量关系;(3)若k1+k2=0,AP=2PB,求线MN的长.2016-2017学年江苏省苏州市吴江市初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.(3分)sin30°=()A.B.C.D.【解答】解:sin30°=,故选:B.2.(3分)下列说法正确的是()A.长度相等的弧是等弧B.三点确定一个圆C.圆周角是圆心角的一半D.直径所对的圆周角是直角【解答】解:A、长度相等的弧不一定是等弧,故错误,不符合题意;B、不在同一直线上的三点确定一个圆,故错误,不符合题意;C、同圆或等圆中,同弧所对的圆周角是圆心角的一半,故错误,不符合题意;D、直径所对的圆周角是直角,故正确,符合题意;故选:D.3.(3分)关于二次函数y=2x2﹣1说法正确的是()A.有最大值﹣1B.有最大值2C.有最小值﹣1D.有最小值2【解答】解:∵a=2>0,∴抛物线开口向上,函数有最小值﹣1,故选:C.4.(3分)方程2x2﹣x﹣1=0的两根之和是()A.﹣2B.﹣1C.D.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=﹣=.故选:D.5.(3分)已知一条圆弧所在圆的半径为24,所对的圆心角为60°,则这条弧长为()A.4B.4πC.8D.8π【解答】解:l==8π,故选:D.6.(3分)设tan 69.83°=a,则tan 20.17°用a可表示为()A.﹣a B.C.D.【解答】解:tan20.17°=cot69.83°==,故选:B.7.(3分)一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是()A.1%B.10%C.1.9%D.19%【解答】解:设平均每次降价的百分比是x,根据题意得:60(1﹣x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每次降价的百分比是10%;故选:B.8.(3分)已知二次方程x2+2x﹣5=0的两根分别为x1、x2(x1<x2),若整数k满足k<x1<k+1,则k的值是()A.﹣4B.﹣3C.1D.2【解答】解:∵△=b2﹣4ac=22﹣4×1×(﹣5)=24,∴x===,∵x1<x2,∴x1=,∵2≤≤3,∴﹣3≤﹣2,∴﹣4≤﹣3,∵整数k满足k<x1<k+1,∴k=﹣4,故选:A.9.(3分)如图,点B在线段AC上,且,设AC=1,则AB的长是()A.B.C.D.【解答】解:∵,∴AB2=1×(1﹣AB),∴AB2+AB﹣1=0,解得,AB1=,AB2=(舍去),故选:A.10.(3分)如图,在四边形ABCD中,点E在AD上,EC∥AB,EB∥DC,若△ABE面积为3,△ECD的面积为1,则△BCE的面积是()A.B.C.D.2【解答】解:∵EC∥AB,∴∠A=∠CED,∵EB∥DC∴∠AEB=∠D,∴△ABE∽△ECD,∴()2=()2===3,∴=,∴AB=CE,∵△ABE以AB为底边的高与△BCE以CE为底的高相等,∴==,==,∴S△BCE故选:C.二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为圆心.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心12.(3分)满足tanα=1的锐角α的度数是45°.【解答】解:tanα=1的锐角α的度数是45°,故答案为:45°.13.(3分)把二次函数y=2x2的图象向右平移1个单位,所得的图象函数表达式是y=2(x﹣1)2.【解答】解:原抛物线y=2x2的顶点为(0,0),向右平移1个单位长度,那么新抛物线的顶点为(1,0);所以新抛物线的解析式为y=2(x﹣1)2.故答案为y=2(x﹣1)2.14.(3分)已知=,且x+y=24,则x﹣y的值是﹣6.【解答】解:由=,得x=3a,y=5a.由x+y=24得3a+5a=24,解得:a=3,所以x=9,b=15,把x=9,y=15代入x﹣y=9﹣15=﹣6,故答案为:﹣6.15.(3分)关于一元二次方程ax2=b(ab>0)的两个根分别是m+3和﹣1,则= 1.【解答】解:∵一元二次方程ax2=b(ab>0)有一个根为﹣1,∴将x=﹣1代入得a=b,则=1,故答案为:1.16.(3分)若一个圆的内接正六边形的面积是24,则这个圆的周长是8π.【解答】解:设圆的半径为r,∵圆的内接正六边形的面积是24,∴r•r×6=24,解得r=4,∴圆的周长=2π×4=8π,故答案为8π.17.(3分)如图,AB是⊙O的直径,C是BA延长线上一点,点D在☉O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是60°.【解答】解:连接OD,∵CD=OA=OD,∠C=20°,∴∠ODE=2∠C=40°,∵OD=OE,∴∠E=∠EDO=40°,∴∠EOB=∠C+∠E=40°+20°=60°,故答案为:60°.18.(3分)如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧作等边△APM和等边△BPN,则△MNP外接圆半径的最小值为.【解答】解:分别作∠A与∠B角平分线,交点为O,连接OP,∵△AMP和△NPB都是等边三角形,∴AO与BO为PM、PN垂直平分线.∵圆心O在PM、PN垂直平分线上,即圆心O是一个定点,若半径OP最短,则OP⊥AB.又∵∠OAP=∠OBP=30°,AB=6,∴OA=OB,∴AP=BP=3,∴在直角△AOP中,OP=AP•tan∠OAP=3×tan30°=,故答案为:.三、解答题(本大题共10小题,共76分,把解答过程写在答题纸相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(4分)解方程:x2﹣2x=8.【解答】解:方程整理得:x2﹣2x﹣8=0,因式分解得:(x﹣4)(x+2)=0,解得:x 1=4,x2=﹣2.20.(5分)计算:(cos60°)﹣2+4cos30°﹣tan60°.【解答】解:(cos60°)﹣2+4cos30°﹣tan60°=()﹣2+4×﹣=4+2﹣=4+.21.(6分)已知抛物线y=x2+bx+c经过点(﹣1,0)和(3,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点,并指出抛物线的开口方向和对称轴.【解答】解:(1)把点(﹣1,0)和(3,0)代入抛物线y=x2+bx+c,得,解得,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)﹣=﹣=1,==﹣4,∴点的坐标(1,﹣4),∵a=1>0,∴抛物线开口向上,对称轴为直线x=1.22.(6分)如图,已知扇形AOB的圆心角为90°,面积为16π.(1)求扇形的弧长;(2)若将此扇形卷成一个无底圆锥形筒,试求这个圆锥形筒的高OH.(注:结果保留根号或π.)【解答】解:(1)设扇形的半径是R,则=16π,解得:R=8,设扇形的弧长是l,则lR=16π,即4l=16π,解得:l=4π.(2)圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,所以个圆锥形桶的高==2.23.(7分)如图,在△ABC中,AB=20,BC=12,D是AC上一点,过点D作DE ∥BC交AB于E,作DF∥AB交BC于F,设四边形BEDF为菱形.(1)求菱形的边长;(2)求菱形BEDF的面积与△ABC的面积之比.【解答】解:(1)设菱形的边长为x,则AE=20﹣x,CF=12﹣x,∵DE∥BC,∴△ADE∽△ABC,∴,即,∴x=,∴菱形的边长是;(2)∵,=()2=,∴菱形BEDF的面积与△ABC的面积之比=1﹣﹣=.24.(8分)已知x1、x2是关于x的方程x2﹣2(m+1)x+m2+5=0的两个不相等的实数根.(1)求实数m的取值范围;(2)若(x1﹣1)(x2﹣1)=7,求实数m的值;(3)已知等腰△ABC的一边长为7,若x1、x2恰好是△ABC另外两边长,求这个三角形的周长.【解答】解:(1)由题意得△=4(m+1)2﹣4(m2+5)>0,解得:m>2;(2)x1+x2=2(m+1),x1x2=m2+5,由(x1﹣1)(x2﹣1)=7得:x1x2﹣(x1+x2)=6,即m2+5﹣2(m+1)=6,解得:m=3或m=﹣1,由(1)知m>2,∴m=3;(3)由题意,∵x1≠x2时,∴只能取x1=7或x2=7,即7是方程的一个根,将x=7代入得:49﹣14(m+1)+m2+5=0,解得:m=4或m=10,当m=4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17;当m=10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.25.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线.(1)求证:△ABC∽△BDC;(2)求证:点D是线段AC的黄金分割点.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD是∠ABC的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CDB,又∠C=∠C,∴△ABC∽△BDC;(2)解:∵△ABC∽△BDC,∴=,∴BC2=AC•CD,∵∠A=∠ABD,∴DA=DB,∵∠C=∠BDC,∴BC=DB,∴BC=AD,∴AD2=AC•CD.26.(10分)河上有一座桥孔为抛物线形的拱桥(如图1),水面宽6m时,水面离桥孔顶部3m,因降暴雨水面上升1m.(1)建立适当的坐标系,并求暴雨后水面的宽;(2)一艘装满物资的小船,露出水面部分高为0.5m、宽4m(横断面如图2所示),暴雨后这艘船能从这座拱桥下通过吗?(注:结果保留根号.)【解答】解:(1)如图所示:设函数解析式为y=ax2,B(3,﹣3),A(﹣3,﹣3),把点B坐标代入得:9a=﹣3,解得:a=﹣,即y=﹣x2,当y=﹣2时,﹣x2=﹣2,解得:x=±,故此时水面宽度为2.(2)当x=2时,y=﹣,因为船上货物最高点距拱顶1.5米,且|﹣|<1.5,所以这艘船能从桥下通过.27.(10分)如图,点A、B、C、D在⊙O上,且=,E是AB延长线上一点,且BE=AB,F是EC的中点.(1)探索BF与BD之间的数量关系,并说明理由;(2)设G是BD的中点,在⊙O上是否存在点P(点B除外),使得PG=PF?试证明.【解答】解:(1)BF=BD,理由:如图1,连接AC,∵F是EC的中点,∴CF=EF,∵BE=AB,∴BF是△EAC的中位线,∴BF=AC,∵,∴,∴BD=AC,∴BF=BD;(2)当AB不是直径时,⊙O上存在点P,使PG=PF,AB是直径时,不存在,方法1、理由:如图2,过点B作BP⊥AE交⊙O于点P,连接PG,PF,AC,由(1)知BF=BD,∵G是BD的中点,∴BG=BD,∴BG=BF,∵,∴∠BAC=∠ABD,∵∠BAC=∠EBF,∴∠EBF=∠ABD,∵BP⊥AE,∴∠ABP=∠EBP=90°,∴∠PBG=∠PBF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF,即存在满足条件的点P.方法2、如图2,作∠DBF的平分线交⊙O于点P,连接PG,PF,∴∠PBG=∠PBF,由(1)知BF=BD,∵G是BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF,当AB不是直径时,⊙O上存在点P,使PG=PF,AB是直径时,不存在.28.(12分)抛物线C0的顶点为原点O,且过点G(2,1).如图,过点P(0,2)分别作两条直线,l1:y=k1x+2和l2:y=k2x+2(其中k1•k2≠0),两直线分别与抛物线、x轴相交于点A、B、E和D、C、F,且M、N分别是AB、CD的中点.(1)求抛物线C0的方程;(2)若l1⊥l2,试分别用k1、k2表示E、F的坐标,并据此探究k1、K2满足的等量关系;(3)若k1+k2=0,AP=2PB,求线MN的长.【解答】解:(1)∵抛物线C0的顶点为原点O,∴设抛物线解析式为y=ax2,把G(2,1)代入得:a=,∴抛物线C0的解析式为y=x2;(2)在y=k1x+2中,令y=0,可得x=﹣,∴E(﹣,0),则理可求得F(﹣,0),∵l 1⊥l 2,∴△POF ∽△EOP , ∴=,∴PO 2=OE•OF ,不妨设k 1<0,则k 2>0,∴22=•,∴k 1•k 2=﹣1;(3)不妨设k 1<0,设A (a ,m ),B (b ,n ), ∵PA=2PB , ∴a=﹣2b ①,由点A 、B 分别在抛物线和直线l 1上,联立,整理可得x 2﹣4k 1x ﹣8=0,∴ab=﹣8②,由①②可得a=﹣4,b=2, ∵M 为AB 的中点, ∴M 横坐标为﹣1,当k 1+k 2=0时,由(2)可知l 1和l 2关于y 轴对称, ∵M 、N 关于y 轴对称, ∴N 点横坐标为1, ∴MN=1﹣(﹣1)=2.附加:初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

九年级数学上学期期末模拟试卷(5)(含解析) 苏科版

九年级数学上学期期末模拟试卷(5)(含解析) 苏科版

2016-2017学年江苏省苏州市九年级(上)期末数学模拟试卷(5)一、选择题:(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.掷一枚质地均匀的硬币,正面朝上是必然事件2.方程x2=4x的根是()A.4 B.﹣4 C.0或4 D.0或﹣43.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)4.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则cosA等于()A. B. C. D.6.若二次函数y=(a﹣1)x2+3x+a2﹣3a+2的图象经过原点,则a的值必为()A.1或2 B.0 C.1 D.27.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.28.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里 D.海里9.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4πB.32﹣4πC.32﹣8πD.1610.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2 B.3 C.4 D.5二、填空题:(本大题共8小题,每小题3分,共24分)11.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C= .12.一组数据2,5,1,6,2,x,3中唯一的众数是x,这组数据的平均数和中位数的差是.13.从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.14.将抛物线y=(x+3)2﹣1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为.15.如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD= °.16.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是.17.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353则当x=1时,y的值为.18.如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t= .三、解答题:(本大题共10大题,满分78分)19.已知==,且x+y﹣z=6,求x、y、z的值.20.计算:﹣2sin30°﹣.21.解不等式组:.22.先化简,再求值:,其中x=3tan30°+1.23.已知关于x的方程x2+2mx+m2﹣1=0(1)试说明无论m取何值时,方程总有两个不相等的实数根;(2)若方程有一个根为3,求2m2+12m+2016的值.24.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.25.如图,抛物线y=ax2﹣5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.(1)求a的值和该抛物线顶点P的坐标.(2)求△PAB的面积;(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.26.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)27.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?28.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?29.如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.30.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2016-2017学年江苏省苏州市九年级(上)期末数学模拟试卷(5)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.掷一枚质地均匀的硬币,正面朝上是必然事件【考点】中位数;全面调查与抽样调查;总体、个体、样本、样本容量;随机事件.【分析】根据全面调查以及抽样调查的知识对A选项进行判断;根据中位数的定义对B选项作出判断;根据样本容量的知识对C选项作出判断;根据随机事件的意义对D选项作出判断.【解答】解:A、了解飞行员视力的达标率应使用全面调查,此选项错误;B、一组数据3,6,6,7,9的中位数是6,此选项正确;C、从2000名学生中选200名学生进行抽样调查,样本容量为200,此选项错误;D、掷一枚质地均匀的硬币,正面朝上是随机事件,此选项错误;故选B.2.方程x2=4x的根是()A.4 B.﹣4 C.0或4 D.0或﹣4【考点】解一元二次方程-因式分解法;解一元一次方程.【分析】移项后分解因式得出x(x﹣4)=0,推出方程x=0,x﹣4=0,求出即可.【解答】解:x2=4x,x2﹣4x=0,x(x﹣4)=0,x=0,x﹣4=0,解得:x=0或4,故选C.3.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=2(x﹣3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.4.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°【考点】弧长的计算.【分析】根据弧长公式l=,即可求解.【解答】解:设圆心角是n度,根据题意得=,解得:n=60.故选:C.5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则cosA等于()A. B. C. D.【考点】圆周角定理;垂径定理;锐角三角函数的定义.【分析】过点O作OD⊥BC,垂足为D,连接OB,根据圆周角定理可得出∠BOD=∠A,从而得出∠A的余弦值.【解答】解:过点O作OD⊥BC,垂足为D,连接OB,∵∠A=∠BOC,∴∠A=∠BOD,∵OB=5,OD=3,∴cosA=cos∠BOD==.故选D.6.若二次函数y=(a﹣1)x2+3x+a2﹣3a+2的图象经过原点,则a的值必为()A.1或2 B.0 C.1 D.2【考点】二次函数图象上点的坐标特征;解一元二次方程-因式分解法.【分析】根据二次函数图象上点的坐标特征,将点(0,0)代入二次函数的解析式,列出关于a的一元二次方程,通过解方程即可求得a的值.【解答】解:∵二次函数y=(a﹣1)x2+3x+a2﹣3a+2的图象经过原点,∴点(0,0)在二次函数y=(a﹣1)x2+3x+a2﹣3a+2的图象上,且a﹣1≠0,∴a2﹣3a+2=0,且a﹣1≠0,∴(a﹣1)(a﹣2)=0,且a﹣1≠0,∴a﹣2=0,即a=2;故选D.7.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AD﹣DE求解即可得出答案.【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AD﹣DE=5﹣=2.8.故选:B8.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里 D.海里【考点】解直角三角形的应用-方向角问题.【分析】作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=20海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=20海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故选D.9.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4πB.32﹣4πC.32﹣8πD.16【考点】扇形面积的计算.【分析】连接AD,因为△ABC是等腰直角三角形,故∠ABD=45°,再由AB是圆的直径得出∠ADB=90°,故△ABD也是等腰直角三角形,所以=,S阴影=S△ABC﹣S△ABD﹣S弓形AD由此可得出结论.【解答】解:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴=.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC﹣S△ABD﹣S弓形AD=S△ABC﹣S△ABD﹣(S扇形AOD﹣S△ABD)=×8×8﹣×4×4﹣+××4×4=16﹣4π+8=24﹣4π.故选A.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2 B.3 C.4 D.5【考点】二次函数图象与系数的关系.【分析】由抛物线开口向下得到a<0,由对称轴在x=1的右侧得到﹣>1,于是利用不等式的性质得到2a+b>0;由a<0,对称轴在y轴的右侧,a与b异号,得到b>0,抛物线与y 轴的交点在x轴的下方得到c<0,于是abc>0;抛物线与x轴有两个交点,所以△=b2﹣4ac >0;由x=1时,y>0,可得a+b+c>0;由x=﹣2时,y<0,可得4a﹣2b+c<0.【解答】解:①∵抛物线开口向下,∴a<0,∵对称轴x=﹣>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2时,y<0,∴4a﹣2b+c<0,故⑤正确.故选:B.二、填空题:(本大题共8小题,每小题3分,共24分)11.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C= 60°.【考点】特殊角的三角函数值;三角形内角和定理.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【解答】解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.12.一组数据2,5,1,6,2,x,3中唯一的众数是x,这组数据的平均数和中位数的差是1 .【考点】中位数;算术平均数;众数.【分析】先根据题意求出x的值,再求出这组数据的平均数和中位数即可.【解答】解:∵数据2,5,1,6,2,x,3中唯一的众数是x,∴x=2,∴这组数据的平均数是(2+5+1+6+2+2+3)÷7=3,把这组数据从小到大排列为;1,2,2,2,3,5,6,中位数是2,则这组数据的平均数和中位数的差是3﹣2=1.故答案为:1.13.从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.【考点】概率公式.【分析】由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为: =.故答案为:.14.将抛物线y=(x+3)2﹣1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为y=(x+4)2+1 .【考点】二次函数图象与几何变换.【分析】根据平移的规律写出函数解析式即可.【解答】解:抛物线y=(x+3)2﹣1先向上平移2个单位,得到的抛物线解析式为y=(x+3)2+1再向左平移1个单位得到的抛物线解析式为y=(x+4)2+1,故答案为:y=(x+4)2+1.15.如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD= 100 °.【考点】圆周角定理;圆内接四边形的性质.【分析】先根据圆内接四边形的性质得到∠A=180°﹣∠C=50°,然后根据圆周角定理求∠BOD.【解答】解:∵∠A+∠C=180°,∴∠A=180°﹣130°=50°,∴∠BOD=2∠A=100°.故答案为100.16.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是25 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由已知可得到△AFE∽△ABC,根据相似三角形的边对应成比例即可求得EF的长,进而根据正方形的面积公式即可求得.【解答】解:∵在Rt△ABC中,AB2+BC2=AC2,∵AB=BC,AC=10.∴2AB2=200,∴AB=BC=10,设EF=x,则AF=10﹣x∵EF∥BC,∴△AFE∽△ABC∴=,即=,∴x=5,∴EF=5,∴此正方形的面积为5×5=25.故答案为25.17.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353则当x=1时,y的值为﹣27 .【考点】待定系数法求二次函数解析式.【分析】首先观察表格可得二次函数y=ax2+bx+c过点(﹣4,3)与(﹣2,3),则可求得此抛物线的对称轴,然后有对称性求得答案.【解答】解:∵二次函数y=ax2+bx+c过点(﹣4,3)与(﹣2,3),∴此抛物线的对称轴为:直线x==﹣3,∴横坐标为:x=1的点的对称点的横坐标为:x=﹣7,∴当x=1时,y=﹣27.故答案为:﹣27.18.如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t= 4﹣1 .【考点】切线的性质;坐标与图形性质;菱形的性质;解直角三角形.【分析】先根据已知条件,求出经过t秒后,OC的长,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,利用垂径定理和解直角三角形的有关知识即可求出t的值.【解答】解:∵已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=1+t,∵四边形OABC是菱形,∴OC=1+t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=,在Rt△OPE中,OE=OP•cos30°=2,∴=2,∴t=4﹣1,故答案为:4﹣1.三、解答题:(本大题共10大题,满分78分)19.已知==,且x+y﹣z=6,求x、y、z的值.【考点】比例的性质.【分析】根据比例设x=2k,y=3k,z=4k,然后代入方程求出k的值,再求解即可.【解答】解:∵==,∴设x=2k,y=3k,z=4k,∴2k+3k﹣4k=6,解得k=6,所以,x=12,y=18,z=24.20.计算:﹣2sin30°﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行特殊角的三角函数值、负整数指数幂、零指数幂、开立方等运算,然后合并.【解答】解:原式=﹣1﹣9+1﹣2+1=﹣10.21.解不等式组:.【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.【解答】解:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.22.先化简,再求值:,其中x=3tan30°+1.【考点】分式的化简求值;特殊角的三角函数值.【分析】将原式除式的第一项分子分母同时乘以x+3,然后利用同分母分式的减法法则计算,将被除式分母利用平方差公式分解因式,除式分母利用平方差公式分解因式,分子利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,然后利用特殊角的三角函数值求出x的值,将x的值代入化简后的式子中计算,即可求出原式的值.【解答】解:÷(﹣)=÷[﹣]=÷=•=,当x=3tan30°+1=3×+1=+1时,原式===.23.已知关于x的方程x2+2mx+m2﹣1=0(1)试说明无论m取何值时,方程总有两个不相等的实数根;(2)若方程有一个根为3,求2m2+12m+2016的值.【考点】根的判别式;一元二次方程的解.【分析】(1)先找出a=1,b=2m,c=m2﹣1,再代入根的判别式进行判断;(2)首先求出m2+6m=﹣10,再整体代值计算即可.【解答】解:(1)因为a=1,b=2m,c=m2﹣1,所以b2﹣4ac=(2m)2﹣4(m2﹣1)=4>0.所以无论m取何值时,方程总有两个不相等的实数根.(2)因为方程有一个根为3,所以9+6m+m2﹣1=0,即m2+6m=﹣10.所以2m2+12m+2016=2(m2+6m)+2016=﹣16+2016=2000.24.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了200 名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1﹣20%﹣30%﹣15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)B占的百分比为:1﹣20%﹣30%﹣15%=35%,C的人数为:200×30%=60(名);如图:(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为: =.25.如图,抛物线y=ax2﹣5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.(1)求a的值和该抛物线顶点P的坐标.(2)求△PAB的面积;(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象与几何变换;三角形的面积.【分析】(1)根据C点的坐标代入抛物线解析式y=ax2﹣5x+4a,求出a,即可得出抛物线解析式,再根据抛物线顶点坐标公式即可求出答案;(2)根据y=x2﹣5x+4中y=0时,求出x的值,从而得出A、B两点的坐标,再根据三角形的面积公式得出△PAB的面积;(3)根据抛物线原顶点坐标和平移后的顶点,即可得出平移后抛物线解析式;【解答】解:(1)将C(5,4)的坐标代入抛物线解析式y=ax2﹣5x+4a,得a=1,∴抛物线解析式y=x2﹣5x+4=∴抛物线顶点坐标为;(2)∵当y=x2﹣5x+4中y=0时,x1=1,x2=4,∴A、B两点的坐标为A(1,0),B(4,0),△PAB的面积=,(3)∵抛物线原顶点坐标为,平移后的顶点为,∴平移后抛物线解析式;26.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)【考点】解直角三角形的应用-方向角问题.【分析】(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l 于F,首先证明△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.【解答】解:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF ⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×=24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t==小时=20分钟,∴轮船照此速度与航向航向,上午11:00到达海岸线.(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12,∠BCE=30°,∴BE=6,EC=6≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.27.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?【考点】相似三角形的应用;二次函数的应用.【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于x的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵四边形EGFH为矩形,∴BC∥EF,∴△AEF∽△ABC;(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.(3)设EF=x,EG=y,∵△AEF∽△ABC∴,∴=∴y=80﹣x∴矩形面积S=xy=﹣x2+80x=﹣(x﹣60)2+2400(0<x<120)故当x=60时,此时矩形的面积最大,最大面积为2400mm2.28.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.29.如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.【考点】圆的综合题.【分析】(1)如图1,连结CO.先由勾股定理求出AC=10,再利用勾股定理的逆定理证明△ACD是直角三角形,∠C=90°,那么OC为Rt△ACD斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半得出OC=AD=r,即点C在圆O上;(2)如图2,延长BC、DE交于点F,∠BFD=90°.根据同角的余角相等得出∠CDE=∠ACB.在Rt△ABC中,利用正切函数定义求出tan∠ACB==,则tan∠CDE=tan∠ACB=;(3)如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,根据相似三角形对应边成比例求出CF=,那么BF=BC+CF=.再证明四边形ABFE是矩形,得出AE=BF=,所以OG=AE=.【解答】(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠B FD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AED=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.30.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年江苏省苏州市九年级(上)期末数学模拟试卷(3)一、选择题:(本大题共10小题,每小题3分,共30分)1.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A.2 B.C.D.2.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,253.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A.B.C.D.4.如图,PA切⊙O于点A,PO交⊙O于点B,若PA=6,BP=4,则⊙O的半径为()A.B.C.2 D.55.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个侧锥的底面半径为()A.B.C.D.26.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣7.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°8.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.99.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①c<0,②abc>0,③a﹣b+c>0,④2a﹣3b=0,⑤c﹣4b>0.其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个二、填空题:(本大题共8小题,每小题3分,共24分)11.使有意义的x的取值范围是.12.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,2=1.2,那么两队中队员身高更整齐的是队.(填乙队队员身高的方差是S乙“甲”或“乙”)13.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离10米,则此人下降的高度为米.14.关于x的一元一二次方程mx2﹣2x+l=0有两个实数根,则m的取值范围是.15.已知二次函数y=﹣3x2+6x﹣5图象上两点P1(x l,y1),P2(x2,y2),当0≤x1<l,2≤x2<3时,y1与y2的大小关系为y1y2.16.如图,在平行四边形ABCD中,AB=3,AD=4,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为.17.如图,OAB是半径为6、圆心角∠AOB=30°的扇形,AC切弧AB于点A交半径OB的延长线于点C,则图中阴影部分的面积为(答案保留π).18.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是.三、解答题:(本大题共10大题,满分24分)19.(6分)计算:sin30°﹣cos45°+tan260°.20.(6分)解不等式组:21.(6分)如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C.(1)点A的坐标为,点B的坐标为,点C的坐标为.(2)设抛物线y=x2﹣2x﹣3的顶点为M,求四边形ABMC的面积.22.(6分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=°,AC=;(2)判断:△ABC与△DEF是否相似,并证明你的结论.23.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.24.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).25.如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C、B之间选择一点D(C、D、B三点共线),测得旗杆顶部A的仰角为75°,且CD=8m(1)求点D到CA的距离;(2)求旗杆AB的高.(注:结果保留根号)26.(2016•鄂州)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?27.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.28.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D (2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.2016-2017学年江苏省苏州市九年级(上)期末数学模拟试卷(3)一、选择题:(本大题共10小题,每小题3分,共30分)1.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A.2 B.C.D.【考点】锐角三角函数的定义.【分析】根据tanA是角A的对边比邻边,直接得出答案tanA的值.【解答】解:∵∠C=90°,BC=1,AC=2,∴tanA==.故选B.【点评】此题主要考查了锐角三角函数的定义,熟练记忆锐角三角函数的定义是解决问题的关键.2.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.【点评】本题考查众数、中位数的定义,解题的关键是记住众数、中位数的定义,属于基础题,中考常考题型.3.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A.B.C.D.【考点】概率公式;绝对值.【分析】由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:.故选D.【点评】此题考查了概率公式的应用.注意找到绝对值不小于2的个数是关键.4.如图,PA切⊙O于点A,PO交⊙O于点B,若PA=6,BP=4,则⊙O的半径为()A.B.C.2 D.5【考点】切线的性质;勾股定理.【分析】连接OA.根据勾股定理求解.【解答】解:连接OA,∵PA切⊙O于点A,则∠OAP=90°,∴PA2+OA2=OP2.∵PA=6,BP=4,∴36+OA2=(OB+4)2,解得OA=.故选B.【点评】此题主要考查学生对切线的性质及勾股定理的运用.5.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个侧锥的底面半径为()A.B.C.D.2【考点】圆锥的计算;勾股定理.【分析】结合图形求出∠AOB的度数和OA的长,求出扇形的弧长,根据圆锥的底面圆周长是扇形的弧长计算即可.【解答】解:由图形可知,∠AOB=90°,OA=2,则圆锥的底面周长为:=,所以圆锥的底面半径==,故选:B.【点评】本题考查的是圆锥的计算,掌握圆锥的底面圆周长是扇形的弧长是解题的关键.6.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【考点】二次函数的性质.【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c 中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.【点评】本题考查了待定系数求函数解析式以及二次函数的性质,解题的关键是利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.7.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°【考点】弦切角定理.【分析】分两种情况讨论:点C在劣弧AB上;点C在优弧AMB上;再根据弦切角定理和切线的性质求得∠ACB.【解答】解:如图,∵PA、PB分别切⊙O于点A、B,∴∠OAP=∠OBP=90°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=55°,当点C在劣弧AB上,∵∠AOB=110°,∴弧ACB的度数为250°,∴∠ACB=125°.故选D.【点评】本题考查了弦切角定理和和切线的性质,是基础知识要熟练掌握.8.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A .1B .C .D .【考点】抛物线与x 轴的交点.【分析】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可.【解答】解:∵y=﹣x 2+4x ﹣k=﹣(x ﹣2)2+4﹣k ,∴顶点D (2,4﹣k ),C (0,﹣k ),∴OC=k ,∵△ABC 的面积=AB•OC=AB•k ,△ABD 的面积=AB (4﹣k ),△ABC 与△ABD 的面积比为1:4,∴k=(4﹣k ),解得:k=.故选:D .【点评】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.10.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①c <0,②abc >0,③a ﹣b +c >0,④2a ﹣3b=0,⑤c ﹣4b >0.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.【解答】解:抛物线的开口向上,则a>0;对称轴为x=﹣=,即3b=﹣2a,故b<0;抛物线交y轴于负半轴,则c<0;①由以上c<0,正确;②由a>0,b<0,c<0,得abc>0,正确;③由图知:当x=﹣1时,y>0,则a﹣b+c>0,正确;④由对称轴知:3b=﹣2a,即3b+2a=0,错误;⑤由对称轴知:3b=﹣2a,即a=﹣b,函数解析式可写作y=﹣bx2+bx+c;由图知:当x=2时,y>0,即﹣b×4+2b+c>0,即c﹣4b>0,故⑤正确;∴正确的结论有四个:①②③⑤.故选:D.【点评】本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:(本大题共8小题,每小题3分,共24分)11.使有意义的x的取值范围是x.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数大于或等于0,可以求出x的范围.【解答】解:由条件得:3x﹣1≥0,解得:x≥,故答案为:x.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,否则二次根式无意义.12.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S乙2=1.2,那么两队中队员身高更整齐的是乙队.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.9,S乙2=1.2,∴S甲2=1.9>S乙2=1.2,∴两队中队员身高更整齐的是乙队;故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离10米,则此人下降的高度为5米.【考点】解直角三角形的应用-坡度坡角问题.【分析】因为其坡比为1:,则坡角为30度,然后运用正弦函数解答.【解答】解:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=10×sin30°=5(米).故答案为:5.【点评】此题主要考查学生对坡度坡角的理解及运用,属于基础题,关键是掌握坡比的定义.14.关于x的一元一二次方程mx2﹣2x+l=0有两个实数根,则m的取值范围是m ≤1且m≠0.【考点】根的判别式.【分析】根据一元二次方程有两个实数根可知,△>0,列出关于m的不等式,解答即可.【解答】解:∵关于x的一元一二次方程mx2﹣2x+l=0有两个实数根,∴△=b2﹣4ac=(﹣2)2﹣4m=4﹣4m>0,∴m<1.又∵mx2﹣2x+l=0是一元二次方程,∴m≠0,故m的取值范围是m≤1且m≠0.故答案为m≤1且m≠0.【点评】此题考查了一元二次方程根的判别式,要明确:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.已知二次函数y=﹣3x2+6x﹣5图象上两点P1(x l,y1),P2(x2,y2),当0≤x1<l,2≤x2<3时,y1与y2的大小关系为y1≥y2.【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式判断出抛物线的开口方向及顶点坐标,再根据抛物线的对称性求出P1关于对称轴对称的点的横坐标,根据抛物线在对称轴右侧的增减性即可解答.【解答】解:由二次函数y=﹣3x2+6x﹣5可知,其图象开口向下,其顶点坐标为(1,﹣2),∵0≤x1<lP12≤x2<3,∴P1(x l,y1),P2(x2,y2)在对称轴两侧侧,∵P1关于对称轴的横坐标为1≤x1+1<2<x2,∵在对称轴的右侧此函数为减函数,∴y1≥y2.故答案为:≥.【点评】本题考查的是二次函数图象上点的坐标特征,能根据二次函数的解析式求出其顶点坐标及P1关于对称轴对称的点的横坐标是解答此题的关键.16.如图,在平行四边形ABCD中,AB=3,AD=4,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由两线段平行,同位角相等,即可证出三角形相似,根据相似三角形的对应边成比例,结合已有的量即可解决本题.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD=3,BC∥AD,∵E为BC上一点,∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴==,又∵CD=3,CF=1,AD=4,∴CE=,故答案为:.【点评】本题考查相似三角形的判定定理和性质,解题的关键是相似三角形对应边成比例.17.如图,OAB 是半径为6、圆心角∠AOB=30°的扇形,AC 切弧AB 于点A 交半径OB 的延长线于点C ,则图中阴影部分的面积为 6﹣3π (答案保留π).【考点】扇形面积的计算. 【分析】由AC 切弧AB 于点A ,得到∠OAC=90°,再由∠AOB=30°,OA=6,得到AC=OA=×6=2,而S 阴影部分=S △OAC ﹣S 扇形OAB ,然后根据扇形和三角形的面积公式计算即可.【解答】解:∵AC 切弧AB 于点A ,∴∠OAC=90°,而∠AOB=30°,OA=6,∴AC=OA=×6=2,∴S 阴影部分=S △OAC ﹣S 扇形OAB =×6×2﹣=6﹣3π.故答案为:6﹣3π.【点评】本题考查了扇形的面积公式:S=,其中n 为扇形的圆心角的度数,R 为圆的半径),或S=lR ,l 为扇形的弧长,R 为半径.同时考查了切线的性质和含30度的直角三角形三边的关系.18.如图,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O 的直径是 6cm .【考点】相似三角形的判定与性质;圆周角定理.【分析】作⊙O的直径AE,连CE,则∠ACE=90°,可得Rt△AEC∽Rt△ABD,得到=,把AD=2cm,AB=4cm,AC=3cm代入即可求出直径AE.【解答】解:作⊙O的直径AE,连CE,如图,∵AE为直径,∴∠ACE=90°,又∵∠E=∠B,∴Rt△AEC∽Rt△ABD,∴=,而AD=2cm,AB=4cm,AC=3cm,∴AE==×4cm=6cm.所以⊙O的直径是6cm.故答案为:6cm.【点评】本题考查了三角形相似的判定与性质:有一个锐角对应相等的两个直角三角形相似;相似三角形对应边的比相等.三、解答题:(本大题共10大题,满分24分)19.计算:sin30°﹣cos45°+tan260°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求值即可.【解答】解:原式=﹣×+×()2=﹣+×3=1.【点评】本题考查了特殊角的三角函数值.熟记特殊角的三角函数值即可解题,属于基础题型.20.解不等式组:【考点】解一元一次不等式组.【分析】分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.【解答】解:解(1)得到x≥﹣2,解(2)得到x≤6则不等式组的解集是﹣2≤x≤6.【点评】不等式组解集确定的法则是:同大取大、同小取小、大小小大取中间,大大小小是无解.在数轴上的反映就是取它们都含有的公共部分.21.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C.(1)点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(0,﹣3).(2)设抛物线y=x2﹣2x﹣3的顶点为M,求四边形ABMC的面积.【考点】二次函数综合题;二次函数图象上点的坐标特征;三角形的面积.【分析】(1)把y=0和x=0分别代入解析式即可求出A、B、C的坐标;(2)把解析式化成顶点式即可求出M的坐标,过M作MN⊥X轴于N,这样四边形ACMB的面积就转化成△ACO、梯形OCMN、△BMN的面积,根据点的坐标求出各个面积代入即可.【解答】(1)解:当y=0时,x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点A的坐标是(﹣1,0),点B的坐标是(3,0),当x=0时,y=﹣3,∴点C的坐标是(0,﹣3),故答案为:(﹣1,0),(3,0),(0,﹣3);(2)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,﹣4),过M作MN⊥X轴于N,则:ON=1,MN=4,BN=3﹣1=2,OA=1,OC=3,∴四边形ABMC的面积S=S△COA +S梯形CONM+S△BNM,=OA×OC+×(OC+MN)×ON+×MN×BN=×1×3+×(3+4)×1+×2×4,=9.答:四边形ABMC的面积是9.【点评】本题主要考查了二次函数上点的坐标特点,三角形和梯形的面积等知识点,解此题的关键是通过作辅助线把不规则的四边形转化成规则的图形.题型较好,比较典型.22.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,AC=2;(2)判断:△ABC与△DEF是否相似,并证明你的结论.【考点】相似三角形的判定.【分析】(1)先在Rt△BCG中根据等腰直角三角形的性质求出∠GBC的度数,再根据∠ABC=∠GBC+∠ABG即可得出∠ABC的度数;在Rt△ACH中利用勾股定理即可求出AC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【解答】解:(1)∵△BCG是等腰直角三角形,∴∠GBC=45°,∵∠ABG=90°,∴∠ABC=∠GBC+∠ABG=90°+45°=135°;∵在Rt△AHC中,AH=4,CH=2,∴AC===2.故答案为:135,;(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=∠DEF=135°,∴∠ABC=∠DEF.∵AB=2,BC=2,FE=2,DE=,∴==,==.∴=,∴△ABC∽△DEF.【点评】此题考查的是相似三角形的判定,解答此题的关键是认真观察图形,得出两个三角形角和角,边和边的关系.23.(2016•黔南州)已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.【解答】解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入y=x2+bx﹣6得:b=﹣1,∴抛物线的解析式为y=x2﹣x﹣6.∴y=(x﹣)2﹣.∴抛物线的顶点坐标D(,﹣).(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.令y=0得:(x+2)2﹣=0,解得:x1=,x2=﹣.∵a>0,∴当y<0时,x的取值范围是﹣<x<.【点评】本题主要考查的是抛物线与x轴的交点、待定系数法求二次函数的解析式,掌握相关知识是解题的关键.24.(2016•安顺)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【解答】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图,熟练掌握运算法则是解本题的关键.25.(2016•徐州)如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C、B之间选择一点D(C、D、B三点共线),测得旗杆顶部A的仰角为75°,且CD=8m(1)求点D到CA的距离;(2)求旗杆AB的高.(注:结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)作DE⊥AC于点E,根据sinC=即可得DE;(2)由∠C=45°可得CE,由tan∠EAD=可得AE,即可得AC的长,再在Rt△ABC中,根据sinC=即可得AB的长.【解答】解:(1)如图,作DE⊥AC于点E,再Rt△CDE中,sinC=,∴=,∴DE=4,答:点D到CA的距离为4;(2)在Rt△CDE中,∠C=45°,∴△CDE为等腰直角三角形,∴CE=DE=4,∵∠ADB=75°,∠C=45°,∴∠EAD=∠ADB﹣∠C=30°,∴在Rt△ADE中,tan∠EAD=,∴=,∴AE=4,∴AC=AE+CE=4+4,在Rt△ABC中,sinC=,∴=,∴AB=4+4,答:旗杆AB的高为(4+4)m.【点评】本题考查了解直角三角形,用到的知识点是仰角的定义、特殊角的三角函数值,要能借助仰角构造直角三角形并解直角三角形.26.(2016•鄂州)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?【考点】二次函数的应用;一元一次不等式组的应用.【分析】(1)根据每天游客居住的房间数量等于50﹣减少的房间数即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题.(3)根据条件列出不等式组即可解决问题.【解答】解:(1)根据题意,得:y=50﹣x,(0≤x≤50,且x为整数);(2)W=(120+10x﹣20)(50﹣x)=﹣10x2+400x+5000=﹣10(x﹣20)2+9000,∵a=﹣10<0∴当x=20时,W取得最大值,W最大值=9000元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;(3)由解得20≤x≤40∵房间数y=50﹣x,又∵﹣1<0,∴当x=40时,y的值最小,这天宾馆入住的游客人数最少,最少人数为2y=2(﹣x+50)=20(人).【点评】本题考查二次函数的应用、一元一次不等式等知识,解题的关键是构建二次函数解决实际问题中的最值问题,属于中考常考题型.27.(2016•威海)如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.【考点】切线的判定与性质;扇形面积的计算.【分析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.。

相关文档
最新文档