解析几何中的基本公式

合集下载

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结解析几何是数学中的一个分支,它研究几何图形在坐标系中的性质和变化规律。

在解析几何中,我们使用坐标系表示各种几何图形,通过运用代数的方法来研究它们的性质和关系。

本文将对解析几何的核心知识点进行总结,包括直线、圆、曲线以及相应的性质和公式。

直线是解析几何中最基本的图形之一。

在平面直角坐标系中,一条直线可以通过两点确定。

若给出直线上两点的坐标为(x₁, y₁)和(x₂, y₂),则可以得到直线的斜率 k 为:k = (y₂ - y₁) / (x₂ - x₁)斜率表示了直线与 x 轴的夹角和斜率的大小关系。

若直线垂直于 x 轴,则斜率不存在;若直线平行于 x 轴,则斜率为零。

直线的方程可以用点斜式、斜截式和一般式等多种方式表示。

点斜式的形式为:y - y₁ = k(x - x₁)斜截式的形式为:y = kx + b一般式的形式为:Ax + By + C = 0其中 A、B、C 为常数。

圆是解析几何中的另一个重要概念。

在平面直角坐标系中,圆的方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r 为半径。

通过圆的方程,我们可以得到圆上任意一点(x,y)满足的条件。

解析几何还涉及到曲线的研究。

常见的曲线包括抛物线、椭圆和双曲线等。

以抛物线为例,它的一般方程为:y = ax² + bx + c其中 a、b、c 为常数。

根据 a 的正负和 a 的绝对值大小,可以确定抛物线的开口方向和形状。

在解析几何中,还有一些重要的性质和公式需要掌握。

例如,两条直线的位置关系可以通过它们的斜率来判断。

如果两条直线的斜率相等,则它们平行;如果两条直线的斜率互为倒数,则它们垂直。

此外,解析几何还涉及到点、线、圆之间的距离计算。

点(x₁, y₁)和点(x₂, y₂)之间的距离可以通过以下公式计算:d = √[(x₂ - x₁)² + (y₂ - y₁)²]同样地,点(x₁, y₁)到直线 Ax + By + C = 0 的距离可以通过以下公式计算:d = |Ax₁ + By₁ + C| / √(A² + B²)通过掌握以上基本原理和公式,我们可以进一步应用解析几何的知识,解决实际问题。

解析几何初步

解析几何初步

解析几何初步解析几何是数学中的一个分支,它研究平面和空间中的点、直线、平面和其集合之间的关系。

本文将初步介绍解析几何的基本概念和方法,并以几个具体的例子来加深理解。

一、坐标系和距离公式在解析几何中,我们通常使用坐标系来描述点的位置,最常用的坐标系是笛卡尔坐标系。

笛卡尔坐标系由两条相互垂直的坐标轴组成,分别是横轴(x轴)和纵轴(y轴),它们的交点被称为原点O。

假设A为坐标系中的一个点,它的坐标表示为(x,y)。

我们可以使用距离公式来计算两个点之间的距离。

设A(x₁,y₁)和B(x₂,y₂)为坐标系中的两个点,它们之间的距离d可以用以下公式计算:d = √((x₂-x₁)² + (y₂-y₁)²)二、直线和斜率在解析几何中,直线是通过两个点或者一个点和斜率确定的。

其中,斜率表示直线的倾斜程度,通常用k表示。

设直线L通过两个点A(x₁,y₁)和B(x₂,y₂),我们可以使用以下公式计算直线的斜率:k = (y₂-y₁) / (x₂-x₁)如果两个点的坐标分别为(x₁,y₁)和(x₂,y₂),且它们满足x₁≠x₂,那么直线L的斜率为k。

特别地,如果直线垂直于x轴,则斜率不存在;如果直线平行于x轴,则斜率为0。

三、曲线和方程曲线在解析几何中是指由一组点构成的集合,例如圆、椭圆、抛物线等。

我们可以使用方程来描述曲线。

例如,圆的方程为(x-a)² + (y-b)²= r²,其中(a,b)为圆心位置的坐标,r为半径。

对于其他曲线,我们也可以使用方程进行描述。

例如,椭圆的方程为(x/a)² + (y/b)² = 1,其中a为椭圆在x轴上的半长轴长度,b为椭圆在y轴上的半短轴长度。

四、平移和旋转在解析几何中,平移和旋转是两个重要的变换操作。

平移是指将图形沿着某个方向移动一定的距离,而保持其形状和大小不变。

旋转是指围绕某个中心点将图形按照一定的角度进行旋转。

空间解析几何知识点

空间解析几何知识点

空间解析几何知识点1. 空间直角坐标系- 定义:由三条互相垂直的直线(x轴、y轴、z轴)确定的坐标系。

- 坐标表示:任意一点P的坐标表示为(x, y, z)。

- 距离公式:两点P1(x1, y1, z1)和P2(x2, y2, z2)之间的距离为√((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)。

2. 向量及其运算- 向量定义:具有大小和方向的量。

- 向量表示:向量a表示为a = (a1, a2, a3)。

- 向量加法:a + b = (a1+b1, a2+b2, a3+b3)。

- 向量数乘:k * a = (ka1, ka2, ka3)。

- 向量点积:a · b = a1b1 + a2b2 + a3b3。

- 向量叉积:a × b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 -a2b1)。

- 向量模:|a| = √(a1^2 + a2^2 + a3^2)。

- 向量方向余弦:向量a的方向余弦为(a1/|a|, a2/|a|, a3/|a|)。

3. 平面方程- 点法式:A(x-x0) + B(y-y0) + C(z-z0) = 0,其中A、B、C为平面的法向量,(x0, y0, z0)为平面上一点。

- 两点式:(y-y1)/(x-x1) = (y2-y1)/(x2-x1),表示过两点P1(x1, y1, z1)和P2(x2, y2, z2)的平面。

- 一般式:Ax + By + Cz + D = 0。

4. 直线方程- 参数式:x = x0 + at, y = y0 + bt, z = z0 + ct,其中(x0,y0, z0)为直线上一点,(a, b, c)为直线的方向向量,t为参数。

- 一般式:Ax + By + Cz + D = 0。

- 点向式:(x-x0)/a = (y-y0)/b = (z-z0)/c,其中(x0, y0, z0)为直线上一点,(a, b, c)为直线的方向向量。

解析几何常用公式

解析几何常用公式

解析几何常用公式-CAL-FENGHAI.-(YICAI)-Company One11. AB →,A 为AB →的起点,B 为AB →的终点。

线段AB 的长度称作AB →的长度,记作|AB →|.数轴上同向且相等的向量叫做相等的向量.....。

零向量的方向任意。

..........在数轴上任意三点A 、B 、C ,向量AB →、BC →、AC →的坐标都具有关系:AC =AB +BC . ..AC →=AB →+2.设 AB → 是数轴上的任一个向量,则AB =OB -OA =x 2-x 1,d (A ,B )=|AB |=|x 2-x 1|. 4.. A (x 1,y 1),B (x 2,y 2),则两点A 、B 的距离公式d (A ,B )=x 2-x 12+y 2-y 12若B 点为原点,则d (A ,B )=d (O ,A )=x 21+y 21;5. A (x 1,y 1),B (x 2,y 2),中点M(x 1+x 22,y 1+y 22). A (x ,y )关于M (a ,b )的对称点B(2x 0-x ,2y 0-y ).6. 直线倾斜角::x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定,与x 轴 平行或重合的直线的倾斜角为0°.7.直线的位置与斜率、倾斜角的关系①k =0时,倾斜角为0°,直线平行于x 轴或与x 轴重合.②k >0时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也增大,此时直线过第一、三象限.③k <0时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也增大,此时直线过第二、四象限.④垂直于x 轴的直线的斜率不存在,它的倾斜角为90°.8. 若直线l 上任意两点A (x 1,y 1),B (x 2,y 2)且x 1≠x 2,则直线l 的斜率k =y 2-y 1x 2-x 1. 9.直线方程的五种形式(1)点斜式:经过点P 0(x 0,y 0)的直线有无数条,可分为两类:斜率存在时,直线方程为 y -y 0=k (x -x 0);斜率不存在时,直线方程为x =x 0.(2)斜截式:已知点(0,b ),斜率为k 的直线y =kx +b 中,截距b 可为正数、零、负数. (3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2)(4) 截距式:当直线过(a,0)和(0,b )(a ≠0,b ≠0)时,直线方程可以写为x a +yb =1,当直线斜率 不 存在(a =0)或斜率为0(b =0)时或直线过原点时,不能用截距式方程表示直线. (5)一般式:Ax +By +C =0的形式.(220A B +≠)10. (1)已知两条直线的方程为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.那么①l 1与l 2相交的条件是:A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2B 2≠0).②l 1与l 2平行的条件是:A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0或A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0).③l 1与l 2重合的条件是:A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0).2)已知两条直线的方程为l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.那么①l 1与l 2相交的条件为k 1≠k 2.②l 1与l 2平行的条件为k 1=k 2且b 1≠b 2. ③l 1与l 2重合的条件为k 1=k 2且b 1=b 2.11. 直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直________.直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2垂直________.若两直线中有一条斜率不存在时,则另一条的斜率为0,即倾斜角分别为90°和0°,也满足|α-β|=90°.12.与直线Ax +By +C =0平行的直线可表示为Ax +By +m =0(m ≠C ); 与直线Ax +By +C =0垂直的直线可表示为Bx -Ay +m =0,14. 点P (x 1,y 1)到直线Ax +By +C =0(A 2+B 2≠0)的距离为d =|Ax 1+By 1+C |A 2+B2 应用点到直线的距离公式时,若给出的直线方程不是一般式,则应先把直线方程化为一般式,然后再利用公式求解. 15.点到几种特殊直线的距离:①点P (x 1,y 1)到x 轴的距离d =|y 1| .②点P (x 1,y 1)到y 轴的距离d =|x 1|.③点P (x 1,y 1)到直线x =a 的距离为d =|x 1-a |. ④点P (x 1,y 1)到直线y =b 的距离为d =|y 1-b |.16.两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,C 1≠C 2,则l 1与l 2的距离为 d =|C 1-C 2|A 2+B 2. 两条平行线间的距离公式要求:l 1、l 2这两条直线的一般式中x 的系数相等,y 的系数也必须相等;当不相等时,应化成相等的形式,然后求解.17. 圆的标准方程为(x-a)2+(y-b)2=r2;18.点到圆心的距离为d,圆的半径为r.则点在圆外d>r;点在圆上d=r;点在圆内0≤d<r. 20.规律技巧圆的几何性质:①若直线与圆相切,则圆心到直线的距离等于半径,过切点与切线垂直线的直线过圆心;②若直线与圆相交,圆心、弦的中点及弦的一个端点组成的三角形是直角三角形,弦的垂直平分线经过圆心.④以A(x1,y1)、B(x2,y2)为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.21. 形如Ax2+Bxy+Cy2+Dx+Ey+F=0的方程表示圆的等价条件(1)A=C≠0;x2、y2的系数相同且不等于零;(2)B=0;不含xy项.(3)(DA)2+(EA)2-4FA>0,即D2+E2-4AF>0.23.圆的一般方程形式为x2+y2+Dx+Ey+F=0,配方为 (x+D2)2+(y+E2)2=D2+E2-4F4.(1)当D2+E2-4F>0时,它表示以 (-D2,-E2)为圆心,D2+E2-4F2为半径的圆.(2)当D2+E2-4F=0时,它表示点 (-D2,-E2).(3)当D2+E2-4F<0时,它不表示任何图形24.直线与圆的位置关系(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.25.直线与圆位置关系的判定有两种方法(1)代数法:通过直线方程与圆的方程所组成的方程组,根据解的个数来判断.若有两组不同的实数解,即Δ>0,则相交;若有两组相同的实数解,即Δ=0,则相切;若无实数解,即Δ<0,则相离.(2)几何法:由圆心到直线的距离d与半径r的大小来判断:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离.26.直线与圆相切,切线的求法(1)当点(x0,y0)在圆x2+y2=r2上时,切线方程为x0x+y0y=r2;(2)若点(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上,切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2; 27.若弦长为l ,弦心距为d ,半径为r ,则(l2)2+d 2=r 2.28.判断两圆的位置关系设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0, ① 圆C 2:x 2+y 2+D 2x +E 2y +F 2=0. ② ①-②得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. ③若圆C 1与C 2相交,则③为过两圆交点的弦所在的直线方程.求两圆的公共弦所在直线方程,就是使表示圆的两个方程相减即可得到. 31.空间直角坐标系中的对称点点P (x ,y ,z )的对称点的坐标 11112222|P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.到定点(a ,b ,c )距离等于定长R 的点的轨迹方程为(x -a )2+(y -b )2+(z -c )2=R 2,此即以定点(a ,b ,c )为球心,R 为半径的球面方程. 33..空间线段的中点坐标公式在空间直角坐标系中,已知点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则线段P 1P 2的中点P 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22).。

解析几何(1)--平面直角坐标系中的基本公式

解析几何(1)--平面直角坐标系中的基本公式

1 高中数学人教B 版必修二
解析几何(1)
一、平面直角坐标系中的基本公式
1. 数轴上的基本公式:
(1)数轴上点P 的坐标记法
(2)向量
相等向量
(3)向量的坐标
(4)数轴上两点间距离公式
(5)数轴上两点间的中点公式
2. 平面直角坐标系中的基本公式
(1)平面上两点间距离公式
(2)平面上两点间的中点公式
练习:
1. 已知()3A ,()11B x ,()22B x ,且18AB =,28AB =,则1x 和2x 的值为
2.已知在数轴上,点P 的坐标为()P x ,若x 满足13x x +-=,则x 的值为
3. 已知()A x 位于()2B x 的右侧,求(),d A B 的最大值.
4. 已知平行四边形A B C D 的三个顶点为()1,2A ,()3,7B ,()2,9C ,求顶点(),D x y 的坐标.
5. 已知A B C 的三个顶点()1,2A ,()2,3B ,()4,5C -,则B C 边上的中线长为
6. 已知A 在x 轴上,B 在y 轴上,A B 中点是()2,1P -,则A B =
7. 已知()5,21A a -,()1,4B a a +-,当A B 取最小值时,实数a 的值是
8. 已知三角形三个顶点坐标:()3,8A ,()11,3B -,()8,2C --,则:AB AC = ,B C 边上的高A D 的长为。

解析几何公式大全

解析几何公式大全

解析几何中的基本公式1、两点间距离:若 A (x 1,y 1), B (X 2,y 2),则 AB=J(X 2 — X i )2+(y 2 — yj 22、平行线间距离:若 l 1 : AX By C^ 0, 12 : AX By C 0注意点:X ,y 对应项系数应相等。

则P到—S BJ4、直线与圆锥曲线相交的弦长公式: 丿y一 kX + bJ z (x ,y) =0消y : ax 2∙ bx ∙ c = 0 ,务必注意 厶∙0. 若l 与曲线交于A (x 1, y 1), B (X 2 ,y 2) 贝 V : AB = (1一k 2)(x2=xj 25、若A (X 1,y 1), B (X 2,y 2) , P (X , y )。

P 在直线AB 上,且P 分有向线段AB 所成的比为入,X I HL X 2 1 ■ W 丁2 1 ■X 2 -Xy 2 一 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 二很三(0,二)则:CI - C 2..A 2 B 23、点到直线的距离:P(X , y ), l: AXByC=O,特别地:变形后:X-X ly 一 y 1'=1时,P 为AB 中点且X 1 X 22 y 「y 22或适用范围:k ι, k 2都存在且k ιk 2= — 1 ,若I i 与12的夹角为R 则tan ,=k1^k 2, —(0,上]1 + k 1k 22IIJmnJnJ注意:(1) ∣1到∣2的角,指从∣1按逆时针方向旋转到∣2所成的角,范围(0,二)∣1到∣2的夹角:指 丨1、∣2相交所成的锐角或直角.(2)∣1 _12时,夹角、到角 =—。

tan _1 + k k― 28、直线的倾斜角:'与斜率k的关系a)每一条直线都有倾斜角-,但不一定有斜率。

(2)斜率存在时为 y - y = k (x — X ) y - y 1 _ X - X 1 y ? 一 y 1 χ2 F其中I 交X 轴于(a,0),交y 轴于(0,b)当直线I 在坐标轴上,距相等时应分: (1) 截距=0 设y=kxb)若直线存在斜率k ,而倾斜角为:■,则k=tan :•。

解析几何中的欧拉定理

解析几何中的欧拉定理

解析几何中的欧拉定理欧拉定理(Euler's Theorem)是数学中的一个重要定理,源于欧拉的研究。

该定理是描述三维空间中点、线、面三种基本几何对象之间的关系的公式,也称为多面体公式。

欧拉定理被广泛应用于几何学、拓扑学、物理学等领域,是研究空间几何结构的一个基础定理。

欧拉定理的正式陈述是:一个立体图形的顶点数与面数的差再加上边数等于2。

即:V - E + F = 2,其中V代表立体图形的顶点数,E代表立体图形的边数,F代表立体图形的面数。

该定理适用于所有的多面体,包括正则多面体、不规则多面体以及任意多面体。

为了理解欧拉定理,我们需要先了解一些基本的几何概念。

在三维空间中,点、线、面是最基本的几何对象。

点是空间中最基本的单位,没有形状、大小等特征;线是由两个点之间的直线连接而成的,具有长度但没有宽度和高度;面是由至少三个非共线点连接而成的平面几何图形,具有面积和形状。

欧拉定理可以通过一个简单的例子来进行解释。

我们考虑一个正四面体,即一个具有四个等大的面,每个面都是一个正三角形的立体图形。

这个正四面体有4个顶点、6条边和4个面。

插入这些数字后,欧拉定理的方程变为:4 - 6 + 4 = 2。

这个式子成立,证明欧拉定理在这种情况下成立。

我们可以通过把这个正四面体的一个顶点通过线段连接到另一个顶点的方式来创造一个新的多面体。

新多面体的顶点数是原来的顶点数加1,即5个。

新多面体的边数是原来的边数加4,即10条。

新多面体的面数是原来的面数加4,即8个。

把这些数字带入欧拉定理的方程中,得到:5 - 10 + 8 = 2。

这个式子同样成立,证明欧拉定理适用于新创建的多面体。

欧拉定理的证明是一项相对简单的数学运算,但是定理本身具有非常广泛的应用范围。

它可以用于计算多面体的面积、体积、对称性等各种基本性质。

在几何学中,欧拉定理是刻画空间多面体拓扑结构的基础工具。

在物理学中,欧拉定理被应用于描述空间物体的运动状态。

数学平面解析几何公式

数学平面解析几何公式
要分支,主要研究平面上的点、线、圆等几何对象的性质和关系。在解析几何中,我们可以通过坐标系将几何问题转化为代数问题,从而用代数方法来解决几何问题。在这篇文章中,我们将介绍一些常用的数学平面解析几何公式,帮助大家更好地理解和应用解析几何知识。
1. 点的坐标公式
2. 直线的两点式方程
直线的两点式方程是另一种常用的表示直线的方法,它的表达形式为:
(y - y1)/(y2 - y1) = (x - x1)/(x2 - x1)
通过两点式方程,我们可以根据两个已知点的坐标方便地确定直线的方程。
4. 圆的标准方程
圆的标准方程是圆的一种常见表达形式,它的表达形式为:
(x - h)^2 + (y - k)^2 = r^2
这个公式被称为三角形的海伦公式,通过它我们可以方便地计算三角形的面积。
第二篇示例:
数学平面解析几何公式是数学中的一个重要部分,它与数学中的其他领域联系紧密,对于我们理解空间中的图形和运动有着重要的作用。在解析几何中,我们将几何图形与代数方程相联系,通过代数的方法研究几何问题,得出结论,这种方法被称为代数几何。
x = (CE - BF) / (AE - BD)
y = (AF - CD) / (AE - BD)
这个公式可以通过代数方法得出,用于计算两条直线的交点坐标。
5. 三角形面积的计算
在解析几何中,我们也可以通过坐标计算三角形的面积。对于三角形 ABC,其中 A(x1, y1),B(x2, y2),C(x3, y3),三角形的面积可以通过以下公式来计算:
在数学平面解析几何中,有许多重要的基本公式,这些公式可以帮助我们快速解决各种问题。下面我们来了解一些常见的数学平面解析几何公式。
1. 直线的点斜式方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=专门地:x //AB 轴, 则=AB 。

y //AB 轴, 则=AB 。

2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。

3、 点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。

P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,专门地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x变形后:yy y y x x x x --=λ--=λ2121或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范畴:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范畴),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。

(2)l 1⊥l 2时,夹角、到角=2π。

(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、 (1)倾斜角α,),0(π∈α;(2)]0[,π∈θθ→→,,夹角b a ;(3)直线l 与平面]20[π∈ββα,,的夹角;(4)l 1与l 2的夹角为θ,∈θ]20[π,,其中l 1//l 2时夹角θ=0;(5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,8、 直线的倾斜角α与斜率k 的关系a) 每一条直线都有倾斜角α,但不一定有斜率。

b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。

9、 直线l 1与直线l 2的的平行与垂直(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2②l 1⊥l 2⇔ k 1k 2=-1(2)若0:,0:22221111=++=++C y B x A l C y B x A l若A 1、A 2、B 1、B 2都不为零① l 1//l 2⇔212121C C B B A A ≠=; ② l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③ l 1与l 2相交⇔2121B B A A ≠ ④ l 1与l 2重合⇔212121C C B B A A ==; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情形。

10、 直线方程的五种形式名称 方程 注意点斜截式: y=kx+b 应分①斜率不存在 ②斜率存在点斜式: )( x x k y y -=- (1)斜率不存在: x x =(2)斜率存在时为)( x x k y y -=-两点式: 121121x x x x y y y y --=--截距式:1=+bya x 其中l 交x 轴于)0,(a ,交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:(1)截距=0 设y=kx (2)截距=0≠a 设1=+aya x 即x+y=a一样式: 0=++C By Ax (其中A 、B 不同时为零) 10、确定圆需三个独立的条件圆的方程 (1)标准方程: 222)()(r b y a x =-+-, 半径圆心,----r b a ),(。

(2)一样方程:022=++++F Ey Dx y x ,()0422>-+F E D,)2,2(圆心----ED 2422FE D r -+=11、直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种若22BA C Bb Aa d +++=,0<∆⇔⇔>相离r d0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d 12、两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d 条公切线外切321⇔⇔+=r r d条公切线相交22121⇔⇔+<<-r r d r r 条公切线内切121⇔⇔-=r r d 无公切线内含⇔⇔-<<210r r d外离 外切相交 内切 内含13、圆锥曲线定义、标准方程及性质 (一)椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。

定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。

标准方程:12222=+by a x )0(>>b a定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤- 长轴长=a 2,短轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21ca x e PF +=,)(22x ca e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。

) 注意:(1)图中线段的几何特点:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。

顶点与准线距离、焦点与准线距离分别与c b a ,,有关。

(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系(3)椭圆上的点有经常用到三角换元:⎩⎨⎧θ=θ=sin cos b y a x ;(4)注意题目中椭圆的焦点在x 轴上依旧在y 轴上,请补充当焦点在y 轴上时,其相应的性质。

二、双曲线(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。

Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。

(二)图形:(三)性质方程:12222=-b y a x )0,0(>>b a 12222=-bx a y )0,0(>>b a定义域:}{a x a x x ≤≥或; 值域为R ; 实轴长=a 2,虚轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21c a x e PF +=,)(22x ca e PF -=,a PF PF 221=-;注意:(1)图中线段的几何特点:=1AF a c BF -=2,=2AF c a BF +=1顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:ca c c a c 22+-或 两准线间的距离=ca 22(2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x aby ±=若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x若双曲线与12222=-by a x 有公共渐近线,可设为λ=-2222b y a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)(3)专门地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,现在双曲线为等轴双曲线,可设为λ=-22y x ;(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来。

(5)完成当焦点在y 轴上时,标准方程及相应性质。

二、抛物线(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。

即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。

(二)图形:(三)性质:方程:焦参数-->=p p px y ),0(,22;焦点: )0,2(p,通径p AB 2=; 准线: 2px -=;焦半径:,2p x CF += 过焦点弦长p x x px p x CD ++=+++=212122注意:(1)几何特点:焦点到顶点的距离=2p;焦点到准线的距离=p ;通径长=p 2顶点是焦点向准线所作垂线段中点。

(2)抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P px y y x 2),(2=其中。

相关文档
最新文档