纵联距离保护的原理及优缺点
电力系统继电保护 四输电线路纵联保护

➢ 输电线路的任何故障都不会使通道工作破坏,因此可以传送反应内部故障信息的 允许信号和跳闸信号;
➢ 微波通信必须架设中继站,通道价格昂贵。
(4)光纤保护:利用光纤通信传递两侧保护特征信息。
把电信号转换为光信号
对经光纤传输衰减 的信号进行放大。
把光信号转换为电信号
特点:
➢ 通信容量大; ➢ 广泛采用PCM调制方式; ➢ 可以节约大量金属材料,经济效益可观; ➢ 光纤通信保密性好,敷设方便,不怕雷击,不受外界电磁干扰,抗腐蚀,不怕潮
这类保护在每侧都直接比较两侧的电气量,并且要求两侧信息同步采集,
信息传输量大,实现技术要求较高。
§4.1.2 输电线路短路时两侧电气量的故障特征分析
比较
内部故障
外部故障
正常运行
两端电流相量和 I IM I N Ik
两端功率方向
两端同为正
I IM IN 0
远故障端方向为正 近故障端方向为负
外部故障 闭锁信号自近故障端发出 另一端接受闭锁信号 保护元件虽动作,但不跳闸 内部故障 任一端都不发送闭锁信号 两端都收不到闭锁信号 保护元件动作后,跳闸
➢ 允许信号——允许保护动作于跳闸的信号。
内部故障 线路两端互送允许信号 两端都接收对端允许信号 保护元件动作,跳闸
浅谈输电线路的纵联保护

浅谈输电线路的纵联保护摘要:本文首先就输电线路纵联保护原理、概念、分类进行了介绍,而后进一步深入,对纵联差动保护应解决的主要问题及解决措施展开了剖析。
关键字:纵联保护;故障;光纤纵联差动保护一、纵联保护(一)基本原理纵联保护是将线路两侧测量信息进行判断实现全线速动保护,其基本原理有如下三种:(二)概念和分类将线路两侧测量信息传到对侧进行比较构成的全线速动保护,称作线路纵联保护。
线路纵联保护不需与其他保护配合,不受负荷电流的影响,不反应系统震荡,有良好的选择性。
通常用高频通道组成的纵联保护称高频保护,用光纤通道组成的纵联保护称光纤纵联差动保护。
二、纵联差动保护应解决的主要问题及措施(一)纵联差动保护应解决的主要问题1、输电线路电容电流的影响电容电流是从线路内部流出的电流,因此它构成动作电流。
由于负荷电流是穿越性的电流,它只产生制动电流。
所以在空载或轻载下电容电流最容易造成保护误动。
2、外部短路或外部短路切除时产生的不平衡电流外部短路或外部短路切除时,由于两端电流互感器的变比误差不一致、暂态过程中由于两端电流互感器的暂态特性不一致、二次回路的时间常数的不一致产生不平衡电流。
3、重负荷线路区内经高阻接地时灵敏度不足的问题4、正常运行时电流感器(TA)断线造成纵联电流差动保护误动作正常运行时当输电线路一端的TA断线时差动继电器的动作电流和制动电流都等于未断线一端的负荷电流。
由于差动继电器的制动系数小于1,起动电流值又较小,因此工作点将落在比率制动特性的动作区内造成差动继电器动作。
5、弱电端拒动的问题当线路有一端背后无电源或为小电源时该端称为弱电端。
6、输电线路两端保护采样时间不一致所产生的不平衡电流的问题引起两侧采样不同步的原因:(1)两侧装置上电时刻的不一致;(2)一侧数据传送到另一侧有通道时延和数据接收时延;(3)两侧装置晶振存在固有偏差;(二)解决措施1、防止电容电流造成保护误动的措施(1)提高差动继电器比率制动曲线中的起动电流Iqd的定值来躲电容电流的影响。
纵联保护概述

流过两端的电流、电流的相位、功率的方向
纵联保护按照信息通道的不同分为: 导引线纵联保护:经济性、安全性不好,一般用 于较短的线路,采用差动保护原理。 电力线载波纵联保护:利用输电线路构成通道, 在故障时通道可能遭到破坏,要求信号中断时保 护仍能正确动作。 微波纵联保护:多路通信通道,可以传送交流电 波形,更适合于数字式保护。不经济,一般与电 力信息系统统一考虑。 光纤纵联保护:不受干扰,近年来短线路纵联保 护的主要通道形式。
输电线路纵联保护
纵联保护的概述
电流保护、距离保护的缺点:
I段不能保护线路的全长 线路末端故障需II段延时切除 在220kV及以上电压等级的电网中不能满足快速性的
要求
反应线路两侧的电气量可以快速、可靠地区分本 线路任意点短路与外部短路,称为纵联保护。 线路两端的保护装置组成一个保护单元,又称为 单元保护。 输电线路的纵联保护两端比较的电气量可以是:
1.纵联电流差动保护 利用两端电流波形或电流相量和的特征 构成。 动作判据: Iset:动作门槛值
IM IN I set
输电线路纵联电流差动保护原理的特点
1、保护范围明确。保护范围是线路两侧电流互感器之 间的范围。
2、动作速度快,可实现全线速动,即全线路瞬时切除 区内故障。
这是由于纵联电流差动保护不需与相邻元件的保护配合。
3、不受系统振荡、系统运行方式变化的影响。
2.方向比较式纵联保护 –利用两端功率方向相同或相反的特征构成 –功率方向为负时发出闭锁信号:闭锁式方 向纵联保护 –功率方向为正式发出允许信号:允许式方 向纵联保护
3.电流相位比较式纵联保 护
比较两端电流的相位关
系构成。 区内短路:两端电流相 角差为0˚,保护动作 正常运行或区外短路: 两端电流相角差180˚, 保护不动作 考虑电流、电压互感器 的误差及线路分布电容 的影响,动作区如图所 示
纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点引言:纵联距离保护是电力系统中常用的一种保护方式,它通过测量电力线路两端电流和电压的差值,判断线路是否发生故障,从而实现对电力系统的保护。
本文将详细介绍纵联距离保护的原理、优点和缺点。
一、纵联距离保护的原理纵联距离保护是基于传输线特性的电流和电压相位关系建立的,其主要原理可概括为以下几点:1. 电力线路的电流和电压之间存在一定的相位差,而这个相位差与线路的长度和特性有关。
2. 在正常运行状态下,电流和电压的相位差是稳定的,而当线路发生故障时,电流和电压的相位差会发生变化。
3. 根据电流和电压相位差的变化情况,可以判断出线路是否发生故障以及发生故障的位置。
二、纵联距离保护的优点纵联距离保护具有以下几个优点:1. 灵敏性高:纵联距离保护可以快速检测到线路的故障,减少对电力系统的损害。
2. 可靠性强:纵联距离保护采用了先进的电流和电压测量技术,能够准确地判断线路的故障位置,提高电力系统的可靠性。
3. 抗干扰能力强:纵联距离保护采用了差动测量原理,能够有效地抵抗电力系统中的干扰信号,提高保护装置的稳定性。
4. 适用范围广:纵联距离保护适用于各种电力线路,无论是高压输电线路还是低压配电线路都可以使用。
三、纵联距离保护的缺点纵联距离保护也存在一些缺点,主要包括:1. 定位误差:由于电力线路的特性和故障类型的不同,纵联距离保护在故障定位方面可能存在一定的误差。
2. 受电力系统结构的影响:纵联距离保护的工作性能受到电力系统结构的影响,当电力系统结构发生变化时,纵联距离保护需要进行相应的调整和优化。
3. 对电力系统的负荷变化敏感:纵联距离保护对电力系统的负荷变化比较敏感,当负荷变化较大时,保护装置可能会误判线路故障。
结论:纵联距离保护是一种常用的电力系统保护方式,它通过测量电流和电压的差值来判断线路是否发生故障。
纵联距离保护具有灵敏性高、可靠性强、抗干扰能力强和适用范围广的优点,但也存在定位误差、受电力系统结构影响和对负荷变化敏感的缺点。
纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点纵联距离保护(Pilot Distance Protection)是一种常用的电力系统保护方案,它通过测量电力系统中的纵向信息,实现对电力线路的保护。
纵联距离保护的原理是根据故障点到保护装置的距离来判断故障位置,并通过比较测量值和设定值之间的差异来实现保护动作。
本文将详细介绍纵联距离保护的原理及其优缺点。
一、原理纵联距离保护的原理基于以下两个假设:1. 电力线路上的故障点与保护装置之间的电压、电流及功率的关系是稳定的。
2. 电力线路上的故障点与保护装置之间的阻抗是稳定的。
根据这两个假设,纵联距离保护装置通过测量电力线路上的电压和电流,并计算出故障点到保护装置的阻抗值。
然后,将该阻抗值与设定值进行比较,如果二者之间的差异超过一定的阈值,就会发出保护信号,触发保护动作。
二、优点1. 灵敏度高:纵联距离保护可以根据电力线路上的电压和电流的变化情况,准确地判断故障点的位置。
它具有较高的灵敏度,能够快速准确地检测故障,并采取相应的保护措施,有效地保护电力系统的安全运行。
2. 速度快:纵联距离保护的动作速度非常快,可以在故障发生后的瞬间就做出反应。
这对于保护电力系统的设备和人员来说,非常重要,可以避免故障扩大和损害的发生,保护电力系统的可靠性和稳定性。
3. 抗干扰能力强:纵联距离保护对外界的干扰具有一定的抵抗能力。
它可以通过滤波和抗干扰算法来抑制电力系统中的干扰信号,确保保护装置的测量结果准确可靠。
4. 适应性强:纵联距离保护具有较强的适应性,可以适应不同类型的故障和电力系统结构。
它可以通过调整设定值和参数来适应不同的工况和系统变化,提高保护的准确性和可靠性。
三、缺点1. 距离测量误差:纵联距离保护的测量结果受到电力线路参数的影响,如电阻、电抗等。
这些参数可能会随着电力系统的运行状态和负载变化而发生变化,导致测量结果的误差增大,从而影响保护的准确性。
2. 故障位置误判:纵联距离保护只能判断故障点与保护装置之间的距离,不能准确判断故障的位置。
继电保护(纵联保护)

LINYI UNIVERSITY
二、高频通道的构成原理
“导线-大地”制, 只需在一相线路上
装设通道设备,经
济性好。缺点是高 频信号的衰耗和受 到的干扰都比较大。
我国广泛采用!
LINYI UNIVERSITY
LINYI UNIVERSITY
四、相差动高频保护的基本原理
1、保护原理:比较被保护线路两端短路电流相位。电流 给定正方向由母线流向线路。
正常运行或外部故障时,两端电流相位相差180°,保护
装臵不应动作。
LINYI UNIVERSITY
四、相差动高频保护的基本原理
1、保护原理:比较被保护线路两端短路电流相位。电流 给定正方向由母线流向线路。
空隙的对端高频脉冲就是一种闭锁信号。 在内部故障时,没
有这种填满空隙的脉冲,就构成了保护跳闸的必要条件。 因此,相差动高频保护是一种传送闭锁信号的保护。
LINYI UNIVERSITY
五、相差动高频保护原理接线
1、需要两个启动元件 2、I1 的灵敏度要均高于 本侧和对侧I2 的灵敏度
起动元件:I1-I4 ,其中I1 和I2 反 应三相对称短路, I3和I4反应不 对 称 短 路 ; I1 和 I3 灵 敏 度 高 , I2和I4灵敏度低。
LINYI UNIVERSITY
5)高频收、发信机 收信机由继电保护控 制,通常在电力系统发生 故障时,保护部分起动之 后它才发出信号。高频收 信机接收由本端和对端所 发送的高频信号,经过比 较判断之后,再动作于继 电保护,使之跳闸或将它 闭锁。 6)接地刀闸:当检修连接滤波器时,接通接地刀闸,使结合电 容器下端可靠接地。
纵联和横联差动保护的原理

纵联和横联差动保护的原理~!电网的纵联差动保护电流、电压和距离保护属于单端保护,不能瞬时切除保护范围内任何地点的故障。
这就不能满足高压输电线路系统稳定的要求。
如何保证瞬时切除高压输电线路故障?解决办法:采用线路纵差动保护线路纵差动保护是利用比较被保护元件始末端电流的大小和相位的原理来构成输电线路保护的。
当在被保护范围内任一点发生故障时,它都能瞬时切除故障。
-、纵联差动保护的工作原理电网的纵联差动保护反应被保护线路首末两端电流的大小和相位,保护整条线路,全线速动。
纵联差动保护原理接线如下图所示。
,即为电流互感器二次电流的差。
差回路:继电器回路。
正常'流入继电器的电流为I2—I2运行:流入差回路的电流外部短路:流入差回路中的电流为指出:被保护线路在正常运行及区外故障时,在理想状态下,流入差动保护差回路中的电流为零。
实际上,差回路中还有一个不平衡电流Ibp。
差动继电器KD的起动电流是按大于不平衡电流整定的,所以,在被保护线路正常及外部故障时差动保护不会动作。
内部短路:流入差动保护回路的电流为被保护线路内部故障时,流入差回路的电流远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。
结论: 1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动 4、不能作相邻元件的后备保护二、纵联差动保护的不平衡电流 1.稳态情况下的不平衡电流该不平衡电流为两侧电流互感器励磁电流的差。
差动回路中产生不平衡电流最大值为式中 KTA一电流互感器 10%误差; max—被保护线路外部短路时,流过保护线路的最大短路电流。
∙Ktx—电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l; Id 2.暂态不平衡电流纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流,其最大值为 2。
三、纵联差动保护的整定计算~式中Kfz——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5 差动保护的动作电流按躲开外部故障时的最大不平衡电流整定为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定灵敏度校验:四、纵联差动保护的评价优点:全线速动,不受过负荷及系统振荡的影响,灵敏度较高。
电力系统继电保护电子教案第四章输电线纵联保护

1. 环流式导引线保护
.
IM
* *
.
Im
.
IN
同极性端子
* *
.
In
动作线圈 动作线圈
导引线
制动线圈
同极性端子 制动线圈
线路两侧电流互感器的同极性端子经导引线连接起 来。继电器的动作线圈跨接在两导引线芯之间。如 果有制动线圈则它被串接在导引线的回路中。
.
IM
* *
.
Im
.
IN
* *
.
In
动作线圈 动作线圈
M
IM
k1 I N N
根据基尔霍夫电流定律(KCL)
可知:
UM
UN
在集总参数电路中,任何时刻,
内部故障
对任意一节点,所有支路电流相 量和等于零。用数学表达式表示 M IM
I N N k2
如下: I 0
区外故障
对于输电线路MN可以认为是一个节
点。
内部故障
I IM IN Ik
外部故障
I IM IN 0
.
IM
* *
.
Im
.
k1
IN
*
*
.
In
动作线圈 动作线圈
动作线圈中两侧电流同相
制动线圈
制动线圈的制动电流小于 动作线圈中的动作电流
制动线圈
在内部故障时,动作线圈中两侧电流同相,制动线圈 的制动电流小于动作线圈中的动作电流,保护能够可 靠动作。
2.均压法
.
IM
*
*
.
Im
.
IN
* *
.
In
平衡线圈 平衡线圈
(4)光纤通道
光纤通道与微波通道有相同的优点。光纤 通信也广泛采用(PCM)调制方式。当被保 护线路很短时,通过光缆直接将光信号送到 对侧,在每半套保护装置中都将电信号变成 光信号送出,又将所接收之光信号变为电信 号供保护使用。由于光与电之间互不干扰, 所以光纤保护没有导引线保护的问题,在经 济上也可以与导引线保护竞争。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵联距离保护的原理及优缺点
1. 纵联距离保护的基本原理
纵联距离保护是电力系统中常用的一种保护方式,主要用于保护输电线路或配电线路上的设备和电缆。
其基本原理是通过比较故障点到保护装置的距离和设定的保护范围来判断故障是否在保护范围内,并进行相应的动作。
纵联距离保护通常由保护装置、线路电流互感器、电压互感器以及通信系统等组成。
保护装置通过线路电流互感器和电压互感器获取电流和电压信号,并通过保护算法对这些信号进行处理。
保护装置上设置了故障类型、故障距离以及保护区域等参数,通过比较故障距离和保护范围来判断故障是否在保护范围内。
当故障发生时,保护装置会判断故障距离,若故障距离小于保护范围,则认定故障在保护范围内,并进行相应的动作,如切断故障线路,以保护其他正常运行的设备。
通常,纵联距离保护采用的是故障电流和电压的比值来计算故障距离。
当故障发生时,纵联距离保护计算故障点到保护装置的距离,并与设定的保护范围进行比较。
常用的故障距离计算方法有:
1.阻抗比较法:将故障电流与故障电压之比与事先设定的特征阻抗比进行比较,
来判断故障距离。
2.主导阻抗法:通过采集线路两端电压和流过线路的电流,计算出线路的纵阻
抗,再与设定的阻抗比进行比较,来判断故障距离。
3.移相法:通过采集线路两端电压和流过线路的电流,计算出线路的移相角,
然后通过事先计算出的移相系数来判断故障距离。
2. 纵联距离保护的优点
纵联距离保护具有以下几个优点:
•快速性:纵联距离保护的动作速度非常快,通常可以在几毫秒内完成动作。
这可以有效地减少故障带来的损失,并保护系统的稳定运行。
•可靠性:纵联距离保护在判断故障是否在保护范围内时,通过比较实际的故障距离和设定的保护范围来进行判断。
这种保护方式相对于传统的差动保
护来说更为可靠,可以减少误动作的可能性。
•适应性:纵联距离保护可以适应不同类型的故障,包括短路故障、接地故障以及其他类型的故障。
通过设定不同的保护参数,可以实现对不同故障的
保护。
•经济性:纵联距离保护相对于差动保护来说,不需要在整个线路上安装大量的高精度互感器。
这使得纵联距离保护在经济上更为可行。
3. 纵联距离保护的缺点
纵联距离保护也存在一些缺点,需要注意和解决:
•灵敏度问题:纵联距离保护受到线路电流和电压的互感器精度限制,如果互感器精度不高或存在误差,可能会导致保护的灵敏度降低,造成误动作或
漏动作。
•负荷影响:纵联距离保护通常无法与负荷的变化相独立。
线路的负荷变化会改变线路的电流和电压特性,从而影响纵联距离保护的准确性。
因此,在
线路负荷变化较大的情况下,需要对纵联距离保护进行合理的校准和定期检
测。
•故障判别问题:纵联距离保护通常无法准确判断故障类型,即无法区分短路故障和接地故障。
这可能会对故障的处理和定位产生影响,需要结合其他
保护装置进行综合判断。
综上所述,纵联距离保护作为一种常用的电力系统保护方式,具有快速性、可靠性、适应性和经济性等优点。
然而,也需要注意解决其灵敏度问题、负荷影响以及故障判别问题等缺点,以保证其正确可靠地保护电力系统的安全运行。