第一节 平面向量的概念讲义--高三数学一轮复习备考

合集下载

2025年高考数学一轮复习-6.1-平面向量的概念及其线性运算【课件】

2025年高考数学一轮复习-6.1-平面向量的概念及其线性运算【课件】
的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】选B.由|a+b|=|a|-|b|及向量的减法法则,可得向量a与b平行且反向,
由a=λb可得向量a,b平行,因此“a=λb”是“|a+b|=|a|-|b|”的必要不充分条件.
5
5
8
4.(必修第二册P15练习T2·
度属中、低档.
必备知识·逐点夯实
知识梳理·归纳
1.平面向量的有关概念
名称
向量
零向量
单位向量
定义
备注
既有大小又有方向的量;
向量由方向和长度确定,
向量的大小称为向量的长度(模)
不受位置影响
长度为___的向量
0
任意
记作0,其方向是______的
1个
长度等于_____单位长度的向量
与非零向量a共线的单位向量
1或3
3.向量∥,其中是单位向量且 =2 ,则 =________.
【解析】因为∥,其中是单位向量且 =2 ,则=-,
①若=2,则 = − = −2 = =1;
②若=-2,则 = + 2 = 3 =3 =3,因此, =1或3.
含义.
4.了解平面向量的线性运算性质及其几何意义.
【核心素养】
直观想象、数学运算、逻辑推理.
【命题说明】
考向
考法
预测
高考命题常以共线向量基本定理与平面向量基本定理为载体考查向
量的加、减、数乘运算以及它们的几何意义,常以选择或填空题的
形式考查.
预计2025年高考仍会考查线性运算,题型以选择题、填空题为主,难

高考数学一轮总复习教学课件第五章 平面向量、复数第1节 平面向量的概念及线性运算

高考数学一轮总复习教学课件第五章 平面向量、复数第1节 平面向量的概念及线性运算



②利用结论“若=λ+μ(λ,μ为实数),则 A,B,C 三点共线的
充要条件是λ+μ=1”来证明三点共线,但应注意此结论成立的前提条


件是“,不共线”.
[针对训练]



(1)已知向量 a,b 且=a+2b,=-5a+6b,=7a-2b,则一定共线的三
点是(
A.A,B,D
相等,与起点(终点)无关.
(3)两向量可以相等,也可以不相等,但两向量不能比较大小.向量
的模长均为实数,所以模长可以比较大小.


(4)非零向量a与 || 的关系: ||是与a同方向的单位向量.
[针对训练] 给出下列命题:


①若A,B,C,D是不共线的四点,且 = ,则四边形ABCD为平行
(1)|a|与|b|是否相等和a,b的方向无关.( √
(2)若a∥b,b∥c,则a∥c.(

×
)
)

(3)向量与向量是共线向量,则 A,B,C,D 四点在一条直线上.
(
)
×
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.( √
)
2.在平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点
k(2a-b),则有(1-2k)a+(k+λ)b=0,因为a,b是两个不共线向量,故a
- = ,
与b均不为零向量,所以
+ = ,


解得 k=,λ=-.
提升·关键能力
类分考点,落实四翼
考点一
平面向量的基本概念
[例1] (1)下列命题正确的是(

【恒心】高考数学(理科)一轮复习突破课件004001-平面向量的概念及其线性运算

【恒心】高考数学(理科)一轮复习突破课件004001-平面向量的概念及其线性运算
向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数 λ,使 b=λa 得__________.
|λ||a|
1、对共线向量的理解
(1)若向量 a,b 共线,则向量 a,b 的方向相同.( ) (2)若 a∥b,b∥c,则 a∥c.( ) (3)(2013· 郑州调研改编)设 a 与 b 是两个不共线向量,且 1 向量 a+λb 与 2a-b 共线,则 λ=- .( ) 2 (4)(2013· 陕西卷改编)设 a,b 为向量,则“|a· b|=|a|· |b|”是 “a∥b”的充分必要条件.( )
解 由题意知,在平行四边形 OADB 中, → =1BC → =1BA → =1(OA → -OB → )=1(a-b) =1a-1b, BM 3 6 6 6 6 6 1 1 1 5 → → → 则OM=OB+BM=b+ a- b= a+ b. 6 6 6 6 2→ 2 → → 2 2 2 → ON= OD= (OA+OB)= ( a+b)= a+ b, 3 3 3 3 3 → ON → OM → 2(a b) 1a 5b 1a 1b. MN = - = + - - = - 3 6 6 2 6
一是同向,二是反向, 反向时 a=-|a|a0,
故②③也是假命题.
综上所述,假命题的个数是 3.
考 点
平面向量的线性运算
→ → =b, 【例 2】 如图,在平行四边形 OADB 中,设OA=a,OB → =1BC → ,CN → =1CD → .试用 a,b 表示OM → ,ON → 及MN →. BM 3 3
规律方法
平面向量的有关概念
训练 1 设 a0 为单位向量,①若 a 为平面内的某个向量,则 a=|a|a0;②若 a 与 a0 平行,则 a=|a|a0;③若 a 与 a0 平行且 |a|=1,则 a=a0.上述命题中,假命题的个数是( D ). A.0 B.1 C.2 D.3

高三数学一轮复习教案――平面向量(附高考分类汇编)

高三数学一轮复习教案――平面向量(附高考分类汇编)

高三数学一轮复习精品教案――平面向量一、本章知识结构:二、重点知识回顾1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示;②用字母a 、b等表示;③平面向量的坐标表示:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。

任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得axi yj =+ ,),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i (1,0)=,j (0,1)=,0(0,0)= 。

a =;若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=,A B =3.零向量、单位向量:①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c.共线向量与平行向量关系:平行向量就是共线向量.5.相等向量:长度相等且方向相同的向量叫相等向量.6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。

向量加法的三角形法则和平行四边形法则。

②向量的减法向量a 加上的b 相反向量,叫做a 与b 的差。

即:a -b = a+ (-b );差向量的意义: OA = a, OB =b, 则BA =a- b③平面向量的坐标运算:若11(,)a x y = ,22(,)b x y = ,则a b +),(2121y y x x ++=,a b -),(2121y y x x --=,(,)a x y λλλ= 。

④向量加法的交换律:a +b =b +a ;向量加法的结合律:(a +b ) +c =a + (b +c )7.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa|=|λ||a|;(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa =0;(3)运算定律 λ(μa )=(λμ)a ,(λ+μ)a =λa +μa ,λ(a +b )=λa +λb8. 向量共线定理 向量b 与非零向量a共线(也是平行)的充要条件是:有且只有一个非零实数λ,使b =λa。

2020版高考数学大一轮复习-第1节平面向量的概念及线性运算讲义(理)(含解析)新人教A版

2020版高考数学大一轮复习-第1节平面向量的概念及线性运算讲义(理)(含解析)新人教A版

第1节平面向量的概念及线性运算考试要求 1.了解向量的实际背景;2.理解平面向量的意义和两个向量相等的含义;3.理解向量的几何表示和基本要素;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb相反;当λ=0时,λa =03.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . [微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地, 一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) 解析 (2)若b =0,则a 与c 不一定平行.(3)共线向量所在的直线可以重合,也可以平行,则A ,B ,C ,D 四点不一定在一条直线上. 答案 (1)√ (2)× (3)× (4)√2.(必修4P78A6改编)给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①②解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误. 答案 A3.(必修4P92A12改编)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B.2OM →C.3OM →D.4OM →解析 OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →. 答案 D4.(2019·东莞调研)如图所示,已知AC →=3BC →,OA →=a ,OB →=b ,OC →=c ,则下列等式中成立的是( )A.c =32b -12aB.c =2b -aC.c =2a -bD.c =32a -12b解析 因为AC →=3BC →,OA →=a ,OB →=b ,所以OC →=OA →+AC →=OA →+32AB →=OA →+32(OB →-OA →)=32OB →-12OA→=32b -12a . 答案 A5.(2018·上海静安区月考)若四边形ABCD 满足AD →=12BC →且|AB →|=|DC →|,则四边形ABCD 的形状是( ) A.等腰梯形 B.矩形 C.正方形D.菱形解析 因为AD →=12BC →,所以AD →∥BC →,且|AD →|=12|BC →|,所以四边形ABCD 为以AD 为上底,BC为下底的梯形.又|AB →|=|DC →|,所以梯形ABCD 的两腰相等.因此四边形ABCD 是等腰梯形. 答案 A6.(2019·菏泽调研)设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a )共线,则λ=________.解析 依题意知向量a +λb 与2a -b 共线,设a +λb =k (2a -b ),则有(1-2k )a +(k +λ)b=0,所以⎩⎪⎨⎪⎧1-2k =0,k +λ=0,解得k =12,λ=-12.答案 -12考点一 平面向量的概念【例1】 (1)设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( )A.a =2bB.a ∥bC.a =-13bD.a ⊥b(2)给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A.②③B.①②C.③④D.②④解析 (1)由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A 中a 与b 的方向相同;选项B 中a 与b 共线,方向相同或相反;选项C 中a 与b 的方向相反;选项D 中a 与b 互相垂直.(2)①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|, AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③. 答案 (1)C (2)A规律方法 对于向量的有关概念应注意以下几点:(1)平行向量就是共线向量,二者是等价的,它们均与起点无关;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性. (2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负数,可以比较大小.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.【训练1】 (1)如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →(2)给出下列说法:①非零向量a 与b 同向是a =b 的必要不充分条件; ②若AB →与BC →共线,则A ,B ,C 三点在同一条直线上; ③a 与b 是非零向量,若a 与b 同向,则a 与-b 反向; ④设λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误说法的序号是________.解析 (1)根据相等向量的定义,分析可得AD →与BC →不平行,AC →与BD →不平行,所以AD →=BC →,AC →=BD →均错误,PE →与PF →平行,但方向相反也不相等,只有EP →与PF →方向相同,且大小都等于线段EF 长度的一半,所以EP →=PF →.(2)根据向量的有关概念可知①②③正确,④错误. 答案 (1)D (2)④考点二 平面向量的线性运算 多维探究角度1 向量的线性运算【例2-1】 (2018·全国Ⅰ卷)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC → 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点, ∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.答案 A角度2 利用向量线性运算求参数【例2-2】 (1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A.1B.34C.23D.12(2)在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.解析 (1)∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →, 则x =34,y =14.故xy =3.答案 (1)B (2)3规律方法 1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【训练2】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.a -12bB.12a -bC.a +12bD.12a +b(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点, 得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →, ∴λ1=-16,λ2=23,因此λ1+λ2=12.答案 (1)D (2)12考点三 共线向量定理及其应用 【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →.∴AB →,BD →共线,又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.规律方法 1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.2.向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立.【训练3】 (1)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1(2)(一题多解)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( )A.{0}B.∅C.{-1}D.{0,-1}解析 (1)因为A ,B ,C 三点共线,所以AB →∥AC →,设AB →=mAC →(m ≠0),则λa +b =m (a +μb ),所以⎩⎪⎨⎪⎧λ=m ,1=mμ,所以λμ=1.(2)法一 若要x 2OA →+xOB →+BC →=0成立,BC →必须与x 2OA →+xOB →共线,由于OA →-OB →=BA →与BC →共线,所以OA →和OB →的系数必须互为相反数,则x 2=-x ,解得x =0或x =-1,而当x =0时,BC →=0,此时B ,C 两点重合,不合题意,舍去.故x =-1.法二 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0, 即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去.故x =-1. 答案 (1)D (2)C[思维升华]1.向量线性运算的三要素向量的线性运算满足三角形法则和平行四边形法则,向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.三个常用结论(1)O 为△ABC 的重心的充要条件是OA →+OB →+OC →=0;(2)四边形ABCD 中,E 为AD 的中点,F 为BC 的中点,则AB →+DC →=2EF →;(3)对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.注意向量共线与三点共线的区别. [易错防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.基础巩固题组 (建议用时:35分钟)一、选择题1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的个数为( )A.1B.2C.3D.4解析 由题知结果为零向量的是①④,故选B. 答案 B2.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A.0B.BE →C.AD →D.CF →解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →. 答案 D3.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a |D.|-λa |≥|λ|·a解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小. 答案 B4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A.A ,B ,C B.A ,B ,D C.B ,C ,DD.A ,C ,D解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线. 答案 B5.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD → C.AD →D.12BC → 解析 如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.答案 C6.(2019·唐山二模)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( ) A.-2B.-12C.- 2D. 2解析 DO →=DA →+AO →=CB →+AO →=AB →-AC →+12AC →=AB →-12AC →,∴λ=1,μ=-12,因此λμ=-2.答案 A7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A.1B.2C.3D.4解析 ∵O 为BC 的中点,∴AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2. 答案 B8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析 设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13, 因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 答案 D 二、填空题9.如图,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析 根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案 310.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.答案 1211.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x +y =________. 解析 由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →, 所以x =12,y =-16,因此x +y =12-16=13.答案 1312.(2019·清华大学自主招生能力测试)设O 在△ABC 的内部,D 为AB 的中点,且OA →+OB →+2OC →=0,则△ABC 的面积与△AOC 的面积的比值为________. 解析 ∵D 为AB 的中点, 则OD →=12(OA →+OB →),又OA →+OB →+2OC →=0,∴OD →=-OC →,∴O 为CD 的中点. 又∵D 为AB 的中点,∴S △AOC =12S △ADC =14S △ABC ,则S △ABCS △AOC=4.答案 4能力提升题组 (建议用时:15分钟)13.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( ) A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上解析 因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 答案 B14.(2019·青岛二模)设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A.12AD → B.32AD → C.12AC →D.32AC → 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.答案 D15.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由已知条件得MB →+MC →=-MA →,如图,延长AM 交BC 于D 点,则D 为BC 的中点.同理E ,F 分别是AC ,AB 的中点,因此点M 是△ABC 的重心, ∴AM →=23AD →=13(AB →+AC →),则m =3.答案 316.(2019·郑州模拟)设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →. 又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2, 所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2) =(3-k )e 1-(2k +1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2, 又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.答案 -94新高考创新预测17.(多填题)在△ABC 中有如下结论:“若点M 为△ABC 的重心,则MA →+MB →+MC →=0.”设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,点M 为△ABC 的重心. 若aMA →+bMB →+33cMC →=0,则内角A 的大小为________,当a =3时,△ABC 的面积为________.解析 由aMA →+bMB →+33cMC →=aMA →+bMB →+33c (-MA →-MB →)=⎝ ⎛⎭⎪⎫a -33c MA →+⎝ ⎛⎭⎪⎫b -33c MB →=0,且MA →与MB →不共线,∴a -33c =b -33c =0,∴a =b =33c .△ABC 中,由余弦定理可求得cosA =32,∴A =π6.若a =3,则b =3,c =33,S △ABC =12bc sin A =12×3×33×12=934. 答案 π6 934。

高考数学理一轮复习 5-1平面向量的概念及运算 精品课件

高考数学理一轮复习 5-1平面向量的概念及运算 精品课件
其大小和方向,是可以任意移动的,即我们研 究的是自由向量.
方法规律· 归纳
题型一
平面向量的有关概念
向量的定义、向量的模、零向 量、单位向量、平行向量、相 等向量
思维提示
例1 给出下列命题: ①若|a|=|b|,则a=±b;
②若|a|<|b|,则a<b;
③若a=b,则a∥b; ④若a∥b,则a=b; ⑤若|a|=0,则a=0; ⑥若a≠b,则a与b一定不共线.
答案:D
题型二 思维提示
平面向量的线性运算 向量的加法、减法运算法则以及 几何意义
例 2
如图所示,若四边形 ABCD 是一个等腰梯形,
→ =a,AD →= AB∥CD,M、N 分别是 DC、AB 的中点,已知AB → =c,试用 a、b、c 表示BC → ,MN → ,DN → +CN →. b,DC
答案:A
题型三
共线向量定理、平面向量基本定 理及应用
证明三点共线问题,可用向量共 线来解决.平面内任意三个不共 思维提示 线的向量中的任何一个向量都可 以表示为其余两个向量的线性组 合,且形式唯一
例3
1→ → 1→ → 如图所示,在△ABO 中,OC= OA,OD= OB, 4 2
→ =a,OB → =b . AD 与 BC 相交于点 M 设OA
(4)零向量与数字0是两个不同的概念,零向量不等于数 字0,故⑤不正确.
(5) 因为向量不相等,可能仅由于模不相等,方向仍可
能是相同的,所以a与b有共线的可能,故⑥不正确 [答案] ③
备选例题 1 的充要条件是
(2008·海南 · 宁夏高考 ) 平面向量 a, b共线
(
A.a,b方向相同 B.a,b两向量中至少有一个为零向量 C.存在λ∈R,b=λa D.存在不全为零的实数λ1,λ2,λ1a+λ2b=0

人教B版高考总复习一轮数学精品课件 第七章 平面向量、复数 第一节 平面向量的概念及线性运算

人教B版高考总复习一轮数学精品课件 第七章 平面向量、复数 第一节 平面向量的概念及线性运算
a∥c,当 b≠0 时,必有 a∥b,b∥c,则 a∥c,故 B 正确;与非零向量 a 共线的单位

向量有±||,故 C 错误;当 λ=μ=0 时,虽然满足 λa=μb,但 a 与 b 可以不共线,故 D
错误.

(2)由
||
+

=0
||
是选项 B,C,D.


得 =- ,因此
|| ||
a 与 b 为相反向量,所以其成立的充分条件可以
=-2+3 =-2m+3n.故选 B.
(方法 2)因为 BD=2DA,所以 =
2

3
+
1

,于是
=-2
+3
=-2m+3n.
3
故选 B.
(2) = + = +
1
)=
3
+
2
(
3
+
2

3
=
1
1
)=
4
2
2r+3s=1+2=3.故选 C.
b=λa
.
微点拨 三点共线的几个等价关系
(1) = ( ≠ 0)
(2) = (1-) + (为平
A,P,B 三点共线⇔
面内异于,,的任一点,∈R)
(3) = + (为平面内
异于,,的任一点,∈R,∈R,
+ = 1).
微思考 共线向量定理中为什么规定a≠0?
3.向量的减法
(1)定义:一般地,平面上任意给定两个向量a,b,如果向量x能够满足b+x=a,
则称x为向量a与b的差,并记作

高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版

高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版

[最新考纲] 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义.
[考情分析]
[核心素养]
平面向量的相关概念,平面向量的线性运算,共线向 1.数学运算
量定理及其应用仍是 2021 年高考考查的热点,题型仍将是 2.直观想象
选择题与填空题,分值为 5 分.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.向量的有关概念 (1)向量:既有大小又有 1 __方__向_____的量叫做向量,向量的大小叫做向量的 2 _____模____. (2)零向量:长度为 3 ___0______的向量,其方向是任意的. (3)单位向量:长度等于 4 _1_个__单__位___的向量.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb),即(k-λ)a=(λk-1)b. 又 a,b 是两个不共线的非零向量, ∴kλk--λ=1=0,0. ∴k2-1=0.∴k=±1.
|变式探究| 1.若将本例(1)中“B→C=2a+8b”改为“B→C=a+mb”,则 m 为何值时,A,B,D 三点共线? 解:B→D=B→C+C→D=(a+mb)+3(a-b)=4a+(m-3)b, 若 A,B,D 三点共线,则存在实数 λ,使B→D=λA→B, 即 4a+(m-3)b=λ(a+b),∴4m=-λ3,=λ,解得 m=7. 故当 m=7 时,A,B,D 三点共线.
法则(或几何意义)
运算律
交换律:a+b= 8 __b_+__a____;
结 合 律 : (a + b) + c = 9 _a_+__(b_+__c_)_
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量与复数第一节平面向量的概念一、课程标准1.向量概念(1)通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义;(2)理解平面向量的几何表示和基本要素.2.向量运算(1)借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义;(2)通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义;(3)了解平面向量的线性运算性质及其几何意义;(4)通过物理中功等实例,理解平面向量数量积的概念及物理意义,会计算平面向量的数量积;(5)通过几何直观了解平面向量投影的概念及投影向量的意义.新高考命题方向:主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量基本定理,有时也会有创新的新定义问题;题型以选择题、填空题为主,属于中低档题目,偶尔会在解答题中作为工具出现.考查理性思维、数学探究、数学抽象学科素养.二、知识梳理知识点一向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量记作,其方向是任意的单位向量长度等于长度的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量(又叫做共线向量)0与任意向量或共线相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为01.对于平行向量易忽视两点:(1)零向量与任意向量平行;(2)表示两平行向量的有向线段所在的直线平行或重合,易忽视重合这一情况.2.单位向量的定义中只规定了长度,没有方向限制. 知识点二 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算法则法则(1)交换律:a +b = (2)结合律:(a +b )+c =减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |= ;当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =λ(μa )=(λμ)a ;(λ+μ)a = ;λ(a +b )=知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得 . 知识点四 平面向量的数量积 1.向量的夹角 定义图示范围共线与垂直已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是θ=0或θ=π⇔ ,⇔a ⊥b• 温馨提醒 •对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .2.平面向量的数量积 (1)投影向量①如图,设a ,b 是两个非零向量,AB → =a ,CD →=b ,分别过A ,B 作CD 的垂线,垂足分别为A 1,B 1,得到,我们称上述变换为向量a 向向量b 投影,叫做向量a 在向量b 上的投影向量.如图,在平面内任取一点O 作OM → =a ,ON →=b ,过M 作ON 的垂线,垂足为M 1,则就是向量a 在向量b 上的投影向量,设与b 方向相同的单位向量为e ,〈a ,b 〉为θ,则=(|a |cos θ)e .两个向量数量积的几何意义:a ·b 等于a 在b 上的投影数量与b 的模的乘积. (2)向量数量积的运算律①a ·b = ;②(λa )·b =λ(a ·b )= ;③(a +b )·c = .• 温馨提醒 •1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3.在用|a |=a 2 求向量的模时,一定要先求出a 2再进行开方.三、基础自测1.若m ∥n ,n ∥k ,则向量m 与向量k ( )A .共线B .不共线C .共线且同向D .不一定共线 2.已知a·b =-122 ,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33 D .33.(易错题)已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2 D .05.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA → =a ,OB → =b ,则DC → =________,BC →=________(用a ,b 表示).四、核心题型题型一 平面向量的有关概念及线性运算例1(1) (多选)已知a ,b 是两个单位向量,下列命题中正确的是( )A .|a |=|b |=1B .a ·b =1C .当a ,b 反向时,a +b =0D .当a ,b同向时,a =b(2)设a ,b 都是非零向量,下列四个条件中,一定能使a |a | +b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13b D .a ⊥b(3)在△ABC 中,D 为AB 的中点,点E 满足EB → =4EC → ,则ED →=( )A .56 AB → -43 AC → B .43 AB → -56 AC → C .56 AB → +43 AC →D .43AB → +56AC →题型二 平面向量共线定理的应用例2(1)已知两个非零向量a ,b 互相垂直,若向量m =4a +5b 与n =2a +λb 共线,则实数λ的值为( )A .5B .3C .52 D .2(2)设a ,b 是不共线的两个向量,已知BA → =a +2b ,BC → =4a -4b ,CD →=-a +2b ,则( )A .A ,B ,D 三点共线 B .B ,C ,D 三点共线 C .A ,B ,C 三点共线 D .A ,C ,D 三点共线(3)已知O 为△ABC 内一点,且AO → =12 (OB → +OC → ),AD → =tAC →,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .23题型三 平面向量的数量积及应用例3(1)已知在矩形ABCD 中,AB =4,AD =2.若E ,F 分别为AB ,BC 的中点,则DE → ·DF →=( )A .8B .10C .12D .14(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM → =2MA → ,CN →=2NA → ,则BC → ·OM →的值为( )A .-15B .-9C .-6D .0(3) 已知|a |=6,e 为单位向量,当向量a ,e 的夹角θ分别等于45°,90°,135°时,求向量a 在向量e 上的投影向量.(4)(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a·b =1,则|b |=________. (5)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3(6)(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.五、变式训练1.如图所示,在直角梯形ABCD 中,DC → =14 AB → ,BE → =2EC → ,且AE → =rAB → +sAD →,则2r +3s =( )A .1B .2C .3D .42..设两个非零向量a 与b 不共线.(1)若AB → =a +b ,BC → =2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .44.非零向量a ,b ,c 满足a ·b =a ·c ,a 与b 的夹角为π6 ,|b |=4,则c 在a 上的投影向量的长度为( )A .2B .23C .3D .4六、作业一轮复习资料《课时作业》437页 A 组:全部 B 组:2、3。

相关文档
最新文档