17必修四 第二章 平面向量 第一节 平面向量的基本概念及线性运算 教师版
第1讲 平面向量的概念及加减运算(教师版)

第1讲 平面向量的概念及加减运算一、考点梳理考点1 基本概念既有大小,又有方向的量叫做向量.以A 为起点、B 为终点的有向线段记作AB →.|AB →|叫AB →的模或AB →的绝对值,表示向量AB →的长度.(1)零向量:长度为0的向量叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于向量b ,记作a∥b . ①规定:零向量与任一向量平行. 例1.(1)下列物理量中不是向量的有( )①质量;①速度;①力;①加速度;①路程;①密度;①功;①电流强度. A .5个 B .4个 C .3个 D .2个解析:(1)看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,①①①既有大小也有方向,是向量,①①①①①只有大小没有方向,不是向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,①在四边形ABCD 中,AB ∥CD .①四边形ABCD 为平行四边形. ①AD →=BC →,①|AD →|=|BC →|=200 km.(3)判断下列命题是否正确,并说明理由.(1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)由于0方向不确定,故0不能与任意向量平行; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反; (5)起点不同,但方向相同且模相等的向量是相等向量.解析:(1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们方向的关系. (3)不正确.依据规定:0与任意向量平行.(4)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定. (5)正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.【变式训练1】.在下列命题中,真命题为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB →与向量BA →的长度相等 C .向量就是有向线段 D .零向量是没有方向的解析:由于单位向量的方向不一定相同,故其终点不一定相同,故A 错误;任何向量都有方向,零向量的方向是任意的,并非没有方向,故D 错误;有向线段是向量的形象表示,但并非说向量就是有向线段,故C 错误,故选B.【变式训练2】.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2) 在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 解析:(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(图略). 【变式训练3】.如图所示,①ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解析:(1)因为E 、F 分别是AC 、AB 的中点, 所以EF =12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →与CD →.考点2 向量的加法 三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和(或和向量),记作a +b ,即a +b =AB →+BC →=AC →.上述求两个向量和的作图法则,叫做向量加法的三角形法则. 对于零向量与任一向量a 的和有a +0=0+a =a .平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以OA ,OB 为邻边作平行四边形,则以O 为起点的对角线上的向量OC →=a +b ,这个法则叫做两个向量加法的平行四边形法则.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ).例2.(1)如图,已知向量a 、b ,求作向量a +b .解析:在平面内任取一点O (如下图),作OA →=a ,OB →=b ,以OA 、OB 为邻边做①OACB ,连接OC ,则OC →=OA →+OB →=a +b .2(2)如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________. 解析: (1)AC → (2)AO → (3)AD →(4)0(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解析:(1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0. 【变式训练1】.(1)如图①所示,求作向量和a +b .(2)如图①所示,求作向量和a +b +c .解析:(1)首先作向量OA →=a ,然后作向量AB →=b ,则向量OB →=a +b .如图①所示.(2)方法一(三角形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.方法二(平行四边形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA ,OB 为邻边作▭OADB ,连接OD ,则OD →=OA →+OB →=a +b ,再以OD ,OC 为邻边作①ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.【变式训练2】.(1)化简:①BC →+AB →;①AB →+DF →+CD →+BC →+F A →.(2)如图,已知O 为正六边形ABCDEF 的中心,求下列向量: ①OA →+OE →; ①AO →+AB →; ①AE →+AB →.解析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加.(1)①BC →+AB →=AB →+BC →=AC →;①AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AF →+F A →=0.(2)①由题图知,OAFE 为平行四边形,①OA →+OE →=OF →; ①由题图知,OABC 为平行四边形,①AO →+AB →=AC →; ①由题图知,AEDB 为平行四边形,①AE →+AB →=AD →.【变式训练3】.化简:(1)AB →+CD →+BC →. (2)(MA →+BN →)+(AC →+CB →). (3)AB →+(BD →+CA →)+DC →. 解析:(1)AB →+CD →+BC →=AB →+BC →+CD →=AD →.(2)(MA →+BN →)+(AC →+CB →)=(MA →+AC →)+(CB →+BN →)=MC →+CN →=MN →.(3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0.考点3 向量的减法 相反向量(1)我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a . (2)-(-a )=a ,a +(-a )=(-a )+a =0. (3)零向量的相反向量仍是零向量,即0=-0. 向量减法的定义求两个向量差的运算叫做向量的减法.我们定义,a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.向量减法的几何意义 (1)三角形法则如图,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.(2)平行四边形法则如图①,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义, 知AE →=a +(-b )=a -b .又b +BC →=a ,所以BC →=a -b .如图①,理解向量加、减法的平行四边形法则:在①ABCD 中,AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .例3.(1)在①ABC 中,D ,E ,F 分别为AB ,BC ,CA 的中点,则AF →-DB →等于( )A .FD →B .FC → C .FE →D .BE →解析:由题意可知AF →-DB →=DE →-DB →=BE →.答案:D(2)化简AC →-BD →+CD →-AB →得( )A .AB →B .AD →C .BC →D .0解析:答案:D解法一:AC →-BD →+CD →-AB →=AC →-BD →+CD →+BA →=(AC →+CD →)+(BA →-BD →)=AD →+DA →=0. 解法二:AC →-BD →+CD →-AB →=AC →+DB →+CD →+BA →=(AC →+CD →)+(DB →+BA →)=AD →+DA →=0.【变式训练1】.如图,设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,AD →=b ,OD →=c ,则OB →=解析:由于OB =DB -DO →,而DB →=AB →-AD →=a -b ,DO →=-OD →=-c , 所以OB →=a -b +c .【变式训练2】.化简:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →. 解析:解答本题可先去括号,再利用相反向量及加法交换律、结合律化简.(1)解法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.解法二:原式=AB →+MB →-OB →-MO →=AB →+(MB →-MO →)-OB →=AB →+(OB →-OB →)=AB →+0=AB →. (2)解法一:原式=DB →-DC →=CB →.解法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.二、课堂检测1.下列物理量:①质量;①速度;①位移;①力;①加速度;①路程.其中是向量的有( ) A .2个 B .3个 C .4个 D .5个 答案 C 解析 ①①①①是向量. 2.下列说法中正确的个数是( )①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等. A .0 B .1 C .2 D .3 答案 D3. 下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小答案 D 解析 A 中不管向量的方向如何,它们都不能比较大小,所以A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,所以B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C 不正确;D 中向量的模是一个数量,可以比较大小,所以D 正确. 4. 设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 5. 下列等式不成立的是( )A .0+a =aB .a +b =b +a C.AB →+BA →=2BA → D.AB →+BC →=AC →答案C 解析:对于C ,①AB →与BA →方向相反,①AB →+BA →=0.6. 如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → 答案 C7. a ,b 为非零向量,且|a +b |=|a |+|b |,则( )A .a∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A8.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 答案 C 解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →. 9. 在①ABC 中,BC →=a ,CA →=b ,则AB →等于( )A .a +bB .-a +(-b )C .a -bD .b -a 答案B ①BA →=BC →+CA →=a +b ,①AB →=-BA →=-a -b . 10. (多选)若a ,b 为非零向量,则下列命题正确的是( )A .若|a |+|b |=|a +b |,则a 与b 方向相同B .若|a |+|b |=|a -b |,则a 与b 方向相反C .若|a |+|b |=|a -b |,则|a |=|b |D .若||a |-|b ||=|a -b |,则a 与b 方向相同答案ABD 当a ,b 方向相同时,有|a |+|b |=|a +b |,||a |-|b ||=|a -b |;当a ,b 方向相反时,有|a |+|b |=|a -b |,||a |-|b ||=|a +b |,故A ,B ,D 均正确.10. 在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________. 答案 0解析 注意DC →+BA →=0,BC →+DA →=0.12. 如图,在①ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE →-DC →+ED →=________.11 答案0 因为D 是边BC 的中点,所以BE →-DC →+ED →=BE →+ED →-DC →=BD →-DC →=0.13. 设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________.答案 20,4 解析 当a 与b 共线同向时,|a +b |max =20;当a 与b 共线反向时,|a +b |min =4. 14. 已知向量|a |=2,|b |=4,且a ,b 不是方向相反的向量,则|a -b |的取值范围是________. 答案 [2,6) 根据题意得||a |-|b ||≤|a -b |<|a |+|b |,即2≤|a -b |<6.15. 如图所示,P ,Q 是①ABC 的边BC 上两点,且BP =QC . 求证:AB →+AC →=AP →+AQ →.证明 ①AP →=AB →+BP →,AQ →=AC →+CQ →,①AP →+AQ →=AB →+AC →+BP →+CQ →.又①BP =QC 且BP →与CQ →方向相反,①BP →+CQ →=0,①AP →+AQ →=AB →+AC →,即AB →+AC →=AP →+AQ →.。
说课课件第二章 平面向量 2.1平面向量的实际背景及基本概念

老鼠由A向东北方向以6m/s的速度逃窜,而猫由B 向正东方向10m/s的速度追. 问猫能否抓到老鼠?
嘻嘻!大笨猫!
C
唉, 哪儿去了?
A
B
猫的速度再快也没用,因为方向错了.
D
12
情景引入
南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发, 乘着马车一直往北走去.有人提醒他“到楚国应该朝南走,你怎能往北呢?” 他却说“不要紧,我有一匹好马!”问:北方人能到达楚国吗?
4
重点 难点
教学重难点
向量概念、向量的几何表示、以及相 等向量、平行向量、共线向量的概念;
让学生感受向量、平行向量或共线向量及 相等向量概念形成过程;
5
教学目标
01 知识技能 02 过程与方法
情感态度与价
03
值观
知识技能 (1) 理解平面向量的概念,学会平面向量的表示方法; (2) 理解零向量、单位向量、相等向量、平行向量的含义。
a
b
l
c
C
OB A
平行向量也叫做共线向量!
22
设计意图——根据目标选择合适题型, 检测学生本节课的学习情况。
23
小试牛刀
1.如图, D、E、F分别是△ABC各边上的中点,在 以A、B、C、D、E、F为端点的有向线段表示 A 的向量中,请分别写出:
(1)与向量 DE 相等的向量有__个, E
F
分别是___________;
()
(6)模相等的两个平行向量是相等的向量;
()
(7)共线向量一定在同一直线上;
()
25
课堂小结
向量的概念; 向量的表示方法; 零向量、单位向量概念; 平行向量、共线向量定义; 共线向量与平行向量关系;
高中数学 必修4 第二章 平面向量

高中数学必修4第二章平面向量平面向量的概念及线性运算²导学案一、目标认知学习目标:1.了解向量的实际背景.2.理解平面向量和向量相等的含义.3.理解向量的几何表示.4.掌握向量加、减、数乘运算,并理解其几何意义.5.理解两个向量共线的含义.6.了解向量的线性运算性质及其几何意义.重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:平行向量、相等向量和共线向量的区别和联系.二、知识要点梳理知识点一:向量的概念1.向量:既有大小又有方向的量叫做向量.2.向量的表示方法:(1)字母表示法:如等.(2)几何表示法:用一条有向线段表示向量.如等.(3)向量的有关概念向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度).零向量:长度为零的向量叫零向量.单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量.相反向量: 长度相等且方向相反的向量.共线向量:方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量).规定:与任一向量共线.要点诠释:1.数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小向量有方向,大小,双重性,不能比较大小.2.零向量的方向是任意的,注意0与0的含义与书写区别.3.平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.知识点二:向量的加(减)法运算1.运算法则:三角形法则、平行四边形法则2.运算律:①交换律:;②结合律:要点诠释:1.两个向量的和与差仍是一个向量,可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点.2..探讨该式中等号成立的条件,可以解决许多相关的问题知识点三:数乘向量1.实数与向量的积:实数与向量的积是一个向量,记作:(1);(2)①当时,的方向与的方向相同;②当时.的方向与的方向相反;③当时,.2.运算律设为实数,结合律:;分配律:,3.共线向量基本定理非零向量与向量共线的充要条件是当且仅当有唯一一个非零实数,使.要点诠释:是判定两个向量共线的重要依据,其本质是位置关系与数量关系的相互转化,体现了数形结合的高度统一.三、规律方法指导1.向量的线性运算(1)在正确掌握向量加法减法运算法则的基础上能结合图形进行向量的计算,将数和形有机结合,并能利用向量运算完成简单的几何证明;(2)向量的加法表示两个向量可以合成,利用它可以解决有关平面几何中的问题,减法的三角形法则应记住:连接两端(两向量的终点),指向被减(箭头指向被减数).记清法则是灵活运用的前提.2.共线向量与三点共线问题向量共线的充要条件实质上是由实数与向量的积得到的.通常用来判断三点在同一条直线上或两直线平行.该定理主要用于证明点共线、求系数、证直线平行等题型问题.§2.1 平面向量的实际背景及基本概念§2.2 平面向量的线性运算平面向量的基本定理及坐标表示²导学案一、目标认知学习目标:1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.重点:平面向量基本定理与平面向量的坐标运算.难点:平面向量基本定理的理解与应用,向量的坐标表示的理解及运算的准确性.二、知识要点梳理知识点一:平面向量基本定理如果是同一平面内两个不共线的向量,那么对于这个平面内任一向量,有且只有一对实数,使,称为的线性组合.①其中叫做表示这一平面内所有向量的基底;②平面内任一向量都可以沿两个不共线向量的方向分解为两个向量的和,并且这种分解是唯一的.这说明如果且,那么.③当基底是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础.要点诠释:平面向量基本定理的作用:平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基底的向量是不共线向量.知识点二:向量坐标与点坐标的关系当向量起点在原点时,定义向量坐标为终点坐标,即若A(x,y),则=(x,y).要点诠释:当向量起点不在原点时,向量坐标为终点坐标减去起点坐标,即若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).知识点三:平面向量的坐标运算运算坐标语言记=(x1,y1),=(x2,y2) 加法与减法=(x1+x2,y1+y2),=(x2-x1,y2-y1)实数与向量的乘积记=(x,y),则=(x,y)知识点四:平面向量平行(共线)的坐标表示设非零向量,则∥(x1,y1)=(x2,y2),即,或x1y2-x2y1=0.要点诠释:若,则∥不能表示成因为分母可能为0.三、规律方法指导1.用向量证明几何问题的一般思路:先选择一组基底,并运用平面向量基本定理将条件和结论表示成向量的形式,再通过向量的运算来证明.2.三点共线的判断方法判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定,即已知=(x2-x1,y2-y1),=(x3-x1,y3-y1),若则A,B,C三点共线.§2.3 平面向量的基本定理及坐标表示练习:平面向量的数量积及平面向量的应用²导学案一、目标认知学习目标:1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表示,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.重点:数量积的运算,以及运用数量积求模与夹角.难点:用向量的方法解决几何、物理等问题.二、知识要点梳理知识点一:平面向量的数量积1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量叫与的数量积,记作,即有.并规定与任何向量的数量积为0.2.一向量在另一向量方向上的投影:叫做向量在方向上的投影.要点诠释:1.两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由的符号所决定.(2)两个向量的数量积称为内积,写成;今后要学到两个向量的外积,而是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若,且,则;但是在数量积中,若,且,不能推出.因为其中有可能为0.2.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0°时投影为;当=180°时投影为.知识点二:向量数量积的性质设与为两个非零向量,是与同向的单位向量.1. 2.3.当与同向时,;当与反向时,. 特别的或4.5.知识点三:向量数量积的运算律1.交换律:2.数乘结合律:3.分配律:要点诠释:1.已知实数a、b、c(b≠0),则ab=bc a=c.但是; 2.在实数中,有(a×b)c=a(b×c),但是显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线. 知识点四:向量数量积的坐标表示1.已知两个非零向量,,2.设,则或3.如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式).三、规律方法指导1.向量在几何中的应用:(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件(2)证明垂直问题,常用垂直的充要条件(3)求夹角问题,利用(4)求线段的长度,可以利用或2.向量在物理中的应用:(1)向量的加法与减法在力的分解与合成中的应用;(2)向量在速度分解与合成中的作用.§2.4平面向量的数量积练习题:§2.5平面向量应用举例。
平面向量的概念及线性运算(优质课)教案

1.6平面向量的基本概念与线性运算(优质课)教案教学目标:1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.教学过程:*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1一、平面向量的概念:1、平面向量:在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.BaA图7-22、向量的模长:向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.3、零向量:长度为0的向量叫做零向量,其方向是任意的.4、单位向量:长度等于1个单位长度的向量叫做单位向量.5、平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.6、 相等向量:长度相等且方向相同的向量叫做相等向量.7、相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.二、平面向量的基本运算:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC 叫做位移AB 与位移BC 的和,记作AC =AB +BC .一般地,设向量a 与向量b 不共线,在平面上任取一点A (如图7-6),依次作AB =a , BC =b ,则向量AC 叫做向量a 与向量b 的和,记作a +b ,即 a +b =AB +BC =AC (7.1)求向量的和的运算叫做向量的加法.上述求向量的和的方法叫做向量加法的三角形法则. 2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD =BC ,根据三角形法则得AB +AD =AB +BC =AC这说明,在平行四边形ABCD 中, AC 所表示的向量就是AB 与AD 的和.这种求和方法叫做向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;图7-7ACBaba +bab图7-9ADCB(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =OA ,b =OB ,则()= OA OB OA OB OA BO BO OA BA −=+−+=+=.即 OA OB −=BA (7.2)观察图7-13可以得到:起点相同的两个向量a 、 b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4) 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=−=−a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 .aAa -bBbO图7-13题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →;⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA 相等的向量; (2)找出向量DC 的负向量; (3)找出与向量AB 平行的向量.分析 要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.解 由平行四边形的性质,得 (1)CB =DA ;(2)BA =DC −,CD DC =−; (3)BA //AB ,DC //AB ,CD //AB .练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出ADCB图7-5O(1)与EF 相等的向量;(2)与AD 共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC 相等的向量; (2)OC 的负向量; (3)与OC题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.解 如图7-10所示,AB 表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC =+=22125+=13.又512tan =∠CAD ,利用计算器求得6723CAD '∠≈︒1. 即船的实际航行速度大小是13km/h ,其方向与河岸线(水流方向)的夹角约6723'︒.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.分析 由于两条同样的绳子与竖直垂线所成的角都是θ,所以12F F =.解决问题不考虑其它因素,只考虑受力的平衡,所以12F F k +=−.解 利用平行四边形法则,可以得到1212cos F F F k +==θ,所以12cos k F =θ.练习:1. 如图,已知a ,b ,求a +b .F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 A BDC图7-10F 1F 2kθ 图7-112.填空(向量如图所示):(1)a +b =_____________ ,答案:→AC (2)b +c =_____________ ,答案:→BD (3)a +b +c =_____________ .答案:→AD 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA . 答案:(1)→AD (2)→OA例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即BA = a -b . 练习:1.填空:(1)AB AD −=_______________,答案:→DABbOaAba(1)(2)图7-14(图1-15)bbaa(1)(2)第1题图(2)BC BA −=______________,答案:→AC (3)OD OA −=______________.答案:→AD2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .解:AC =a+b ,BD =b-a,DB =a -b例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD . 解 :AC =a +b ,BD =b −a , 因为O 分别为AC ,BD 的中点,所以 1122==AO AC (a +b )=12a +12b ,OD =12BD =12(b −a )=−12a +12b .练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).解:(1)3(a −2 b )-2(2 a +b )=3a -6b-4a-2b=4 b-a (2)3 a −2(3 a −4 b )+3(a −b )=-11b2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 解:如图所示。
高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思

《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。
正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。
二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。
学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。
三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。
六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。
高中必修4平面向量——平面向量的基本概念及线性运算(教案)

平面向量的基本概念及线性运算一、知识点梳理1.向量的有关概念(1)向量的定义:既有______又有______的量叫做向量.(2)表示方法:用 来表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向,用字母a ,b ,…或用AB →,BC →,…表示.(3)模:向量的______叫向量的模,记作________或_______.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向是________.(5)单位向量:长度为____单位长度的向量叫做单位向量.与a 平行的单位向量e =____________. (6)平行向量:方向______或______的______向量;平行向量又叫____________,任一组平行向量都可以移到同一直线上.规定:0与任一向量______. (7)相等向量:长度______且方向______的向量.2.向量的加法运算及其几何意义(1)已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的 ,记作 ,即 =AB → BC →= ,这种求向量和的方法叫做向量加法的 .(2)以同一点O 为起点的两个已知向量a ,b 为邻边作OACB ,则以O 为起点的对角线OA →就是a 与b 的和,这种作两个向量和的方法叫做向量加法的 . (3)加法运算律a +b =________ (交换律); (a +b )+c =____________(结合律).3.向量的减法及其几何意义(1)相反向量与a ____________、____________的向量,叫做a 的相反向量,记作______. (2)向量的减法①定义a -b =a +________,即减去一个向量相当于加上这个向量的____________.②如图,AB →=a ,AD →=b ,则AC →= ,DB →=____________.4.向量数乘运算及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作______,它的长度与方向规定如下: ①|λa |=______;②当λ>0时,λa 与a 的方向______;当λ<0时,λa 与a 的方向______;当λ=0时,λa =______. (2)运算律设λ,μ是两个实数,则 ①λ(μa )=________.(结合律) ②(λ+μ)a =________.(第一分配律) ③λ(a +b )=__________.(第二分配律)(3)两个向量共线定理:向量b 与a (a ≠0)共线的充要条件是存在唯一一个实数λ,使b =λa .5.重要结论PG →=13(P A →+PB →+PC →)⇔G 为△ABC 的________;P A →+PB →+PC →=0⇔P 为△ABC 的________.【答案】1.(1)大小、方向;(2)有向线段;(3)长度、|a |、AB;(4)任意的;(5)1个、±a|a|;(6)相同、相反、非零、共线向量、平行;(7)相等、相同;2.(1)和、a +b 、a +b 、AC →、三角形法则;(2)平行四边形法则;(3)b +a 、a +(b +c ); 3.(1)长度相等、方向相反、-a ;(2)①(-b )、相反向量、②a +b 、a -b ; 4.(1)λa 、①|λ||a |;②相同、相反、0;(2)①(λμ)a 、②λa +μa 、③λa +λb ; 5.(1)重心、(2)重心;二、知识讲解考点1向量的有关概念1.向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).2.零向量:长度为0的向量,其方向是任意的.3.单位向量:长度等于1个单位的向量.4.平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.5.相等向量:长度相等且方向相同的向量.6.相反向量:长度相等且方向相反的向量.三角形法则平行四边形法则三角形法则[拓展延伸] 向量加减法运算的两个关键点:加法的三角形法则关键是“首尾相接,指向终点”,并可推广为多个向量相加的“多边形法则”;减法的三角形法则关键是“起点重合,指向被减向量”.考点3平面向量共线定理向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa . [方法技巧] 巧用系数判共线OA →=λOB →+μOC →(λ,μ∈R),若A ,B ,C 三点共线,则λ+μ=1;反之,也成立.三、例题精析考点1平面向量的有关概念【例题1】给出下列四个命题: ①若|a |=|b |,则a =b 或a =-b ;②若AB →=DC →,则四边形ABCD 为平行四边形; ③若a 与b 同向,且|a |>|b |,则a >b ; ④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中假命题的个数为( )A .1B .2C .3D .4【思路点拨】以概念为判断依据,或通过举反例来说明其不正确. 【答案】D【解析】①不正确.|a |=|b |但a 、b 的方向不确定,故a ,b 不一定相等;②不正确.因为AB →=DC →,A 、B 、C 、D 可能在同一直线上,所以ABCD 不一定是四边形. ③不正确.两向量不能比较大小.④不正确.当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.【规律方法】1.(1)易忽视零向量这一特殊向量,误认为④是正确的;(2)充分利用反例进行否定是对向量的有关概念题进行判定的行之有效的方法.2.准确理解向量的基本概念是解决这类题目的关键.(1)相等向量具有传递性,非零向量平行也具有传递性.(2)共线向量(平行向量)和相等向量均与向量的起点无关.3.“向量”和“有向线段”是两个不同的概念,向量只有两个要素:大小、方向;而有向线段有三个要素:起点、方向、长度.考点2平面向量的线性运算【例题2】(1)在△ABC 中,若D 是AB 边上一点,且AD →=2DB →,CD →=13CA →+λCB →,则λ=( ) A.23 B.13 C .-13 D .-23(2)若O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么( ) A.AO →=OD → B.AO →=2OD → C.AO →=3OD → D .2AO →=OD → 【思想点拨】(1)D 是AB 边上的三等分点,把CD →用CA →、CB →表示; (2)由D 为BC 边中点可得OB →+OC →=2OD →,代入已知条件即可求解.【解析】(1)CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23,故选A.(2)因为D 为BC 边中点,∴OB →+OC →=2OD →,又2OA →+OB →+OC →=0,∴2OA →+2OD →=0,即AO →=OD →,故选A. 【规律方法】1.解答本例1的关键是利用向量的加法与减法把CD → 用CA → 、CB → 表示出来.解答本例2的关键是OB → +OC →=2OD → .2.进行向量的线性运算时,要尽可能转化到三角形或平行四边形中,选用从同一顶点出发的基本向量或首尾相连的向量,运用向量加、减法运算及数乘运算来解. 【答案】(1)A(2)A【例题3】如图所示,若四边形ABCD 是一个等腰梯形,AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知AB →=a ,AD →=b ,DC →=c ,试用a 、b 、c 表示BC →,MN →,DN →+CN →.【解析】BC →=BA →+AD →+DC →考点3共线向量定理的应用【例题4】设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线. (2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,AF →=3e 1-ke 2,且A 、C 、F 三点共线,求k 的值.【思想点拨】(1)A 、C 、D 三点共线⇔存在实数λ使AC →=λCD →. (2)A 、C 、F 三点共线⇔存在实数λ,使AC →=λAF →.【解析】(1)AB →=e 1-e 2,BC →=3e 1+2e 2,∴AC →=AB →+BC →=4e 1+e 2, 又CD →=-8e 1-2e 2,所以CD →=-2AC →,∴AC →与CD →共线, 又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)∵AB →=e 1+e 2,BC →=2e 1-3e 2,∴AC →=AB →+BC →=3e 1-2e 2. ∵A 、C 、F 三点共线,∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2,又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2. 所以实数k 的值为2.【规律方法】1.向量b 与非零向量a 共线的充要条件是存在唯一实数λ,使b =λa .要注意通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.2.证明三点共线问题,可用向量共线来解决,但应注意当两向量共线且有公共点时,才能得出三点共线.四、思想与方法渗透易错易误之1忽视零向量的特殊性致误【例题1】下列命题正确的是( )A .向量a 、b 共线的充要条件是有且仅有一个实数λ,使b =λaB .在△ABC 中,AB →+BC →+CA →=0C .不等式||a |-|b ||≤|a +b |≤|a |+|b |中两个等号不可能同时成立D .向量a 、b 不共线,则向量a +b 与向量a -b 必不共线 【答案】D【解析】A 不正确,当a =b =0时,有无数个实数λ满足b =λa . 此处在求解时,常因忽视“共线向量定理中的条件a ≠0”而致误. B 不正确,在△ABC 中,AB →+BC →+CA →=0.此处在求解时,常因混淆向量与数量的关系致误,0是向量,其模为0,而0是数量,没有方向. C 不正确,当b =0时,不等式|a |≤|a |≤|a |显然成立.此处在求解时,常受代数不等式||a |-|b ||≤|a +b |≤|a |+|b |的影响,而忽略了向量中0的作用导致错误.D 正确.∵向量a 与b 不共线,∴a ,b ,a +b 与a -b 均不为零向量. 若a +b 与a -b 平行,则存在实数λ,使a +b =λ(a -b ), 即(λ-1)a =(1+λ)b ,∴⎩⎪⎨⎪⎧λ-1=0,1+λ=0,λ无解,故假设不成立,即a +b 与a -b 不平行,故选D. [防范措施](1)共线向量定理中,b =λa 要求a ≠0,否则λ值可能不存在.(2)向量的加减及数乘运算的结果,仍然是一个向量,而不是一个数. (3)应熟练掌握向量不等式||a |-|b ||≤|a +b |≤|a |+|b |等号成立的条件.五、课程小结1.若点P 为线段AB 的中点,O 为平面内的任意一点,则OP →=12(OA →+OB →).如图所示.2.证明三点共线问题,可用向量共线来解决,但应注意向量与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.三点共线的性质定理:(1)若平面上三点A 、B 、C 共线,则AB →=λBC →.(2)若平面上三点A 、B 、C 共线,O 为不同于A 、B 、C 的任意一点,则OC →=λOA →+μOB →,且λ+μ=1.。
数学必修4_第二章_平面向量知识点讲课讲稿

数学必修4第二章 平面向量知识点2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。
2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r的模分别记作|AB u u u r|和||a r 。
注:向量不能比较大小,但向量的模可以比较大小。
3. 几类特殊向量(1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r与任意向量平行,零向量a =0r |a|=0。
由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)(2)单位向量:模为1个单位长度的向量,向量0a为单位向量0||1a u u r。
将一个向量除以它的模即得到单位向量,如a r 的单位向量为:||aa e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b。
规定:0r与任何向量平等,任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
(4)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量。
记作a r 。
关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a; ③()0a a v v v ; ④若a 、b 是互为相反向量,则a =b ,b =a ,a+b =0 。
(5)相等向量:长度相等且方向相同的向量。
记为b a。
相等向量经过平移后总可以重合。
2.2 平面向量的线性运算 1.向量加法(1)定义:求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC uuu r 。
第一节 平面向量的概念及线性运算

第一节平面向量的概念及线性运算考试要求1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.[知识排查·微点淘金]知识点1平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或模)平面向量是自由向量零向量长度为0的向量零向量记作0,其方向是任意的单位向量长度等于1个单位长度的向量单位向量记作a0,a0=±a|a|平行向量(共线向量)方向相同或相反的非零向量0与任意向量共线相等向量长度相等且方向相同的向量相等向量一定是平行向量,平行向量不一定是相等向量相反向量长度相等且方向相反的两个向量若a,b为相反向量,则a=-b(1)注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们的模相等,但方向不一定相同.(3)零向量和单位向量是两个特殊的向量,它们的模是确定的,但是方向不确定,因此在解题时要注意它们的特殊性.(4)任一组平行向量都可以平移到同一直线上.知识点2平面向量的线性运算向量 运算定义 法则(或几何意义) 运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ; (2)结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则 (3)a -b =a +(-b )数乘求实数λ与向量a 的积的运算(4)|λa |=|λ||a |. (5)当λ>0时,λa 与a的方向相同; 当λ<0时,λa 与a 的方向相反; 当λ=0时,λa =0(6)结合律:λ(μ a )=(λμ)_a =μ(λa );(7)第一分配律:(λ+μ)a =λa +μ_a ;(8)第二分配律:λ(a +b )=λa +λb[微提醒] 向量线性运算的3点提醒 (1)两个向量的和仍然是一个向量.(2)利用三角形法则时,两向量要首尾相连;利用平行四边形法则时,两向量要有相同的起点.(3)当两个向量共线时,三角形法则仍然适用,而平行四边形法则不适用. [微拓展]对于任意两个向量a ,b ,都有:①||a |-|b ||≤|a ±b |≤|a |+|b |;②|a +b |2+|a -b |2=2(|a |2+|b |2).当a ,b 不共线时:①的几何意义是三角形中的任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系.常用结论向量线性运算的常用结论(1)在△ABC 中,若D 是BC 的中点,则AD →=12(AC →+AB →);(2)O 为△ABC 的重心的充要条件是OA →+OB →+OC →=0;(3)四边形ABCD 中,若E 为AD 的中点,F 为BC 的中点,则AB →+DC →=2EF →. 知识点3 共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . [微思考]共线向量定理中为什么限定a ≠0?提示:共线向量定理中限定a ≠0,这是因为如果a =0,则λa =0, 当b ≠0时,定理中的λ不存在; 当b =0时,定理中的λ不唯一.因此限定a ≠0的目的是保证实数λ的存在性和唯一性. [微拓展]1.a ∥b ⇔存在不全为零的x ,y ∈R ,使x a +y b =0.2.A ,B ,C 三点共线,O 为A ,B ,C 所在直线外任意一点,则OA →=λOB →+μOC →且 λ+μ=1.[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段表示向量.(×) (2)AB →+BC →+CD →=AD →.(√)(3)若两个向量共线,则其方向必定相同或相反.(×)(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×) (5)若a ∥b ,b ∥c ,则a ∥c .(×)(6)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)2.(共线向量定理掌握不准确)对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:A3.(向量加减法则用错)点D 是△ABC 的边AB 上的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →-12BA →C.BC →-12BA →D .BC →+12BA →答案:A4.(链接教材必修4 P 86例4)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .答案:b -a -a -b5.(链接教材必修4 P 108B 组T 5)在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________.解析:如图所示,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形.答案:矩形一、基础探究点——向量的有关概念(题组练透)1.下列命题正确的是( ) A .若|a |=|b |,则a =b B .若|a |>|b |,则a >b C .若a =b ,则a ∥b D .若|a |=0,则a =0解析:选C 对于A ,当|a |=|b |,即向量a ,b 的模相等时,方向不一定相同,则a =b 不一定成立,故A 不正确;对于B ,向量的模可以比较大小,但向量不可以比较大小,故B 不正确;C 显然正确;对于D ,若|a |=0,则a =0,故D 不正确,故选C.2.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( ) A .0 B .1 C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点;②错误,当a =0时,不论λ为何值,λa =0;③错误,当λ=μ=0时,λa =μb =0,此时a 与b 可以是任意向量,故错误的命题有3个,故选D.3.给出下列命题:①若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;②若两个向量相等,则它们的起点相同,终点相同;③a =b 的充要条件是|a |=|b |,且a ∥b .其中真命题的序号是________.解析:①正确.∵AB →=DC →,∴|AB →|=|DC →|,且AB →∥DC →. 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则AB →与DC →的方向相同,且|AB →|=|DC →|,因此AB →=DC →;②不正确.相等向量的起点和终点可以都不同;③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b . 综上所述,真命题的序号是①. 答案:①向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线.二、综合探究点——平面向量的线性运算(多向思维)[典例剖析]思维点1 向量的线性运算[例1] (1)如图所示,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB →=( )A.AC →-AD →B .2AC →-2AD → C.AD →-AC →D .2AD →-2AC →解析:连接CD (图略),因为C ,D 是半圆弧的两个三等分点,所以CD ∥AB ,且AB =2CD ,所以AB →=2CD →=2(AD →-AC →)=2AD →-2AC →,故选D.答案:D(2)[一题多解]已知A ,B ,C 三点不共线,且点O 满足16OA →-12OB →-3OC →=0,则( ) A.OA →=12AB →+3AC → B.OA →=12AB →-3AC → C.OA →=-12AB →+3AC → D.OA →=-12AB →-3AC →解析:解法一:对于A ,OA →=12AB →+3AC →=12(OB →-OA →)+3(OC →-OA →)=12OB →+3OC →-15OA →,整理,可得16OA →-12OB →-3OC →=0,这与题干中条件相符合,故选A.解法二:已知A ,B ,C 三点不共线,且点O 满足16OA →-12OB →-3OC →=0,所以OA →+12(OA →-OB →)+3(OA →-OC →)=0,即OA →+12BA →+3CA →=0,所以OA →=12AB →+3AC →,故选A.答案:A向量线性运算的解题策略常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.思维点2 根据向量线性运算求参数[例2] 如图所示,在平行四边形ABCD 中E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.解析:由题图可设CG →=x CE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.答案:12与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[学会用活]1.(2021·福建高三质检)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且PTAT =5-12.下列关系中正确的是( )A .BP →-TS →=5+12RS →B .CQ →+TP →=5+12TS →C .ES →-AP →=5-12BQ →D .AT →+BQ →=5-12CR →解析:选A 由题意得,BP →-TS →=TE →-TS →=SE →=RS →5-12=5+12RS →,所以A 正确;CQ→+TP →=P A →+TP →=TA →=5+12ST →,所以B 错误;ES →-AP →=RC →-QC →=RQ →=5-12QB →,所以C错误;AT →+BQ →=SD →+RD →,5-12CR →=RS →=RD →-SD →,若AT →+BQ →=5-12CR →,则SD →=0,不合题意,所以D 错误.故选A .2.已知圆心为O ,半径为1的圆上有不同的三个点A ,B ,C ,其中OA →·OB →=0,存在实数λ,μ满足OC →+λOA →+μOB →=0,则实数λ,μ的关系为( )A .λ2+μ2=1B .1λ+1μ=1C .λμ=1D .λ+μ=1解析:选A 解法一:取特殊点,取C 为优弧AB 的中点,此时由平面向量基本定理易得λ=μ=22,只有选项A 符合.故选A . 解法二:依题意得|OA →|=|OB →|=|OC →|=1,-OC →=λOA →+μOB →,两边同时平方,得1=λ2+μ2.故选A .三、应用探究点——共线向量定理及应用(思维拓展)[典例剖析][例3] 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.解:(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →, ∴AB →,BD →共线,又他们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)B .又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧k -λ=0,λk -1=0.∴k 2-1=0.∴k =±1. [拓展变式]1.[变条件]若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m =________时,A ,B ,D 三点共线.解析:BD →=BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b ,若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →.即4a +(m -3)b =λ(a +b ),∴4a +(m -3)b =λa +λb ,∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7. 故当m =7时,A ,B ,D 三点共线. 答案:72.[变结论]若将本例(2)中的“共线”改为“反向共线”,则k 的值为________. 解析:因为k a +b 与a +k b 反向共线, 所以存在实数λ,使k a +b =λ(a +k b )(λ<0).所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1. 故当k =-1时,两向量反向共线. 答案:-1利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.即A ,B ,C 三点共线⇔AB →,AC →共线.[学会用活]3.(2021·河北六校第一次联考)已知点O 是△ABC 内一点,且满足OA →+2OB →+mOC →=0,S △AOB S △ABC =47,则实数m 的值为( ) A .-4 B .-2 C .2D .4解析:选D 由OA →+2OB →=-mOC →得,13OA →+23OB →=-m 3OC →,如图所示,设-m 3OC →=OD →,则13OA →+23OB →=OD →,∴A ,B ,D 三点共线,∴OC →与OD →反向共线,m >0, ∴|OD →||OC →|=m 3,∴|OD →||CD →|=m3m 3+1=m m +3,∴S △AOB S △ABC =|OD →||CD →| =m m +3=47,解得m =4.故选D . 限时规范训练 基础夯实练1.(2021·山东烟台期中)若M 为△ABC 的边AB 上一点,且AB →=3AM →,则CB →=( ) A .3CM →-2CA →B .3CA →-2CM →C .3CM →+2CA →D .3CA →+2CM →解析:选A 根据题意作出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →-CB →)=13CB →+23CA →,所以CB →=3CM →-2CA →.故选A .2.已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn 等于( )A .-12B .12C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2.3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,其中λ,μ∈R ,则λ+μ等于( )A .1B .12C .13D .23解析:选D 由题意易得AD →=AB →+BD →=AB →+13BC →,则2AO →=AB →+13BC →,即AO →=12AB →+16BC →.所以λ=12,μ=16,故λ+μ=12+16=23.4.(2021·云南曲靖一中月考)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A .13a +512bB .13a -1312bC .-13a -512bD .-13a +1312b解析:选C DE →=DC →+CE →=13BC →+34CA →=13(AC →-AB →)-34AC →=-13AB →-512AC →=-13a -512B .5.(2021·潍坊模拟)若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2解析:选A 设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD 的中点,于是S △ABM S △ACM =S △ABM 2S △AMD=BM 2MD =12.6.在△ABC 中,AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:由题意可得A ,D ,B 共线,∴13+λ=1,∴λ=23.答案:23综合提升练7.(2021·广西名校联考)在△ABC 中,D 是AB 边的中点,点E 在BC 边上,且BE =2EC ,则ED →=( )A .16AB →-23AC →B .16AB →+23AC →C .-16AB →+13AC →D .-16AB →+23AC →解析:选A ED →=BD →-BE →=-12AB →-23BC →=-12AB →-23(AC →-AB →)=16AB →-23AC →,故选A .8.(2021·湖北省黄冈、华师附中等八校联考)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( )A .-2B .-12C .- 2D . 2解析:选A DO →=DA →+AO →=CB →+AO →=AB →-AC →+12AC →=AB →-12AC →,∴λ=1,μ=-12,∴λμ=-2. 9.如图所示,在△ABC 中,D 为线段BC 的中点,E ,F ,G 依次为线段AD 从上至下的3个四等分点,若AB →+AC →=4AP →,则( )A .点P 与图中的点D 重合B .点P 与图中的点E 重合C .点P 与图中的点F 重合D .点P 与图中的点G 重合解析:选C ∵在△ABC 中,D 为线段BC 的中点,E ,F ,G 依次为线段AD 从上至下的3个四等分点,∴AB →+AC →=2AD →,AD →=2AF →,∴AB →+AC →=4AF →,∴点P 与图中的点F 重合.故选C .10.已知向量a ,b 是两个不共线的向量,若向量m =4a +b 与n =a -λb 共线,则实数λ的值为( )A .-4B .-14C .14D .4解析:选B 因为向量a ,b 是两个不共线的向量,向量m =4a +b 与n =a -λb 共线,所以存在实数μ,使得4a +b =μ(a -λb ),即⎩⎪⎨⎪⎧4=μ,1=-λμ,解得λ=-14,故选B .11.在△ABC 中,点D 是线段BC (不包括端点)上的动点.若AB →=xAC →+yAD →,则( ) A .x >1 B .y >1 C .x +y >1D .xy >1解析:选B 设BD →=λBC →(0<λ<1),所以AD →-AB →=λAC →-λAB →,所以(1-λ)AB →=AD →-λAC →,所以AB →=11-λAD →-λ1-λAC →,所以x =-λ1-λ<0,y =11-λ=1-λ+λ1-λ=1+λ1-λ>1,又x +y =1-λ1-λ=1,xy =-λ(1-λ)2<0,故选B . 12.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB →=2DC →. ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12 创新应用练13.(2021·山东省师大附中模拟)设a ,b 是非零向量,则a =2b 是a |a |=b|b |成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 由a =2b 可知,a ,b 方向相同,a |a |,b|b |表示a ,b 方向上的单位向量,所以a |a |=b|b |成立;反之则不成立,故选B . 14.在△ABC 中有如下结论:“若点M 为△ABC 的重心,则MA →+MB →+MC →=0.”设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,点M 为△ABC 的重心.若aMA →+bMB →+33cMC→=0,则内角A 的大小为________,当a =3时,△ABC 的面积为________.解析:由aMA →+bMB →+33cMC →=aMA →+bMB →+33c (-MA →-MB →)=⎝⎛⎭⎫a -33c MA →+⎝⎛⎭⎫b -33c MB →=0,且MA →与MB →不共线,∴a -33c =b -33c =0,∴a =b =33C .△ABC 中,由余弦定理可求得cos A =32,∴A =π6.若a =3,则b =3,c =33,S △ABC =12bc sin A =12×3×33×12=934.答案:π6 934。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1第 1 页 共 23 页教学辅导教案1.已知角α的始边与x 轴的非负半轴重合,终边过点P (sin 120°,cos 120°),则α可以是( )A .60°B .330°C .150°D .120°案:B2.若sin 2θ+2cos θ=-2,则cos θ=( )A .1 B.12C .-12D .-1 答案:D3.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( ) A.⎝⎛⎭⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z 答案:C4.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( ) A.12 B .-12C.32D .-32答案:C5.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( ) A.32 B .2 C .0 D.34答案:A6.如图是函数y =A sin(ωx +φ)(x ∈R)在区间⎣⎡⎦⎤-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:A7.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4 B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4 C .y =2sin ⎝⎛⎭⎫2x +3π4 D .y =2sin ⎝⎛⎭⎫2x -3π4 答案:C8.已知α是第二象限角,且f (α)=sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫3π2+αtan (π-α)tan (-α-π)sin (-π-α).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α+3π2=35,求f (α)的值. 解:(1)f (α)=-cos αsin α(-tan α)-tan αsin α=-cos α.(2)∵cos ⎝⎛⎭⎫α+3π2=sin α=35, ∴sin α=35.又∵α是第二象限角,∴cos α=-1-⎝⎛⎭⎫352=-45. ∴f (α)=-⎝⎛⎭⎫-45=45.[问题1]在下列判断中,正确的是( )①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等; ④单位向量都是同方向; ⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤ D .①③⑤[答案] D[解析] 由定义知①正确,②由于两个零向量是平行的,但不能确定是否同向,也不能确定是哪个具体方向,故不正确.显然,③、⑤正确,④不正确,所以答案是D .[问题2] 如图所示,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:(1)分别写出AO →,BO →相等的向量; (2)写出与AO →共线的向量;(3)写出与AO →的模相等的向量; (4)向量AO →与CO →是否相等? [解析] (1)AO →=BF →,BO →=AE →. (2)与AO →共线的向量为:BF →,CO →,DE →.(3)|AO →|=|CO →|=|DO →|=|BO →|=|BF →|=|CF →|=|AE →|=|DE →|. (4)不相等. [问题3]根据右图填空:b +c =________; a +d =________; b +c +d =________; f +e =________; e +g =________. [答案] af f b δ[解析] 由向量加法的多边形法则可知.[问题4] 如图所示,在△ABC 中,P 、Q 、R 分别为BC 、CA 、AB 边的中点,求证AP →+BQ →+CR →=0.[解析] 解法一:AP →=AB →+BP →,BQ →=BC →+CQ →,CR →=CA →+AR →.又∵P 、Q 、R 分别为BC 、CA 、AB 的中点,∴BP →=12BC →,CQ →=12CA →,AR →=12AB →,∴AP →+BQ →+CR →=(AB →+BC →+CA →)+12BC →+12CA →+12AB →=32(AB →+BC →+CA →)=0.解法二:AP →=12(AB →+AC →),BQ →=12(BA →+BC →),CR →=12(CA →+CB →), ∴AP →+BQ →+CR →=12(AB →+AC →+BA →+BC →+C A →+CB →)=0.[问题5]化简下列各式:(1)AB →-AC →+BD →-CD →; (2)OA →-OD →+AD →; (3)AB →-AD →-DC →.[解析] (1)AB →-AC →+BD →-CD →=(AB →+BD →)+(CA →+DC →)=AD →+DA →=0. (2)OA →-OD →+AD →=OA →+(AD →+DO →) =OA →+AO →=0.(3)AB →-AD →-DC →=AB →-(AD →+DC →) =AB →-AC →=CB →.[问题6] 如图,已知向量a 、b 、c ,求作向量a -c +b . 导学号34340514[解析] 如图,在平面内任取一点O , 作OA →=a ,OB →=b ,OC →=c .连接AC ,则CA →=a -c .过点B 作BD ∥AC ,且BD =AC ,则BD →=CA →. 所以OD →=OB →+BD →=b +a -c =a -c +b .[问题7]已知等腰直角△ABC 中,∠C =90°,M 为斜边中点,设CM →=a ,CA →=b ,试用向量a 、b 表示AM →、MB →、CB →、BA →.[解析] 如图所示,AM →=CM →-CA →=a -b , MB →=AM →=a -b , CB →=CA →+AB →=b +2AM → =b +2a -2b =2a -b , BA →=-2AM →=-2(a -b ) =2b -2a .[问题8]化简下列各式:(1)3(2a -b )-2(4a -3b ); (2)13(4a +3b )-12(3a -b )-32b ; (3)2(3a -4b +c )-3(2a +b -3c ). [解析] (1)原式=6a -3b -8a +6b =-2a +3b .(2)原式=43a +b -32a +12b -32b=-16a .(3)原式=6a -8b +2c -6a -3b +9c =-11b +11c .[问题9]设两个非零向量a 与b 不共线,若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线.[解析] ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b )∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →,∴AB →、BD →共线, 又它们有公共点B ,∴A 、B 、D 三点共线.1. 向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.【典例剖析】【例1】若a为任一非零向量,b为其单位向量,下列各式:①|a|>|b|;②a∥b;③|a|>0;④|b|=±1;⑤a|a|=b.其中正确的是()A.①④⑤B.③C .①②③⑤D .②③⑤[答案] D[解析] |a |与|b |大小关系不能确定,故①错,a 与其单位向量平行②正确.a ≠0,∴|a |>0,③正确.|b |=1,故④错.由定义知⑤正确.【例2】如图所示,在△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的点,已知AD →=DB →,DF →=BE →,试推断向量DE →与AF →是否为相等向量,说明你的理由.[解析] ∵AD →=DB →,∴|AD →|=|DB →|,从而D 是AB 的中点.∵DF →=BE →,∴DF →与BE →是平行向量,从而DF ∥BE ,即DF ∥BC .∴F 是AC 的中点. 由三角形中位线定理知,DF =12BC ,又|DF →|=|BE →|,即DF =BE , 从而E 为BC 的中点. 于是DE ∥AC ,且DE =12AC .∴DE ∥AF 且DE =AF ,故DE →=AF →. ∵F 是AC 的中点,∴AF =12AC ,【例3】在平行四边形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,BD →=d ,则下列各式中不成立的是( )A .a +b =cB .a +d =bC .b +d =aD .|a +b |=|c |[答案] C [解析] 如图,a +b =c ,|a +b |=|c |,a +d =b ,b +d ≠a ,故选C .【例4】给出下列命题:①若OD →+OE →=OM →,则OM →-OE →=OD →; ②若OD →+OE →=OM →,则OM →+DO →=OE →; ③若OD →+OE →=OM →,则OD →-EO →=OM →; ④若OD →+OE →=OM →,则DO →+EO →=MO →. 其中所有正确命题的序号为________. [答案] ①②③④[解析] 若O D →+O E →=OM →,则 O D →=OM →-O E →,故①正确;若O D →+O E →=OM →,则OM →-O D →=OM →+D O →=O E →,故②正确; 若O D →+O E →=OM →,则O D →-E O →=OM →,故③正确;若O D →+O E →=OM →,则-O D →-O E →=-OM →,即D O →+E O →=M O →,故④正确.【例5】下列各式中不能化简为PQ →的是( )A .AB →+(P A →+BQ →) B .(AB →+PC →)+(BA →-QC →) C .QC →-QP →+CQ →D .P A →+AB →-BQ →[答案] D[解析] A 中AB →+BQ →+P A →=AQ →+P A →=PQ →, B 中AB →+PC →+BA →-QC →=PC →-QC →=PQ →, C 中QC →-QP →+CQ →=PQ →, 故选D .【例6】已知等腰直角△ABC 中,∠C =90°,M 为斜边中点,设CM →=a ,CA →=b ,试用向量a 、b 表示AM →、MB →、CB →、BA →.[解析] 如图所示,AM →=CM →-CA →=a -b ,MB →=AM →=a -b , CB →=CA →+AB →=b +2AM → =b +2a -2b =2a -b , BA →=-2AM →=-2(a -b ) =2b -2a .【例7】化简下列各式:(1)2(3a -2b )+3(a +5b )-5(4b -a ); (2)16[]2(2a +8b )-4(4a -2b ). 答案:(1)14a -9b (2)-2a +4b【例8】(1)如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a+b .A .①②B .③④C .①③D .②④答案:C【例9】(1)已知e 1,e 2是两个不共线的向量,a =2e 1-e 2,b =ke 1+e 2.若a 与b 是共线向量,则实数k 的值为________.答案:-2(2)如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD ,求证:M 、N 、C 三点共线.[解析] 设AB →=e 1,AD →=e 2,则: BD →=BA →+AD →=-e 1+e 2, BN →=13BD →=-13e 1+13e 2,MB →=12e 1,BC →=AD →=e 2,MC →=MB →+BC →=12e 1+e 2,MN →=MB →+BN →=12e 1-13e 1+13e 2=16e 1+13e 2=13⎝⎛⎭⎫12e 1+e 2. 故MN →=13MC →,故M 、N 、C 三点共线.1.四边形ABCD 中,若AB →与CD →是共线向量,则四边形ABCD 是( )A .平行四边形B .梯形C .平行四边形或梯形D .不是平行四边形也不是梯形[答案] C[解析] 因为AB →与CD →为共线向量,所以AB →∥CD →,但|AB →|与|CD →|可能相等,也可能不相等.2.当向量a 与任一向量都平行时,向量a 一定是________.答案:零向量3.向量(AB →+MB →)+(BO →+BC →)+OM →等于( )A .BC →B .AB →C .AC →D .AM → [答案] C[解析] 原式=AB →+BC →+MB →+BO →+OM →=AC →+0=AC →. 4.若a 、b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同 [答案] B[解析] ∵a 与b 方向相反,且|a |<|b |时,a +b 与a 的方向相反,a +b 与b 的方向相同,故B 不正确.5.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( )A .a =bB .a ⊥bC .|a |=|b |D .以上都不对[答案] C[解析] 由向量加法的平行四边形法则知,若a +b 平分a 与b 的夹角,则四边形是菱形,因此|a |=|b |.6.下列等式:①0-a =-a ;②-(-a )=a ;③a +(-a )=0;④a +0=a ;⑤a -b =a +(-b );⑥a +(-a )=0.正确的个数是( )A .3B .4C .5D .6[答案] C[解析] ①、②、④、⑤、⑥正确,③不正确,故选C . 7.若O 、E 、F 是不共线的任意三点,则以下各式成立的是( )A .EF →=OF →+OE →B .EF →=OF →-OE →C .EF →=-OF →+OE →D .EF →=-OF →-OE → [答案] B[解析] EF →=EO →+OF →=OF →-OE →,故选B .8.设a 、b 为非零向量,且满足|a -b |=|a |+|b |,则a 与b 的关系是( )A .共线B .垂直C .同向D .反向 [答案] D[解析] 设a 、b 的起点为O ,终点分别为A 、B ,则a -b =BA →,由|a -b |=|a |+|b |,故O 、A 、B 共线,且O 在AB 之间.故OA →与OB →反向,所以选D . 9.已知|OA →|=|OB →|=2,且∠AOB =120°,则|OA →+OB →|=________.[答案]2[解析] 以OA →,OB →为邻边作▱OACB , ∵|OA →|=|OB →|,∴▱OACB 为菱形, ∴|OA →+OB →|=|OC →|,∵∠AOB =120°,∴△OAC 为正三角形,∴|OC →|= 2. 10.如图所示,D 是△ABC 的边AB 的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →-12BA →C .BC →-12BA →D .BC →+12BA →[答案] A[解析] ∵D 是AB 的中点,∴BD →=12BA →,∴CD →=CB →+BD →=-BC →+12BA →,故选A .11.已知e 1、e 2是两个不共线的向量,a =k 2e 1+⎝⎛⎭⎫1-52k e 2与b =2e 1+3e 2是两个平行的向量,则k =________.[答案] 13或-2[解析] ∵a ∥b ,∴存在实数m ,使得a =m b , ∴k 2e 1+⎝⎛⎭⎫1-52k e 2=m (2e 1+3e 2), ∴⎩⎪⎨⎪⎧k 2=2m 1-52k =3m ,即3k 2+5k -2=0, ∴k =13或-2.【知识点一】向量a +b 与非零向量a ,b 的模及方向的联系(1)当向量a 与b 不共线时,向量a +b 的方向与a ,b 都不相同,且|a +b |<|a |+|b |,几何意义是三角形两边之和大于第三边.(2)当向量a 与b 同向时,向量a +b 与a (或b )方向相同,且|a +b |=|a |+|b |.(3)当向量a 与b 反向,且|a |≤|b |时,a +b 与b 方向相同(与a 方向相反),且|a +b |=|b |-|a |.【知识点二】用向量共线的条件证明两条直线平行或重合的思路(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行.(2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若向量AB =λAC ,则AB ,AC 共线,又AB 与AC 有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.【经典例题剖析】【例1】下列命题正确的是( )A .向量a 与b 共线,向量b 与c 共线,则向量a 与c 共线B .向量a 与b 不共线,向量b 与c 不共线,则向量a 与c 不共线C .向量AB →与CD →是共线向量,则A 、B 、C 、D 四点一定共线 D .向量a 与b 不共线,则a 与b 都是非零向量[错解] 错解一:因为向量a 与b 共线,所以a =λ1b ,又因为向量b 与c 共线,所以b =λ2c ,则a =λ1λ2c 向量a 与c 共线,故选A .错解二:因为向量a 与b 不共线,向量b 与c 不共线,根据传递性向量a 与c 不共线,故选B .错解三:因为向量AB →与CD →是共线向量,所以AB →与CD →在同一条直线上,所以A 、B 、C 、D 四点共线,所以应选C .[辨析] 错解一中对零向量的认知不到位,忽略了零向量与任何向量共线.错解二中错因是非零向量共线传递的负迁移,是平行线传递性的负迁移.错解三的错因是对向量共线与线段共线在认知上的错位.[正解] 当b =0时,A 不对;如图,△ABC 的中位线EF ,a =EF →,c =BC →,b =AB →,显然满足B 的条件,但a ∥c ,故B 不对;当AB →与CD →的基线平行或重合时,AB →与CD →共线,但显然前者A 、B 、C 、D 四点不共线,故C 错;假若a 与b 中存在一个向量为0,则一定有a ∥b ,与a 、b 不共线条件矛盾,∴D 正确.[变式1]已知a 、b 为两个向量,给出以下4个条件:①|a |=|b |;②a 与b 的方向相反;③|a |=0或|b |=0;④a 与b 都是单位向量. 由条件________一定可以得到a 与b 平行. [答案] ②③[解析] 长度相等或都是单位向量不能得到a ∥b ,但方向相反或其中一个为零向量可以说明a ∥b .故填②③.【例2】(1)若向量a,b满足|a|=8,|b|=12,则|a+b|的最小值是________;(2)当非零向量a,b(a,b不共线)满足________时,能使a+b平分a,b的夹角.[解析]由向量的三角形不等式,知|a+b|≥|b|-|a|,当且仅当a与b反向,且|b|≥|a|时,等号成立,故|a+b|的最小值为4;由向量加法的平行四边形法则,知|a|=|b|时,平行四边形为菱形,对角线平分一组内角.[答案](1)4(2)|a|=|b|[变式2]设a=(AB+CD)+(BC+DA),b是任一非零向量,则在下列结论中,正确的序号为()①a∥b;②a+b=a;③a+b=b;④|a+b|<|a|+|b|;⑤|a+b|=|a|+|b|.A.①②B.①③C.①③⑤D.③④⑤答案:C【例3】已知▱ABCD中,AD=a,AB=b,M为AB的中点,N为BD上靠近B的三等分点.(1)用a ,b 表示向量MC ,NC ; (2)求证:M ,N ,C 三点共线. [解题流程][规范解答](1)∵四边形ABCD 是平行四边形,∴BC =AD =a .(1分)∵M 为AB 的中点,∴MB =12AB =12b ,(2分)∴MC =MB +BC =12b +a .(4分)∵N 为BD 上靠近B 的三等分点,∴NB =13DB ,(6分)∴NC =NB +BC =13DB +BC =13(AB -AD )+BC=13(b -a )+a =23a +13b .(8分) (2)证明:由(1)知NC =23MC ,(10分)又NC 与MC 有公共点C , ∴M ,N ,C 三点共线.(12分)[名师批注]平行四边形的对边平行且相等,且其对边示两相等向量,这在线性运算中经常用到先将MC 用平行四边形中的有关有向表示,然后再用向量表示这是解决此类问通法.要注意向量的始点和终点,此点也出错.将向量NB 转化为13()AB -AD此题的难点,很多同学因不会转化而无法在证出NC ∥MC 后,只有再说明NCMC 有公共点C ,才能说明M ,N ,C 线.此处极易被忽视而造成解题步骤不完失分.[变式3]如图,已知△OCB 中,点A 是BC 的中点,点D 是将OB 分成2∶1的一个内分点,DC 和OA 交于点E ,设OA =a ,OB =b .(1)用a ,b 表示向量OC ,DC ; (2)若OE =λOA ,求λ的值.答案:(1)OC =2a -b ;DC =2a -53b (2)451.若D 、E 、F 分别是△ABC 的三边AB 、BC 、AC 的中点,则与向量EF →相等的向量为________.[答案] BD →、DA →[解析] 三角形的中位线平行且等于底边的一半,EF →=12BA →=BD →=DA →.2.等腰梯形ABCD 两腰上的向量AB →与DC →的关系是________.[答案] |AB →|=|DC →|[解析] 由等腰梯形可知,两腰长度相等,故两腰上的向量AB →与DC →满足|AB →|=|DC →|. 3.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则( )A .AD →+BE →+CF →=0 B .BD →+CF →+DF →=0 C .AD →+CE →+CF →=0 D .BD →+BE →+FC →=0[答案] A[解析] ∵D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,∴DE ∥AC ,DF ∥BC . ∴四边形DECF 是平行四边形. ∴ED →=CF →.又AD →+BE →+CF →=DB →+BE →+CF →=DE →+CF →=DE →+ED →=0,故选A .∵BD →=2DC →,∴BD →=23BC →=23(AC →-AB →)=23(b -c ),AD →=AB →+BD →=c +23b -23c =23b +13c .8.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b .[答案] -57[解析] ∵|a |=5,|b |=7,∴|a ||b |=57,又方向相反,∴a =-57b .9.已知a =2e 1+e 2,b =e 1-2e 2,则a +b =________,a -b =________,2a -3b =_______.[答案] 3e 1-e 2 e 1+3e 2 e 1+8e 2 [解析] ∵a =2e 1+e 2,b =e 1-2e 2, ∴a +b =3e 1-e 2, a -b =e 1+3e 2,2a -3b =4e 1+2e 2-3e 1+6e 2 =e 1+8e 2.10.设a 、b 是不共线的两个非零向量,若8a +k b 与k a +2b 共线,求实数k 的值.[解析] ∵8a +k b 与k a +2b 共线,∴存在实数λ,使得8a +k b =λ(k a +2b ),即⎩⎪⎨⎪⎧ 8=λk k =2λ,解得⎩⎪⎨⎪⎧ k =4λ=2或⎩⎪⎨⎪⎧k =-4λ=-2.故k =±4.1.如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是( )A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身) B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身) C .BD →的长度恰为DA →长度的3倍D .CB →与DA →不共线 [答案] D[解析] 易知△ABC 和△ACD 均为正三角形.对于A ,向量AB →=DC →; 对于B ,|AB →|=|DC →|=|DA →|=|CB →|=|CA →|;对于C ,△BAD 是顶角为120°的等腰三角形,则|BD →|=3|DA →|; 对于D ,CB →∥DA →成立,故D 是错误的. 2.给出下列命题:①若|a |=|b |,则a =b ;②若a =b ,则a ∥b ;③若a ∥b ,则a =b . 其中正确命题的序号是________. [答案] ②[解析] 在讨论向量共线的问题时,要考虑方向、长度、位置,尤其不能忘记对零向量的讨论.对于①,两个向量的模相等,但方向却不一定相同,故①错误. 对于②,a =b ,则a 与b 同向,∴a ∥b ,故②正确.对于③,|a |与|b |不一定相等,a 与b 的方向也不一定相同,故a =b 不一定成立,故③错误.3.在平行四边形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,BD →=d ,则下列各式中不成立的是( )A .a +b =cB .a +d =bC .b +d =aD .|a +b |=|c |[答案] C[解析] 如图,a +b =c ,|a +b |=|c |,a +d =b ,b +d ≠a ,故选C .4.已知正方形ABCD 的边长为1,AB →=a 、BC →=b 、AC →=c ,则|a +b +c |等于( )A .0B .3C . 2D .22[答案] D[解析] ∵AB →+BC →=AC →,∴|a +b +c |=|2c |,∵|c |=2,∴|a +b +c |=22,故选D .5.在静水中划船的速度是20 m/min ,水流速度是10 m/min ,如果船从岸边出发,径直沿垂直于水流的方向到达对岸,则船行进的方向与对岸水平线夹角的正切值为________.[答案] 3 [解析] 如图,设AB →为水流的速度,AD →为划船的速度,则AC →=AB →+AD →,其中AC →为船垂直到达对岸的速度,即为船速与水速的和速度,在Rt △ABC 中,|AB →|=10,|BC →|=20,∴tan ∠ABC =|AC →||AB →|=|BC →|2-|AB →|2|AB →|=202-10210=3, ∴tan ∠ADC =tan ∠ABC = 3.6.如图所示,△ABC 中,AD DB =AE EC =12,且BC =3,则|BC →+ED →|=________.[答案] 2[解析] ∵AD DB =AE EC =12, ∴DE ∥BC ,且DE =13BC =1, 如图所示,作CF →=ED →,连DF ,则BC →+ED →=BC →+CF →=BF →,∴|BC →+ED →|=|BF →|=|BC →|-|CF →|=2.7.已知G 是△ABC 内的一点,若GA →+GB →+GC →=0.求证:G 是△ABC 的重心.[解析] 如图,∵GA →+GB →+GC →=0,∴GA →=-(GB →+GC →)()以GB →、GC →为邻边作平行四边形BGCD ,则GD →=GB →+GC →,∴GD →=-GA →,又∵在▱BGCD 中,BC 交GD 于E ,∴BE →=EC →,GE →=ED →,∴AE 是△ABC 的边BC 的中线,且|GA →|=2|GE →|,∴G 为△ABC 的重心.8.已知平行四边形ABCD 的两条对角线AC 、BD 交于E 点,O 是任意一点,如图所示.求证:OA →+OB →+OC →+OD →=4OE →.[解析] 解法一:因为E 为平行四边形两对角线的交点,所以2OE →=OA →+OC →,2OE →=OB →+OD →.即4OE →=OA →+OB →+OC →+OD →.解法二:因为OE →=OA →+AE →=OB →+BE →=OC →+CE →=OD →+DE →,而AE →+CE →=0,BE →+DE→=0,所以4OE →=OA →+OB →+OC →+OD →.。