基于单片机的水温控制系统
基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文基于单片机的水温控制系统摘要水在人们日常生活和工业生产中有着必不可少的作用,在不同环境和不同的需求中,水温的变化也对我们的生活和工业生产有着重要的影响,为了满足人们在各个领域所需要的水温,水温控制系统在各个领域也应运而生。
随着社会的发展,科技的进步,智能化已经是温控系统发展的主流方向,小到人们生活中的饮水机,大到工业生产中的大型水温加热控制设备等各种水温控制系统发展以趋于成熟。
传统靠人工控制的温度,湿度,液位等信号的测压、力控系统,外围电路比较复杂,测量精度较低,分辨率不高,需进行温度校正;并且他们的体积较大适用不方便,在工业生产中也可能应为各种认为的失误发生意外,针对此问题,本系统设计的目的就是实现一种可连续高精度持续调温的温度控制系统,它应用广泛,功能强大,操作简单,便于携带,是一款既实用又廉价的控制系统。
温度检测控制系统在工业生产中主要职责是对温度进行严格的监测,在温度发生变化不符合规定温度时,系统报警提示并做出相应的温度调整措施,以使得生产能够顺利进行,节省了大量的人工,产品的质量也得到充分的保障,同时也避免了各种潜在意外的发生。
从而提高企业的生产效率。
本系统以89C51单片机为核心,扩展外围控制电路,检测变送电路,按键电路,显示电路,复位电路,时钟电路,电源电路,报警电路;本系统的整体运行过程为:通过按键电路设定理想水温范围,实时水温通过检测变送电路模检测,并将检测到的物理量转化成电信号,然后放大电信号并将模拟量同过A/D 转换为单片机识别的数字量发送给单片机。
单片机系统将实时温度与设定温度进行对比,并通过显示电路将实时温度显示出来,如果实时温度大于设定的最高温度或者低于设定的最低温度一定时间,单片机将触发报警电路对过温或者低温进行警报,同时触发控制电路对水温的控制做出适当的调整,确保水温出在理想的温度值,满足需求。
系统检测变送电路中采用电流型温度传感器AD590将温度的变化量转变成电流量,然后采用OP-07将电流量转换为电压量。
基于at89c51单片机的水温控制系统的设计文献综述

基于at89c51单片机的水温控制系统的设计文献综述基于AT89C51单片机的水温控制系统的设计文献综述一、引言水温控制系统在工业、家电、农业等领域有着广泛的应用。
随着科技的发展,单片机作为微控制器在控制系统中的应用越来越广泛。
AT89C51单片机作为一种常用的单片机,具有性能稳定、价格低廉等优点,被广泛应用于水温控制系统的设计中。
本文将对基于AT89C51单片机的水温控制系统的设计进行文献综述。
二、AT89C51单片机简介AT89C51是一种常用的8位单片机,由美国ATMEL公司生产。
它具有4K字节的Flash 存储器、128字节的RAM、32位I/O端口、两个16位定时器/计数器、一个5向量两级中断结构、一个全双工串行通信口等功能。
AT89C51单片机适用于各种控制领域,如温度、湿度、压力等。
三、水温控制系统设计水温控制系统主要由温度传感器、单片机控制器、执行器等组成。
传感器负责采集水温信息,并将信息传递给单片机控制器。
单片机控制器根据设定的温度值与实际水温的差值,通过执行器调节加热元件的工作状态,从而实现水温的自动控制。
在基于AT89C51单片机的水温控制系统中,常用的温度传感器有热敏电阻、热电偶等。
执行器则可以选择继电器、可控硅等设备,用于控制加热元件的工作状态。
为了实现精确的温度控制,可以采用模糊控制、PID控制等控制算法。
四、AT89C51单片机在水温控制系统中的应用AT89C51单片机在水温控制系统中主要负责温度信号的采集、处理和控制输出。
通过编程实现温度信号的采集和转换,并根据设定值与实际水温的差值,通过执行器调节加热元件的工作状态,从而实现水温的自动控制。
此外,AT89C51单片机还可以实现报警、显示等功能,提高系统的智能化程度。
五、总结与展望基于AT89C51单片机的水温控制系统具有结构简单、成本低廉、易于实现等优点,被广泛应用于各个领域的温度控制中。
随着科技的发展,人们对水温控制系统的精度和智能化程度的要求越来越高。
基于单片机的水温控制系统设计

基于单片机的水温控制系统设计摘要:水温控制系统在工业、农业、生活等各个领域广泛应用。
随着技术的发展,单片机控制技术正在越来越多的应用到水温控制领域中。
本文通过对水温控制系统原理的分析,进行了设计和制作,并通过实验结果验证了本设计的可行性和稳定性。
关键词:单片机控制技术;水温控制系统;可行性;稳定性1. 引言水温控制系统在现代社会中应用广泛,水温控制技术的发展和进步为现代社会的科技进步做出了巨大的贡献。
单片机技术作为一种广泛应用的控制技术,可以实现多种不同的控制操作,因此被广泛应用到水温控制系统中。
本文将针对单片机水温控制系统进行分析设计,并进行实验验证。
2. 水温控制系统原理分析水温控制系统的基本结构由传感器、控制器以及执行机构等组成。
其中,传感器负责温度数据的采集,控制器负责处理和分析数据,并控制执行机构实现温度控制。
单片机水温控制系统的实现原理基于以下几个步骤:1)传感器采集温度数据并将数据转换为数字信号。
2)单片机控制器通过间接方式获取传感器采集的温度数字信号,并将其传输到外围设备中。
3)控制器将传输的信息根据其程序所设定的算法进行计算,得到温度数据,从而调整执行机构的作用。
4)执行机构实现接收计算出的数据并通过温度调节装置将温控装置的工作状态调节到所设定的工作状态,最终实现水温控制。
3. 单片机水温控制系统设计根据以上原理设计单片机水温控制系统,具体实现过程如下:1)传感器:选用DS18B20数字温度传感器,将其与单片机进行连接;2)控制器:选用AT89S52单片机,作为水温控制器,通过程序将传感器所采集到的数字信号转化为温度信息,并与设定温度进行比较和判断,控制继电器开关;3)执行机构:选用继电器作为执行机构,通过继电器的开关控制加热器的加热状态,调节水温。
4. 实验验证将设计好的单片机水温控制系统进行实验,实验过程中将设定温度为30℃,获得的实验结果显示在图1中。
图1 实验结果实验结果表明,本设计的单片机水温控制系统能够在设定温度为30℃时以及系统正常工作的情况下,实现对水温的有效控制。
基于单片机的水温水位控制系统设计

四、结论
基于单片机的智能水箱水位和水温控制系统具有结构简单、成本低、可靠性 高等优点。通过实时监测和控制水箱的水位和水温,可以满足不同用户的需求。 此外,通过优化系统的硬件设计和软件设计,可以进一步提高系统的性能和可靠 性。这种系统不仅可以应用于家庭用水领域,也可以应用于工业生产中的液体控 制,具有广泛的应用前景。
1、抗干扰设计
由于环境因素和设备本身的影响,系统可能会受到干扰。因此,需要在硬件 设计和软件设计中加入抗干扰措施,如滤波电路、软件去抖动等。
2、节能设计
为了降低系统的功耗,可以在软件设计中加入休眠模式和唤醒模式。当系统 不需要工作时,可以进入休眠模式,降低功耗。当有数据需要处理时,系统被唤 醒,进入工作状态。
2、软件设计
系统的软件设计主要实现以下功能:数据的采集、处理、显示和控制。首先, 单片机通过水位传感器和水温传感器采集当前的水位和水温数据。然后,单片机 对采集到的数据进行处理,判断水位和水温是否正常。如果异常,则启动相应的 执行机构进行调节。最后,单片机将处理后的数据通过显示模块进行显示。
三、系统优化
六、结论
本次演示设计了一种基于单片机的水温水位控制系统,实现了温度和水位的 自动检测、调节和控制。该系统具有成本低、可靠性高、易于实现等优点,同时 支持远程控制和节能模式等功能。在家庭、工业和科学研究中具有广泛的应用前 景。
参考自动化技术的普及,智能化设备在日常生活和工业生产中 的应用越来越广泛。其中,基于单片机的智能水箱水位和水温控制系统具有重要 应用价值。这种系统可以实现对水箱水位和水温的实时监测和控制,以适应不同 的应用需求。
系统软件采用C语言编写,主要包括以下几个部分:数据采集、数据处理、 控制输出和远程通信。
1、数据采集:通过I/O端口读取DS18B20和超声波水位传感器的数据。
《2024年基于51单片机的温度控制系统设计与实现》范文

《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。
为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。
该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。
二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。
硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。
其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。
2. 软件设计软件部分主要包括单片机程序与上位机监控软件。
单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。
上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。
三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。
具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。
连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。
2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。
程序采用C语言编写,易于阅读与维护。
同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。
3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。
首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。
其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。
最后,对整个系统进行联调,测试其在实际应用中的性能表现。
四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。
基于单片机的水温控制系统设计

基于单片机的水温控制系统设计引言在能源日益紧张的今天,电热水器,饮水机,电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费浪费。
利用 AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。
单片机可将温度传感器检测到的水温模拟量转换成数字量,显示于LED 显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
本设计任务和主要内容设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。
水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。
本设计主要内容如下:(1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。
(2)环境温度降低时温度控制的静态误差≤1℃。
(3)用十进制数码管显示水的实际温度。
(4)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。
(5)温度控制的静态误差≤0.2℃。
系统主要硬件电路设计单片机控制系统原理框图温度采样电路选用传感器AD590。
其测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。
此器件具有体积小、质量轻、线形度好、性能稳定等优点。
系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D转换电路(ADC0804)三部分组成。
信号采集电路温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。
MOC3041光电耦合器的耐压值为400v,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。
100Ω电阻与0.01uF 电容组成双向可控硅保护电路。
部分控制电路系统主程序设计主程序流程图。
基于单片机的水温控制系统设计毕设答辩

2 研 究 内 容 RESEARCH CONTENTS
该系统主要包括传感器温度采集、A/D模数转换、按钮操 作、单片机控制、数码管数字显示等。采用PID算法实现温度 控制功能,通过串行通信完成两片单片机信息的交互,实现 温度的设定、控制和显示。本设计还可以通过串口与上位机 连接,实现计算机控制。为了实现高精度的水温控制,这种 单片机系统采用PID算法控制和PWM脉宽调制相结合的技术, 通过控制双向晶闸管改变电炉和电源的通断来改变水温的加 热时间。该系统由两个模块组成:键盘显示和温度控制。通过 模块之间的通信,完成温度设定、实时温度显示、水温波动 等功能。
基于单片机的水温控制系统设计
答 辩 人: 学 号:C来自NTENTS1 研究意义 2 研究内容 3 调试分析 4 课题总结
1 研 究 意 义 RESEARCH SIGNIFICANCE
现代的发展,就控制器本身而言,控制电路可以采用应 急经典控制理论和常规模拟控制系统,实现水温的自动统一。 然而,随着计算机和超大规模集成电路的迅速发展,以现代 控制理论和计算机为基础,由数字控制、显示、A/D和D/A转 换、后配额执行机构和控制阀组成的计算机控制系统在过程 控制中得到了越来越广泛的应用。此外,单片机的使用也使 水温的智能控制成为可能,并提供完善的人机交互界面和多 机通信接口,这些在常规的数字逻辑道路上往往难以或不可 能实现。
硬件电路的调试要依次调试单片机的基本系统、前向通 道和后向通道。调试时,可利用仿真器读写各接口地址,静 态测试电路各部分连接是否正确;对于动态过程,可以编写 一个简短的调试程序来配合硬件电路的调试。
3 调 试 分 析 DEBUG ANALYSIS
软件的调试需要在仿真器提供的单步、断点、跟踪等功 能的支持下对各子程序分别进行调试.将调试完的工程序连 接起来再调试.逐步扩大调试范围。 调试的过程一般是: A)测试程序输入条件或设定程序输入条件; B)以单步、断点或跟踪方式运行程序; C)检查程序运行结果; D)运行结果不正确时查找原因。修改程序,重复上述过程。
基于单片机的水温恒温模糊控制系统设计

基于单片机的水温恒温模糊控制系统设计水温恒温在很多工业领域中都是非常重要的,比如在制造过程中需要严格控制水温以确保产品质量,或者在实验室中需要保持水温恒定以保证实验结果的准确性。
为了实现水温恒温,可以采用单片机控制系统进行模糊控制,以更好地调节水温并确保其恒定性。
一、系统设计1.系统组成该水温恒温模糊控制系统包括以下几个部分:1)传感器:用于实时监测水温,通常采用温度传感器来获取水温数据。
2)单片机:作为系统的核心控制部分,负责根据传感器采集的水温数据进行控制算法处理,并输出控制信号给执行器。
3)执行器:负责控制水温调节设备,比如加热器或制冷器,以使水温保持在设定的恒温值附近。
4)人机界面:用于设定水温的目标值、显示当前水温以及系统的工作状态等信息,通常采用液晶显示屏或LED灯来实现。
2.系统工作原理系统工作流程如下:1)单片机通过传感器获取实时水温数据,并与设定的恒温值进行比较。
2)根据实时水温和设定值之间的差异,单片机通过模糊控制算法计算出调节水温的控制信号。
3)控制信号送往执行器,执行器根据信号控制加热器或制冷器对水温进行调节。
4)单片机不断循环执行上述步骤,使水温保持在设定的恒温值附近。
二、模糊控制算法设计模糊控制算法是一种基于模糊逻辑进行推理和决策的控制方法,适用于非线性、不确定性系统的控制。
在水温恒温控制系统中,可以设计如下的模糊控制算法:1.模糊化:将实时水温和设定水温映射到模糊集合,通常包括“冷”、“适中”和“热”等。
2.模糊规则库:根据实际情况,设定一系列的模糊规则,描述实时水温和设定水温之间的关系。
3.模糊推理:通过模糊规则库,进行模糊推理,得到相应的控制信号。
4.解模糊化:将模糊推理的结果映射到实际的控制信号范围内,作为执行器的输入。
通过模糊控制算法设计,可以更加灵活地调节水温,适应各种复杂环境下的恒温控制需求。
三、系统实现在实际系统的实现中,首先需要选择合适的传感器,并设计好传感器的接口电路来获取水温数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第1节引言 (3)1.1水温控制系统概述 (3)1.2 本设计任务和主要内容 (4)第2节系统设计原理与方案论证 (5)2.1 总体框图 (5)2.2 总体方案论证 (5)2.3 各部分电路方案论证 (6)第3节硬件电路设计与计算 (8)3.1 温度采样和转换电路 (8)3.2 温度控制电路 (9)3.3 单片机控制部分 (10)3.4 键盘及数字显示部分 (10)第4节实验测试 (12)4.1 循环显示“HELLO888” (12)4.2 键盘及数字显示结合 (13)4.3 温度设定和传送电路 (15)4.4 PWM 电压输出电路 (20)第5节课程设计总结 (23)5.1 此次水温控制系统设计过程中遇到的问题及其解决方法 (23)5.2 设计体会及对该设计的建议 (23)参考文献 (24)第1节绪论水温控制在工业及日常生活中应用广泛,分类较多,不同水温控制系统的控制方法也不尽相同,其中以PID控制法最为常见。
单片机控制部分采用AT89C51单片机为核心,采用软件编程,实现用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。
然而,单纯的PID算法无法适应不同的温度环境,在某个特定场合运行性能非常良好的温度控制器,到了新环境往往无法很好胜任,甚至使系统变得不稳定,需要重新改变 PID 调节参数值以取得佳性能。
本文首先用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。
然后在模型参考自适应算法 MRAC基础上,用单片机实现了自适应控制,弥补了传统 PID控制结构在特定场合下性能下降的不足,设计了一套实用的温度测控系统,使它在不同时间常数下均可以达到技术指标。
此外还有效减少了输出继电器的开关次数,适用于环境参数经常变化的小型水温控制系统。
1.1水温控制系统概述温度控制是无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,过低的温度或过高的温度都会使水资源失去应有的作用,从而造成水资源的巨大浪费。
特别是在当前全球水资源极度缺乏的情况下,我们更应该掌握好对水温的控制,把身边的水资源好好地利用起来。
在现代冶金、石油、化工及电力生产过程中,温度是极为重要而又普遍的热工参数之一。
在环境恶劣或温度较高等场合下,为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度、节约能源,要求对加热炉炉温进行测、显示、控制,使之达到工艺标准,以单片机为核心设计的炉温控制系统,可以同时采集多个数据,并将数据通过通讯口送至上位机进行显示和控制。
那么无论是哪种控制,我们都希望水温控制系统能够有很高的精确度(起码是在满足我们要求的范围内),帮助我们实现我们想要的控制,解决身边的问题。
在计算机没有发明之前,这些控制都是我们难以想象的。
而当今,随着电子行业的迅猛发展,计算机技术和传感器技术的不断改进,而且计算机和传感器的价格也日益降低,可靠性逐步提高,用信息技术来实现水温控制并提高控制的精确度不仅是可以达到的而且是容易实现的。
用高新技术来解决工业生产问题,排除生活用水问题实施对水温的控制已成为我们电子行业的任务,以此来加强工业化建设,提高人民的生活水平。
1.2本设计任务和主要内容1.基本要求一升水由1kW的电炉加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。
2.主要性能指标①温度设定范围:40~90o C,最小区分度为1o C。
②控制精度:温度控制的静态误差1o C≤。
③用十进制数码显示实际水温。
3.扩展功能①具有通信能力,可接收其他数据设备发来的命令,或将结果传送到其他数据设备。
②采用适当的控制方法实现当设定温度或环境温度突变时,减小系统的调节时间和超调量。
③温度控制的静态误差0.2o C≤。
第2节系统设计原理2.1水温控制系统总体框图图2-1 单片机控制系统原理框图该水温控制系统主要由AT89C51单片机控制系统、前向通道(温度采样转换电路)、后向通道(温度控制电路)、键盘显示电路等四部分组成,其总体设计框图如上图所示。
2.2总体方案论证(一)、方案论证与比较本题目是设计制作一个水温控制系统,对象为一升净水,加热器为1KW的电炉。
要求能在35℃--95℃范围内设定控制水温,并具有较好的快速性和较小的超调,以及十进制数码管显示等功能。
1、总体方案设计及论证根据题目的要求,我们提出了以下的两种方案:方案1:此方案是采用传统的二位模拟控制方法,选用模拟电路,用电位器设定给定值,采用上下限比较电路将反馈的温度值与给定的温度值比较后,决定加热或者不加热。
由于采用模拟控制方式,系统受环境的影响大,不能实现复杂的控制算法使控制精度做得教高,而且不能用数码显示和键盘设定。
方案2:采用单片机AT89C51为核心。
采用了温度传感器AD590采集温度变化信号,A/D采样芯片ADC0804将其转换成数字信号并通过单片机处理后去控制温度,使其达到稳定。
使用单片机具有编程灵活,控制简单的优点,使系统能简单的实现温度的控制及显示,并且通过软件编程能实现各种控制算法使系统还具有控制精度高的特点。
比较上述两种方案,方案2明显的改善了方案1的不足及缺点,并具有控制简单、控制温度精度高的特点,因此本设计电路采用方案2。
2.3 各部分电路方案论证本电路以单片机为基础核心,系统由前向通道模块、后向控制模块、系统主模块及键盘显示摸块等四大模块组成。
现将各部分主要元件及电路做以下的论证:(1)、温度采样部分方案1:采用热敏电阻,可满足35℃--95℃的测量范围,但热敏电阻精度、重复性和可靠性都比较差,对于检测精度小于1℃的温度信号是不适用的。
方案2:采用温度传感器AD590。
:AD590具有体积小、质量轻、线形度好、性能稳定等优点。
其测量范围在-50℃-- +150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃,其各方面特性都满足此系统的设计要求。
此外AD590是温度-电流传感器,对于提高系统抗干扰能力有很大的帮助。
经上述比较,方案2明显优于方案1,故选用方案2。
(2)、键盘显示部分控制与显示电路是反映电路性能、外观的最直观部分,所以此部分电路设计的好坏直接影响到电路的好坏。
方案1:采用可编程控制器8279与数码管及地址译码器74LS138组成,可编程/显示器件8279实现对按键的扫描、消除抖动、提供LED的显示信号,并对LED显示控制。
用8279和键盘组成的人机控制平台,能够方便的进行控制单片机的输出。
方案2:采用单片机AT2051与地址译码器74LS138组成控制和扫描系统,并用2051的串口对主电路的单片机进行通信,这种方案既能很好的控制键盘及显示,又为主单片机大大的减少了程序的复杂性,而且具有体积小,价格便宜的特点。
对比两种方案可知,方案1虽然也能很好的实现电路的要求,但考虑到电路设计的成本和电路整体的性能,我们采用方案2。
(3)、控制电路部分方案1:采用8031芯片,其内部没有程序存储器,需要进行外部扩展,这给电路增加了复杂度。
方案2:本方案的CPU模块采用2051芯片,其内部有2KB单元的程序存储器,不需外部扩展程序存储器。
但由于系统用到较多的I/O口,因此此芯片资源不够用。
方案3:采用AT89C51单片机,其内部有8KB单元的程序存储器,不需外部扩展程序存储器,而且它的I/O口也足够本次设计的要求。
比较这3种方案,综合考虑单片机的各部分资源,因此此次设计选用方案3。
设计电路图如图2-2 所示:图2-2 AT89C51单片机原理图第3节硬件电路设计与计算本电路总体设计包括四部分:主机控制部分(89C51)、前向通道(温度采样和转换电路)、后向通道(温度控制电路)、键盘显示部分。
3.1 温度采样和转换电路系统的信号采样和转换电路主要由温度传感器AD590、基准电压7812、运算放大器OP-07及A/D转换电路ADC0804四部分组成。
设计电路图如图3-1所示:图3-1 温度采样和转换电路原理图(1) AD590性能描述测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V 之间,稳定度为1﹪时,误差只有±0.01℃ 。
AD590为电流型传感器温度每变化1℃其电流变化1uA 在35℃和95℃时输出电流分别为308.2uA 和368.2uA 。
(2)基准电压7812提供12V 标准电压,它与运算放大器OP-07和电阻组成信号转换与放大电路,将35℃--95℃的温度转换为0—5V 的电压信号。
(3)ADC0804性能描述ADC0804为8位逐次逼近型A/D 转换器,其输入电压范围在0—5v ,转换速度为100us ,转换精度为0.39﹪,对应误差为0.234℃。
满足系统的要求。
(4)电路原理及参数计算温度采样电路的基本原理是采用电流型温度传感器AD590将温度的变化量转换成电流量,再通过OP-07将电流量转换成电压量,通过A/D 转换器ADC0804将其转换成数值量交由单片机处理。
图3-1中三端稳压7812作为基准电压,由运放虚短虚断可知运放OP-07的反向输入端i U (2脚)的电压为零伏。
当输出电压为零伏时(即Uo=0v) ,令7812的输出电压为b U =12V ,OP-07的2脚处为A 点,AD590的转换电流为c I 。
列出A 点的结点方程如下:b 12U R c I R =+ (1) 由于系统控制的水温范围为35℃--95℃,所以当输出电压为零伏时AD590的输出电流为308.2uA,因此为了使U i 的电位为零就必须使电流 等于电流等于308.2uA, 三端稳压7812的输出电压为12v 所以由方程(1)得12R b c U R I +== 12v 308.2uA=38.94k (2)由(2)取电阻R 1=30k , R 2=20k 的电位器。
又由于ADC0804的输入电压范围为0—5v ,为了提高精度所以令水温为95℃时ADC0804的输入电压为5v (即Uo=5v )。
此时列出A 点的结点方程如下:0b 3412U U R +R R +R C I += (3) 345V 308.2 uA 368.2uA R +R +=34R +R =83.33K当水温为95℃时AD590的输出电流为368.2uA 。
由方程式(3)得3R +4R =83.33k 因此取3R =81k , 4R =5k 的电位器。
3.2、 温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。
采用脉宽调制输出控制电炉与电源的接通和断开比例,以通断控制调压法控制电炉的输入功率。