静定刚架的内力计算及内力图

合集下载

静定结构的内力计算

静定结构的内力计算

§3-5 静定平面刚架
▲ 作内力图
D C 144 E B
M CD 48 KN m (左拉) M DC 0
作M图 CD杆(一段二点): 48
192
AC杆(一段二点):
由此作M图如图(b)所示:
1 M CA 48 4 6 4 2 144 KN m 2 M AC 0 (右拉)
M,在数值上等于截面以左所有向上的力对截面形心的矩减 去所有向下的力对截面形心的矩;或截面以右所有向上的 力对截面形心的矩减去所有向下的力对截面形心的矩。
11
§3-2 内力方程· 内力图
2、关于内力图的规律
◆当某梁段除端截面外全段上不受外力作用时,则 有(a)该段上的剪力方程FS(x)=常数,故该段的剪 力图为水平线;(b)该段上的弯矩方程M(x)是x的 一次函数,故该段的弯矩图为斜直线 。
在静定刚架内力分析中,首先是先求支座反力。然后 再求内力。刚架在外力作用下处于平衡状态,其约束反力 可用平衡方程来确定。
2、绘制内力图:
截面法同样适用于刚架。 轴力:杆件受拉为正,受压为负。 剪力:使截离体顺时针方向转动为正,反之为负。 弯矩:不作正负规定。 弯矩图:画在各杆的受拉一侧,不注明正、负号。 剪力图及轴力图:可画在刚架轴线的任一侧(通常正值画 在刚架的外侧),但须注明正、负号。
受力分析:作用在基本部分上的力不传递给附属部 分,而作用在附属部分上的力传递给基本部分,如 图示 P
P1
2
(a)
P2
B A VC
P1
VB
(b)
因此,计算多跨静定梁时应该是先附属后基本,这样 可简化计算,取每一部分计算时与单跨静定梁无异。22
§3-4 静定多跨梁

第三章静定平面刚架讲解

第三章静定平面刚架讲解

A C
x
L
B 斜梁的反力与相应简支 梁的反力相同。
(2)内力 求斜梁的任意截面C的内力,取隔离体AC:
a
相应简支梁C点的内力为:
FP1 A
FYA
x
MC FNC C
FQC
MC0
=
FY
0 A
x
FP1 (x
a)
FQ0C = FY A FP1 FN0C = 0
Fp1 M0
C
斜梁C点的内力为:
MC = FYA x FP1 (x a) = MC0
F0 YA
F0 QC
FQC = (FYA FP1)Cos = FQ0CCos
FNC = (FYA FP1)Sin = FQ0CSin
结论:斜梁任意点的弯矩与水平梁相应点相同, 剪力和轴力等于水平梁相应点的剪力在沿斜梁 切口及轴线上的投影。
例:求图示斜梁的内力图。
q
A
L
解:a、求反力
B
XA =0
FNDC=8k0N
A
MDC=24kN.m(下拉)
FQDB=8kN D FNDB=6kN
MDB=16kN.m(右拉)
8kN
B
6kN C 6kN
2m
8kN
B24kN.m
6kN
4m
6kN

-6kN 8kN
∑Fx = 8-8 = 0 ∑Fy = -6-(-6) = 0
16kN.m 6kN
∑M = 24-8 - 16 = 0
Fx = 0 : FNCE = 0 .45 kN
校核 Fy= (3.13+0.45)sin +(1.793.58)cos
= 3.58 1.79×2 = 0

静定结构的内力计算图文

静定结构的内力计算图文

30 30
4m
4m
4m
4m
12kN
12kN 12kN
M 图(kN·m)
9kN
9kN
2kN/m
7kN
5kN
9kN
4.5kN
7.5kN
39
第40页/共76页
作业
习题3-5、3-6、3-9 习题3-10、3-12
40
第41页/共76页
§3-3 三铰拱
41
第42页/共76页
一、 概述
1、定义:
通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
AC段受力图:
q
MC
t
C
FNC
FQC
n
x
FAY
FAYSinα
(2)求内力方程:
MC = 0 Ft = 0 Fn= 0
M = 1 qlx 1 qx2 (0 x l) 22
FN
=
q(1 l 2
x) sin
(0 x l)
FQ
=
q(1 2
l
x) cos
(0 x l)
FAYcosα
FAY
M中 =162 / 8 6.23/ 2 =1.385kN.m(下拉)
弯矩图见下图。
1kN/m
6.23 D
C 1.385
6.23 E
1.385kN A
4.5kN
M 图(kN.m)
B 1.385kN
1. 5kN
38
第39页/共76页
例:主从刚架弯矩图。
12kN
2kN/m
36 36
6m
12 42 30
F
F
曲梁

f / l : 高跨比(1~1/10)

第三章 静定结构的内力计算

第三章 静定结构的内力计算

FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC

结构力学二3-静定结构的内力计算

结构力学二3-静定结构的内力计算

以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线

⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线


利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓

结构力学静定结构的内力计算图文

结构力学静定结构的内力计算图文

dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜

第6讲 刚架弯矩图的绘制(之一).

第6讲 刚架弯矩图的绘制(之一).

简支刚架
B
B
三铰刚架
C
C
B
C C B B B
C
B
B
B
D
D
D
A
A A A
A
A
A
A
A
C
C
C
§3-2 静定平面刚架的计算 有基、附关系的刚架 Structural Mechanics
§3-2 静定平面刚架的计算 刚结点处的 变形特点
Structural Mechanics
保持角度不变
§3-2 静定平面刚架的计算
80kN
A 20kN
2m 2m
§3-2 静定平面刚架的计算
40kN
C
q=20kN/m
D
B
0
60kN
20
(-)
Structural Mechanics
60
(+)
4m
V(kN)
A 20kN
80 80
2m 2m
40kN
C B
60kN
40kN
C
B
60kN
VDB VBD 60(kN) VCA 0
3.刚架实例
Structural Mechanics
广东中山岐江公园——刚架船坞中抽屉式插入了游船码头
§3-2 静定平面刚架的计算
3.刚架实例
Structural Mechanics
纵向120米,跨度46米;柱距6米,共3道支撑,3个10T吊车, 间距1.5米。刚接柱
§3-2 静定平面刚架的计算
A
0
60
(-)
20kN
20kN/m
B D
mA=20
Y A=60

第3章 静定刚架

第3章 静定刚架
最后取结点为分离体,利用投影平衡由杆 端剪力求杆端轴力。 即:由剪力图----轴力图
15
qa2/2
B
q C qa2/2
qa2/8
A
a
qa
↑↑↑↑↑↑↑↑

qa2/2
C QCB
B
QBC
M图 a
↑↑↑↑↑↑↑↑
∑MC=qa2/2+ QBCa=0 QBC=QCB=-qa/2 qa2/2
QCA

qa/2
QAC
(下拉)
Fy 0, FQCD 7.5KN 9
3、作内力图
C 30 B A 30 M图(KN.m)
7.5 7.5 15 FQ图(KN) A
C
D
D
FN图(KN)
FQBA 15KN , FQCB 0, FQCD 7.5KN
C 2m 2m 15kn B 7.5KN 4m 7.5KN D
(c)
(d)
(d)
29
思考题 : 试找出下列M图的错误 。
P P
(e)
(e)
(f)
(f)
q P
(g)
(g)
(h)
(h)
30
思考题 : 试找出下列M图的错误 。
M
( j)
p
p
p
(k)
p
31
32
q
练习: 作图示结构弯矩图
q
ql l / 2
ql
l l
l/2
l
q
l
22
FPa
FPa
FPa
FPa 2FPa a a
FP
a
2FP a
a
平行
23
40
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静定刚架的内力计算及内力图(步骤)
求如图所示的刚架内力图:
q
XD
解:(1)求支座反力。

ΣΧ=0 求得XD=q α(
) ΣMA=0 求得YD=
3
2
q α () ΣY=0解得YA=
12
q α(

(2)画轴力图N N AB =-
12 q α(压) N AC =- q α(压
) N CD =-3
2
q α(压) 求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。

注:轴力图画在哪侧皆可,但一定要标出正负号。

轴力图N 如下;
q α
32
q α
(3)剪力图V
V AE =0 V EB =- q α V DC =q α V BC =
12q α V CB =-3
2
q α v cd=q α 特点:没有荷载部分为平直线,有均布荷载部分为斜直线。

剪力图V 如下
剪力图画在哪侧皆可,
(4)画弯矩图(刚架内侧受拉为正,外侧受拉为负)
区段叠加的控制点为 1 端部 2均布荷载的起止点 3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。

) 先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。

M 图特点:1均布荷载:抛物线 2无荷载:直线 3集中力:与力一致的方向产生尖点
叠加大小 集中力点处:力的方向叠加
Fab l
(特别地,当α=b 时代入式子为fl 41
) 均
布荷载中点:2
8
ql
M AB =0 M BA =q α2
(左) M DC =0 M CD = q α×2α=2q α2
(右)
M BC = q α2(上) M CB
CD
受力处E l
22a 0,再用直线连接即可。

注:不管是简支梁与否,受力处的叠加都是加上M=
Fab
l。

受均布荷载的中点处叠加的弯矩的大小是向力的方向移动M=2
8
ql 注:此处所说的简支
是两端有支撑即可。

相关文档
最新文档