浙教版-数学-七年级上册-《代数式的值》典型例题1
代数式的值 浙教版七年级上册练习题(含答案)

4.3代数式的值一、选择题1.已知|x|=3,|y|=2,且xy>0,则x−y的值等于()A. 5或−5B. 1或−1C. 5或1D. −5或−12.若|a|=8,|b|=5,且ab<0,那么a−b的值为()A. 3或13B. 13或−13C. 8或−8D. −3或−133.已知m是√15的整数部分,n是√10的小数部分,则m2−n的值是()A. 6−√10B. 6C. 12−√10D. 134.已知|2m+n+1|+(3y+1)2=0,则3y+2m+n的值是()A. 1B. 0C. −2D. 25.已知代数式x−5y的值是100,则代数式−2x+10y+5的值是()A. 205B. −200C. −195D. 2006.已知a+b=12,则代数式2a+2b−3的值是()A. 2B. −2C. −4D. −3127.若a,b互为相反数,c,d互为倒数,则代数式(a+b−1)(cd+1)的值是()A. 1B. 0C. −1D. −28.已知a2+3a=1,则代数式2a2+6a−1的值为()A. 0B. 1C. 2D. 39.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −110.若x2−3x−5=0,则6x−2x2+5的值为()A. 0B. 5C. −5D. −10二、填空题11.如果m−n=3,那么2m−2n−3的值是______.12.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为______.13.若|x−5|+(y+1)2=0,则xy的值是_______14.有理数2,+7.5,−0.03,−300%,0,中,非负整数有a个,负数有b个,正分数有c个,则a−b+c=__________.三、解答题15.已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn−c的值.16.某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式分别表示去甲、乙两店购买所需的费用;(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)当需要购买40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.17.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a−b+2c−d|的倒数.答案和解析1.【答案】B【解析】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=−3,y=−2.∴x−y=±1.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.本题考查了代数式求值、绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.2.【答案】B【解析】【分析】本题主要考查的是绝对值,有理数的乘法,有理数的减法,代数式求值的有关知识,先根据ab<0可以得到a,b异号,然后求出a,b,再代入代数式求值即可.【解答】解:∵ab<0,∴a,b异号,∵|a|=8,|b|=5,∴a=8,b=−5或a=−8,b=5,∴a−b=8−(−5)=13或a−b=−8−5=−13.故选B.3.【答案】C【解析】略4.【答案】C【解析】【分析】本题主要考查了绝对值,完全平方的非负性,令2m+n+1=0,3y+1=0,运用整体代入可以求出2m+n=−1,3y=−1的值代入即可求出结果.【解答】解:∵|2m+n+1|+(3y+1)2=0∴2m+n+1=0,3y+1=0∴2m+n=−1,3y=−1∴3y+2m+n=−2.故选C.5.【答案】C【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取−2变形后,把已知x−5y=100代入计算即可求出值.【解答】解:∵x−5y=100,∴原式=−2(x−5y)+5=−200+5=−195故选C.6.【答案】B【解析】【分析】本题主要考查的是代数式求值,运用了整体代入法的有关知识,将给出的代数式进行变形,然后整体代入求值即可.【解答】解:∵a+b=12,∴原式=2(a+b)−3=2×12−3=1−3=−2,故选B.7.【答案】D【解析】【分析】本题主要考查的是代数式求值,相反数,倒数的有关知识,先利用相反数,倒数的定义得到a+b=0,cd=1,然后代入代数式求值即可.解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴原式=(−1)×(1+1)=−2,故选D.8.【答案】B【解析】【分析】此题主要考查了代数式求值,正确将原式变形是解题关键.直接利用已知将原式变形,然后整体代入计算即可求出答案.【解答】解:∵a2+3a=1,∴2a2+6a=2(a2+3a)=2∴2a2+6a−1=2−1=1.故选B.9.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.10.【答案】C【解析】本题考查了代数式求值,整体代入法,关键是由x2−3x−5=0,得x2−3x=5把x2−3x看作一个整体,代入计算的值即可.【解答】解:6x−2x2+5,=−2x2+6x+5=−2(x2−3x)+5=−2×5+5=−5.故选C.11.【答案】3【解析】解:∵m−n=3,∴原式=2(m−n)−3=2×3−3=6−3=3.故答案为:3.原式前两项提取公因式变形后,把已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.【答案】2【解析】解:∵a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,∴a=1,b=1,c=0,∴a+b+c=1+1+0=2.故答案是2.先根据已知条件求出a、b、c的值,再代入代数式求值即可.解题的关键是先求出a、b、c的值,然后再求代数式的值.13.【答案】−514.【答案】2【解析】【分析】本题考查了有理数的分类,解题的关键是分类的标准要不重不漏的找到符合条件的a,b,c的值.根据有理数的分类标准把给出的非负整数有a个,负数有b个,正分数有c 个,,即可求出a−b+c的值.【解答】解:有理数2,+7.5,−0.03,−300%,0中,非负整数有3个,负数有2个,正分数有1个,则a−b+c=3−2+1=2.故答案为2.15.【答案】解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn−c=0+1−2=−1;当c=−2时,a+b+mn−c=0+1−(−2)=0+1+2=3;由上可得,代数式a+b+mn−c的值是−1或3.【解析】本题考查的是相反数定义,倒数定义和绝对值的性质以及代数式的值,根据a,b互为相反数,m,n互为倒数,c的绝对值为2,可以求得a+b,mn、c的值,从而可以求得所求式子的值.16.【答案】解:(1)甲店购买需付款48×5+(x−5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=40时,甲店需12×40+180=660元;乙店需10.8×40+216=648元;所以乙店购买合算;(3)先甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球再乙店购买需378元,共需618元.【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买即可.此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.17.【答案】解:∵a是最小的正整数,∴a=1,∵b是最大的负整数,∴b=−1,∵c是绝对值最小的有理数,∴c=0,∵d是数轴上到原点距离为5的点表示的数,∴d=±5,∴|3a−b+2c−d|=|3+1+0−5|=1或|3a−b+2c−d|=|3+1+0+5|=9∴|3a−b+2c−d|的倒数为1或19【解析】本题主要考查了有理数的加减混合运算,有理数、绝对值,数轴及倒数,熟练掌握各自的定义是解决本题的关键.根据最小的正整数为1,最大的负整数为−1,绝对值最小的有理数为0,以及数轴上到原点距离的定义,确定出a,b,c,d的值,即可求出|3a−b+2c−d|的值,再求出其倒数即可.。
2019年秋浙教版七年级数学上册习题课件:4.3 代数式的值(共23张PPT)

解:(1)书的厚度为:(88-86.5)÷(6 -3)=0.5(cm);课桌的高度为:86.5 -3×0.5=85(cm).故答案为:0.5; 85; (2)∵x本书的高度为0.5x,课桌的高 度为85,
(3)当x=55-18=37时,85+0.5x= 103.5 cm.故余下的数学课本高出地面 的距离是103.5 cm.
摄氏温度是 20 ℃.
7.若x的相反数是3,|y|=5,则-x8-或2y
=
.
8.当 x=-2,y=3 时,求下列代数式的值.
(1)x2-yx;
解:5.5;
(2)2(xx-+yy)-3(x-y).
解:14.6.
9.如图,一张长3x的正方形纸片,剪去 两个一样的小直角三角形和一个长方形. 设剪去的小长方形的长和宽分别为x, y,剪去的两个小直角三角形直角边的 长也分别为x,y. (1)用含有x,y的式子表示图中阴影部
(2)当m=50时,甲方案:16×50= 800(元),乙方案:15×50+105= 855(元),∵800<855,∴甲方案优 惠;
(3)当m=400时,甲方案:16×400= 6400(元),乙方案:15×400+105=
13.人在运动时的心跳速度通常和人的 年龄有关.如果用A表示一个人的年龄, 用B表示正常情况下此人在运动时所 能承受的每分钟心跳的最高次数,则 B=0.8(220-A). (1)正常情况下,一个15岁的少年在运
5.当 a=2,b=13时,下列求代数式的值错误的一 项是( D ) A.a(a+b)=2×(2+13)=423 B.a2+b=22+13=413 C.a+ab=2+2×13=223 D.(a+b)(a-b)=(2+13)×(2-13)=313
6.已知摄氏温度 Tc(℃)与华氏温度 TF( )之间的转 换关系是:Tc=59×(TF-32).若华氏温度 68 ,则
2019秋浙教版七年级数学上册习题课件:4.3 代数式的值 (共22张PPT)

18.如图 4-3-3,某长方形广场的四个角都有一块半径相同的四 分之一圆的草地,若圆的半径为 r(m),长方形长为 a(m),宽为 b(m).
图 4-3-3 (1)分别用代数式表示草地和空地的面积; (2)若长方形长为 300 m,宽为 200 m,圆形的半径为 10 m,求广场 空地的面积(计算结果保留到整数). 解:(1)草地面积为 4×14πr2=πr2(m2), 空地面积为(ab-πr2)m2; (2)当 a=300 m,b=200 m,r=10 m 时, ab-πr2=300×200-100π≈59 686(m2). 答:广场空地的面积约为 59 686 m2.
4.3 代数式的值
1.[2018·贵阳]当 x=-1 时,代数式 3x+1 的值是
A.-1
B.-2
C.-4
D.4
(B)
【解析】 将 x=-1 代入代数式 3x+1 计算,即 3×(-1)+1 =-3+1=-2.
2.[2017·重庆]若 x=-13,y=4,则代数式 3x+y-3 的值为( B )
解:(1)当 a=3,b=-1 时,原式=2×4=8; (2)当 a=3,b=-1 时,原式=9-6+1=4.
11.求下列代数式的值. (1)已知 a=1,b=2,c=3,求a2+abb2c+c2的值; (2)在求匀变速直线运动运动距离的公式 s=v0t+12at2 中,已知 v0= 8 m/s,t=20 s,a=10 m/s2,求 s.
( D)
4.若 x 是 2 的相反数,|y|=3,则 x-y 的值是
A.-5
B.1
C.-1 或 5
D.1 或-5
七年级数学上册4.3代数式的值典型例题素材1浙教版(new)

要求:
(1)用代数式表示出第二个月的产值。
(2)当m=20 ,a=5时第二月的产值.
例题解析
例1 解:(1)当a=4, b=12时,
a2- +2=42- +2=16-3+2=15
(2)当a= ,b= 时,
= = = .
点评:(1)求代数式的值的解题步骤是:
1)第二个月的产值为(m+m·a%)万元;
2)当m=20, a=5时
m+m·a%=20+20×5%=21(万元)
小结:若每月的增产率不变,下一个月的产值就等于本月产值+本月产值×增产率。请试着写出第三个月的产值,并计算当m=20,a=5时产值.
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.
例3 解:当a-=2时
(a- )2- +6+a=(a- )2+(a- )+6
=22+2+6
=12.
分析:本例仿例3,把 看一个整体,把所给代数式进行变形。
例4解:当 =2时
代数式的值- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

专题4.3 代数式的值模块一:知识清单代数式的值:用具体数值代替代数式中的字母,就可以得到代数式的值。
注意:求代数式的值的步骤:(1)代入数值; (2)计算结果.整体思想是一种重要的数学思想,它抓住了数学问题的本质,是直接思维和逻辑思维的和谐统一。
有些数学问题在解题过程中,如果按照常规解法运算较繁,而且容易出错;如果我们从整体的高度观察、分析问题的整体形式、整体结构、整体与局部之间的关系、联想相关的知识,就能寻求捷径,从而准确、合理地解题。
模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•浙江七年级期末)若x ﹣2y =3,则2(x ﹣2y )﹣x +2y ﹣5的值是( ) A .﹣2B .2C .4D .﹣4【分析】直接利用合并同类项法则计算,再把已知数据代入得出答案. 【解答】解:∵x ﹣2y =3,∴2(x ﹣2y )﹣x +2y ﹣5=2(x ﹣2y )﹣(x ﹣2y )﹣5=x ﹣2y ﹣5=3﹣5=﹣2.故选:A .2.(2022•丹阳市期末)若代数式x 2的值和代数式2x +y ﹣1的值相等,则代数式9﹣2(y +2x )+2x 2的值是( ) A .7B .4C .1D .不能确定【分析】由题意可得2x +y =1+x 2,代入所求的式子即可解决问题.【解答】解:∵代数式x 2的值和代数式2x +y ﹣1的值相等,∴x 2=2x +y ﹣1;∴2x +y =1+x 2; ∴9﹣2(y +2x )+2x 2=9﹣2(1+x 2)+2x 2=9﹣2﹣2x 2+2x 2=9﹣2=7.故选:A .3.(2022·江苏苏州草桥中学九年级一模)已知25x y -=,那么代数式836x y -+的值是( ) A .7- B .0C .23D .3【答案】A【分析】将8-3x +6y 变形为8-3(x -2y ),然后代入数值进行计算即可. 【详解】解:∵x -2y =5,∴8-3x +6y =8-3(x -2y )=8-3×5=-7;故选A . 【点睛】本题主要考查的是求代数式的值,将x -2y =5整体代入是解题的关键.4.(2022•浙江七年级期末)当x =2时,整式ax 3+bx ﹣1的值等于﹣100,那么当x =﹣2时,整式ax 3+bx ﹣1的值为( )A .100B .﹣100C .98D .﹣98【分析】将x =2代入整式,使其值为﹣100,列出关系式,把x =﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x =2时,整式ax 3+bx ﹣1的值为﹣100,∴8a +2b ﹣1=﹣100,即8a +2b =﹣99, 则当x =﹣2时,原式=﹣8a ﹣2b ﹣1=99﹣1=98.故选:C . 5.(2022·江苏·七年级期末)已知2018,2020a b b c +=+=,则4()a c -=( )A .8B .8-C .16D .16-【答案】C【分析】已知两等式相减求出a -c 的值,代入原式计算即可得到结果. 【详解】解:∵2018,2020a b b c +=+=,∴()()201820202a c a b b c -=+-+=-=-,∴()44()216a c -=-=,故选C .【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6. (2021绵阳市七年级期末) 已知a ﹣2b =﹣5,b ﹣c =﹣2,3c +d =6,求(a +3c )﹣(2b +c )+(b +d )的值.【分析】原式去括号整理后,把已知等式代入计算即可求出值. 【解答】解:∵a ﹣2b =﹣5,b ﹣c =﹣2,3c +d =6∴原式=a +3c ﹣2b ﹣c +b +d =(a ﹣2b )+(b ﹣c )+(3c +d )=﹣5﹣2+6=﹣1. 7.(2022·浙江七年级期中)已知2510a a ,则,1a a+的值为( ) A .3 B .5C .7D .9【答案】B【分析】方程a 2-5a +1=0,两边除以a ,即可解决问题; 【详解】解:∵a 2-5a +1=0,两边除以a 得到,a -5+1a =0,∴a +1a=5,故选:B . 【点睛】本题考查代数式求值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 8.(2022·宁夏回族自治区初一期末)按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==【答案】C【分析】由题可知,代入x 、y 值前需先判断y 的正负,再进行运算方式选择,据此逐项进行计算即可得.【解析】A 选项0y ≥,故将x 、y 代入22x y +,输出结果为15,不符合题意;B 选项0y ≤,故将x 、y 代入22x y -,输出结果为20,不符合题意;C 选项0y ≥,故将x 、y 代入22x y +,输出结果为12,符合题意;D 选项0y ≥,故将x 、y 代入22x y +,输出结果为20,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行y 的正负判断,选择对应运算方式,然后再进行计算.9.(2022·河北省初一期中)5a b -=,那么13756()3a b a b ++-+等于( ) A .7- B .10C .9-D .8-【答案】D【解析】原式=3a +7+5b ﹣6a ﹣2b =3b ﹣3a +7=﹣3(a ﹣b )+7=﹣8.故选D .点睛:将整式的加减与代数式变形相结合解题是中考中经常考查的知识点.先把此代数式变形为a ﹣b 的形式,代入数值即可.10.(2022·河南七年级期末)当x 分别取值12019,12018,12017,⋯,12,1,2,⋯,2017,2018,2019时,计算代数式22122x x -+的值,将所得结果相加,其和等于( )A .1B .20192C .1009D .0【答案】D【分析】先把x=n 和1x=n代入代数式,并对代数式化简求值,得到它们的和为0,然后把x=1代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】解:设22x -1f (x)=2x +2,将x=n 和1x=n 代入代数式,222222221()-11n -1n -11-n n f (n)f ()===01n 2n +22n +22n +22()+2n+++, ∴111f()+f()+f()+f(2)+f(2018)+f(2019)=020*******…+?+,则原式=221-1f (1)==02+2,故选:D .【点睛】本题考查的是代数式的求值,本题的x 的取值较多,并且除x=1外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,原式即为x=1代入代数式后的值. 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·云南曲靖市·九年级二模)已知32021x -=,则()()23202131x x ---+的值为__________. 【答案】1【分析】把32021x -=直接代入即可解答.【详解】解:∵32021x -=,∴()()223202131=2021202120211x x ---+-⨯+, ∴()()23202131=1x x ---+.故答案为1.【点睛】本题主要考查了代数式求值,利用整体思想是解题关键.12.(2022·江苏九年级一模)若2320a a --=,则2726a a +-=______. 【答案】3【分析】知道2320a a --=,可以得到232a a -=,变形得到()223a a --,最后用整体法代入即可.【详解】∵2320a a --=,∴232a a -=,则2726a a +-()2237a a =--+227=-⨯+47=-+3=,故答案为:3. 【点睛】此题考查的是代数式求值,掌握整体法是解题的关键.13.(2022·浙江杭州市·七年级期末)当2020x =-时,代数式531ax bx +-的值为3,则当2020x =时,代数式532ax bx ++值为_______. 【答案】-2【分析】把x =-2020代入代数式ax 5+bx 3-1使其值为3,可得到-20205a -20203b =4,再将x =-2020代入ax 5+bx 3+2后,进行适当的变形,整体代入计算即可. 【详解】解:当x =-2020时,代数式ax 5+bx 3-1的值为3, 即-a ×20205-20203b -1=3,也就是:-20205a -20203b =4, ∴当x =2020时,ax 5+bx 3+2=20205a +20203b +2=-(-20205a -20203b )+2=-4+2=-2,故答案为:-2. 【点睛】本题考查代数式求值,代入是常用的方法,将代数式进行适当的变形是解决问题的关键.14.(2021•常州期末)已知(x ﹣1)2021=a 0+a 1x 1+a 2x 2+a 3x 3+…+a 2021x 2021,则a 1+a 2+…+a 2021= .【分析】令x =1代入求值可得a 0+a 1+a 2+a 3+…+a 2021=0,令x =0可得a 0=﹣1,易得结果. 【解答】解:当x =1时,a 0+a 1+a 2+a 3+…+a 2021=(1﹣1)2021=0; 当x =0时,a 0=(0﹣1)2021=﹣1,a 1+a 2+a 3+…+a 2021=0﹣(﹣1)=1,故答案为:1.15.(2022·射洪县七年级月考)已知:3a b -=,2c d +=,则()()221b c a d +--+的值为______. 【答案】-5【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】解:∵a -b =3,c +d =2,∴原式=2b -2a +c +d -1=-2(a -b )+(c +d )-1=-6+2-1=-5.故答案为:-5. 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.(2022·山东七年级期末)如果代数式4y 2﹣2y +5的值为1,那么代数式2y 2﹣y +1的值为 ___. 【答案】1-【分析】先根据已知代数式的值可得22y y -的值,再将其作为整体代入求值即可得.【详解】解:由题意得:24512y y +=-,整理得:222y y -=-,则221211y y +=-+=--,故答案为:1-.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题关键.17.(2022·北京北理工附中七年级期末)历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.【答案】6【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值. 【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=, ∴()216425336f m n -=+-+=+=.故答案是:6.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.18.(2022·福建泉州·七年级期末)“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用.如:已知2m n +=-,3=-mn ,则()()22234m n mn +-=--⨯-=.利用上述思想方法计算:已知22m n -=,1mn =-.则()()2m n mn n ---=______. 【答案】3【分析】先将原式去括号、合并同类项,然后利用整体代入法求值即可. 【详解】解:∵22m n -=,1mn =- ∴()()2m n mn n --- =22+m n mn n -- =2m n mn -- =2-(-1) =3故答案为:3.【点睛】此题考查的是整式的化简求值,掌握去括号法则、合并同类项法则和整体代入法是解题关键. 三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021•大兴区期末)已知:m 2+mn =30,mn ﹣n 2=﹣10,求下列代数式的值: (1)m 2+2mn ﹣n 2;(2)m 2+n 2﹣7.【分析】(1)把m 2+mn =30,mn ﹣n 2=﹣10两个算式左右两边分别相加,求出m 2+2mn ﹣n 2的值是多少即可.(2)把m 2+mn =30,mn ﹣n 2=﹣10两个算式左右两边分别相减,求出m 2+n 2﹣7的值是多少即可.【解答】解:(1)∵m 2+mn =30,mn ﹣n 2=﹣10, ∴m 2+2mn ﹣n 2=(m 2+mn )+(mn ﹣n 2)=30+(﹣10)=20(2)∵m 2+mn =30,mn ﹣n 2=﹣10,∴m 2+n 2﹣7=(m 2+mn )﹣(mn ﹣n 2)﹣7=30﹣(﹣10)﹣7=3320.(2021春•三明期末)已知a ﹣3b =2,m +2n =4,求代数式2a ﹣6b ﹣m ﹣2n 的值. 【分析】先将原式分为两组后,进行变形,再将已知的a ﹣3b =2,m +2n =4,整体代入即可. 【解答】解:∵a ﹣3b =2,m +2n =4,∴2a ﹣6b ﹣m ﹣2n =2(a ﹣3b )﹣(m +2n )=2×2﹣4=0.21.(2022·河南周口·七年级期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()3a b +看成是一个整体,则()()()()()()332353325363a b a b a b a b a b +-+++=-++=+.尝试应用:(1)把()22a b -看成一个整体,合并()()()222225262a b a b a b ---+-的结果是____________.(2)已知2320x y +-=,求2392016x y ++的值;(3)已知21a b -=,23b c -=-,6c d -=,求()()()22a c b c b d ---+-的值. 【答案】(1)()232a b -(2)2022(3)4【分析】(1)利用合并同类项进行计算即可;(2)把2392016x y ++的前两项提公因式3,再代入求值即可; (3)利用已知条件求出a c -,2b d -的值,再代入计算即可. (1)()()()222225262a b a b a b ---+- ()()22562a b =-+- ()232a b =-故答案为:()232a b -. (2)∵2320x y +-=, ∴232x y +=, ∴2392016x y ++ ()2332016x y =++322016=⨯+2022=;(3)∵21a b -=①,23b c -=-②,6c d -=③, ∴①+②得:2a c -=-,②+③得:23b d -=, ∴()()()22a c b c b d ---+-()233=---+ 4=【点睛】此题主要考查了整式的加减--化简求值,解题的关键是掌握整体思想,注意去括号时符号的变化.22.(2022·浙江义乌七年级月考)阅读以下的师生对话,并完成相应的问题.老师:同学们,已知3ab =,我们怎么求代数式()2a ab b +的值呢?小聪:我们只要找到乘积恰好为3的两个数,如1a =,3b =,再代入求值即可.老师:小聪用的是特殊值法,该方法很多时候确实能较快地得岀答案.但是,如果用不同的特殊值,我们没法确定答案是否一致.所以,我们需要一般的方法.小慧:我们不妨把()2a ab b +计算出来,再看看计算结果与已知条件之间有什么关系.老师:很好,努力寻找目标式与已知式之间的联系,再运用整体思想,也许我们能更好地解决该问题,并理解该问题的本质.同学们赶紧试试吧!(1)请用小聪的特殊值法求出代数式()2a ab b +的值.(2)请用小慧的方法解决该问题. 【答案】(1)12;(2)见解析【分析】(1)将a =1,b =3代入计算即可;(2)将原式括号展开,再利用积的乘方得到()2a ab b +=()2ab ab +,最后代入计算.【详解】解:(1)当a =1,b =3时,()2a ab b +=()21133⨯⨯+=12; (2)∵3ab =,∴()2a ab b +=22a b ab +=()2ab ab +=233+=12【点睛】本题考查了代数式求值,积的乘方,解题的关键是读懂材料,理解两位同学的方法,并掌握整式的混合运算法则.23.(2021.河北省初一期末)已知代数式533ax bx x c +++,当0x =时,该代数式的值为-1. (1)求c 的值.(2)已知当1x =时,该代数式的值为-1,求a b c ++的值. (3)已知当3x =时,该代数式的值为9,试求当3x =-时该代数式的值. (4)在第(3)小题已知条件下,若有35a b =成立,试比较+a b 与c 的大小. 【答案】(1)1c =-;(2)-4;(3) 8;(4)a b c +>【分析】(1)将x=0代入代数式求出c 的值即可;(2)将x=1代入代数式即可求出a+b+c 的值; (3)将x=3代入代数式求出35a+33b 的值,再将x=-3代入代数式,变形后将35a+33b 的值代入计算即可求出值;(4)由35a+33b 的值,变形得到27a+3b=-2,将5a=3b 代入求出a 的值,进而求出b 的值,确定出a+b 的值,与c 的值比较大小即可.【解析】(1)当x=0时,533ax bx x c +++=-1,则有c=﹣1; (2)把x=1代入代数式,得到a+b+3+c=﹣1,∴a+b+c=﹣4;(3)把x=3代入代数式,得到35a+33b+9+c=﹣10,即35a+33b=﹣10+1﹣9=﹣18, 当x=﹣3时,原式=﹣35a ﹣33b ﹣9﹣1=﹣(35a+33b )﹣9﹣1=18﹣9﹣1=8; (4)由(3)题得35a+33b=﹣18,即27a+3b=﹣2, 又∵3a=5b ,∴27a+3×35a=﹣2,∴a=﹣572,则b=35a=﹣124,∴a+b=﹣572﹣124=﹣19>﹣1,∴a+b >c .【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 24.(2022·山西七年级期末)观察下列表格中两个代数式及其相应的值,回答问题:(初步感知)(1)根据表中信息可知:a =______;b =______;(归纳规律)(2)表中25x -+的值的变化规律是:x 的值每增加1,25x -+的值就都减少2.类似地,27x -的值的变化规律是:______;(问题解决)(3)请从A ,B 两题中任选一题作答.我选择______题. A .根据表格反应的变化规律,当x ______时,25x -+的值大于27x -的值.B .请直接写出一个含x 的代数式,要求x 的值每增加1,代数式的值就都减小5,且当0x =时,代数式的值为-7.【答案】(1)1;-3;(2)x 的值每增加1,2x -7的值就增加2;(3)A :<3;B :-5x -7【分析】(1)直接将x =2代入代数式计算可得;(2)类似-2x +5的变化规律可得2x -7的变化规律; (3)A :令-2x +5=2x -7,解得x 的值,再结合表格中数据变化可得;B :设代数式为mx +n ,根据变化规律得到m ,再将数值代入得到n ,可得结果. 【详解】解:(1)当x =2时,a =-2×2+5=1; 当x =2时,b =2×2-7=-3; (2)x 的值每增加1,2x -7的值就增加2; (3)A :当-2x +5=2x -7时,解得:x =3,∵随着x 的增加,2x -7增大,-2x +5减小;反之,随着x 的减小,2x -7减小,-2x +5增大; ∴当x <3时,-2x +5>2x -7;B :设代数式为mx +n ,根据规律可知:当x 的值每增加1,代数式的值减少5时,x 的系数m =-5, 又∵当x =0时,代数式的值为-7,即-5×0+n =-7,解得:n =-7,故代数式为-5x -7. 【点睛】本题考查了代数式的有关问题,属于规律性问题和一元一次方程的应用,认真理解题意,利用代数式的有关知识解决问题.。
浙教版七年级上册数学习题课件:4.3代数式的值(共25张PPT)

废料最少,则正整数x,y应分别为( )
A.x=1,y=3
B.x=C4,y=1
C.x=3,y=2
D.x=2,y=3
10.为确保信息安全,信息需要加密传输,发送方将明文加
密为密文传输给接收方,接收方收到密文后解密还原为明
文.已知某种加密规则为:明文a,b对应的密文是a-2b,
2a+b.例如明文1,2对应的密文是-3,4.那么明文3,1对
17.【2018·长春绿园区期末】如图,在一块长为a,宽为2b 的长方形铁皮中,以2b为直径分别剪掉两个半圆. (1)求剩下铁皮的面积;(用含a,b的式子表示)
解:剩下铁皮的面积为 a·2b-12π22b2×2=2ab-πb2.
(2)当a=4,b=1时,求剩下铁皮的面积约是多少?(π取 3.14)
解(2):3a原2-式2=ab+(a24+b22. ab)+(b2-2ab)=-2+6=4.
解:原式=3(a2+2ab)+4(b2-2ab)=-6+24=18.
16.公安人员在破案时常常根据案发现场作案人留下的脚印 推断犯人的身高,如果用a(单位:cm)表示脚印长度, b(单位:cm)表示身高,则b=7a-3.07. (1)某人脚印长度为24.5 cm,则他的身高约为多少?
售价c/元
4+0.2 8+0.4 12+0.6 16+0.8 20+1
携带物品质量 m/千克 0≤m≤20
20<m≤100
m>100
部分每千克2元
收费标准
不收费 100元 超过100千 克的
(1)用含x的代数式表示售价c; 解:c=4x+0.2x=4.2x. (2)若小明想买3.5千克这种货物,请帮他算一算需付给商 店多少钱;
B.互为倒数
C.符号相反
【复习必备】2019七年级数学上册 第4章 代数式 4.3 代数式的值同步练习 (新版)浙教版

4.3 代数式的值知识点1 求代数式的值1.当x =1时,代数式4-3x 的值是( )A .1B .2C .3D .42.2017·重庆若x =-13,y =4,则代数式3x +y -3的值为( ) A .-6 B .0 C .2 D .63.当a 分别为2和-2时,代数式a 2+1的两个值( )A .互为相反数B .互为倒数C .异号D .相等4.当x =-2时,代数式6x +51-x的值是________. 5. 三角形的面积公式是S =12ab (其中a 表示三角形的一条边长,b 表示这条边上的高),当a =5 cm ,b =4 cm 时,三角形的面积S 是________cm 2.6.当x =-2,y =3时,求下列代数式的值:(1)5x +y 2; (2)2(x +y )+xy -1.知识点2 求代数式的值的实际应用7.由于生产成本和人力成本的增加,经物价主管部门批准,某厂商对某种食用油的销售单价进行调整.该种食用油今天比昨天的单价上涨了20%.(1)如果昨天该种食用油的单价为a 元/升,用代数式表示今天该种食用油的单价;(2)当a =42时,求今天该种食用油的单价.8.若m +n =3,则2(m +n )-6的值为( )A .12B .6C .3D .09.若x =y =-1,a ,b 互为倒数,则12(x +y )+3ab 的值是( ) A .2 B .3 C .4 D .3.510.如图4-3-1是一个数值转换器,若输入的a 的值为2,则输出的值为( )图4-3-1A .2B .0C .1D .-111. 定义一种新运算a b =a 2-ab ,则4(-3)=________.12.2017·慈溪月考历史上,数学家欧拉最先把关于x 的多项式用符号f (x )来表示,把x 等于某数a 时的多项式的值用f (a )来表示.例如x =-1时,多项式f (x )=x 2+3x -5的值记为f (-1),那么f (-1)等于________.13.已知|a -2|+|b +1|=0,求5a 2b -2ab 2+3ab 的值.14.新学期,两摞规格相同的数学课本整齐地叠放在课桌上,请根据图4-3-2中所给出的数据信息,解答下列问题:(1)每本书的厚度为________cm,课桌的高度为________cm;(2)当同样规格的数学课本数为x(本)时,请写出将它们叠放在课桌上时,桌面上的课本高出地面的高度为________(用含x的代数式表示);(3)桌面上有55本与(1)中规格相同的数学课本,它们整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的高度.图4-3-21.A2.B [解析] 把字母x ,y 的值代入要求的代数式,然后按代数式指明的运算顺序进行计算.把x =-13,y =4代入3x +y -3,得3×⎝ ⎛⎭⎪⎫-13+4-3=-1+4-3=0.故选B. 3.D [解析] 当a =2时,a 2+1=22+1=5;当a =-2时,a 2+1=(-2)2+1=5.∴当a =2与a =-2时,代数式a 2+1的值相等.故选D.4.-73 [解析] 因为x =-2,所以6x +51-x =-12+51+2=-73. 5.10 6.(1)-1 (2)-57.[解析] 今天的单价是昨天单价的(1+20%).解:(1)(1+20%)a 元/升.(2)当a =42时,(1+20%)a =1.2×42=50.4,所以今天该种食用油的单价为50.4元/升.8. D [解析] 当m +n =3时,原式=2×3-6=0.9. A10.B11.28[解析] 4(-3)=42-4×(-3)=16+12=28.12.-7 [解析] 根据题意,得f (-1)=1-3-5=-7.13.解:因为|a -2|+|b +1|=0,|a -2|≥0,|b +1|≥0,所以|a -2|=0,|b +1|=0,所以a =2,b =-1.当a =2,b =-1时,原式=5×22×(-1)-2×2×(-1)2+3×2×(-1)=-20-4-6=-30.14.解:(1)每本书的厚度为(88-86.5)÷(6-3)=0.5(cm);课桌的高度为86.5-3×0.5=85(cm).故答案为0.5,85.(2)因为x本书的高度为0.5x cm,课桌的高度为85 cm,所以这些课本高出地面的高度为(85+0.5x)cm.故答案为(85+0.5x)cm.(3)当x=55-18=37时,85+0.5x=103.5.故余下的数学课本高出地面的高度为103.5 cm.。
4.2+代数式的值+课件+--2024-2025学年浙教版(2024)七年级数学+上册

6a-2b+5=2(3a-b)+5=2×2+5=9.
变式2 已知3a-b=2,求代数式 -6a+2b +5的值.
-2(3a-b)
解:当3a-b=2时,
-6a+2b+5=-2(3a-b)+5=(-2)×2+5=1.
小结:用整体代入法求代数式的值,往往先通过观察
发现所求代数式的系数和已知代数式的系数的关系,
=
=6.
小结:1.直接用数值代替代数式里的字母,计算代数式的值
的方法叫做直接代入法.
2.要按照代数式指明的运算顺序进行计算.
3.当字母用数值替代时,要补上乘号.
=-0.12.
3.例题应用,理解概念
( −)
变式:当n分别取下列值时,求代数式
的值.
(1)n=-2.
(2)n= .
小明求解过程如下:
哥哥今年18岁.即当m=15时,代数式m+3的值为18.
由此可以看到,对代数式m+3中的字母m代入合理的
数值,就可以求出代数式m+3的值.
2.提炼概念,初步感知
像这样,用数值代替代数式里的字母,计算后所得的结果,
叫做代数式的值.
我们可将上述过程看作一个计算程序:
代数式
m+3
输入m具
体数值
求解m+3的值
2.若3a-b=2,则代数式12a-4b+5的值为
解: 当3a-b=2时,
12a-4b+5=4(3a-b)+5=4×2+5=13.
.
.
5.巩固练习,掌握新知
3.如图,某窗框上半部分为半圆形,下半部分为长方形,已知
长方形的长为a米,宽为b米. (图中虚线部分不需要安装材料)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《代数式的值》典型例题
例1 求下列代数式的值:
(1) a2- +2 其中a=4, b=12,
(2) 其中a= , b= .
例2当a=-1,b=2,c=3时,求下列各代数式的值。
(1)(2)(a2+b2-c2)2(3)
例3已知a-=2,求代数(a-)2-+6+a的值。
例4当=2时,求代数式的值。
例5某车间第一个月产值为m万元,平均每月增产率为a% 要求:
(1)用代数式表示出第二个月的产值。
(2)当m=20 ,a=5时第二月的产值。
例题解析
例1 解:(1)当a=4, b=12时,
a2- +2=42- +2=16-3+2=15
(2)当a= ,b= 时,
= = = 。
点评:(1)求代数式的值的解题步骤是:
①指出代数式中的字母所取的值;②抄写原代数式;
③把字母的值代入代数式中;④按规定的运算顺序进行计算。
(2)代数式的值是由代数式里字母所取的数的大小来确定的,代数式里的字母可取不同的值,但这些值必须使代数式和它所表示的实际数量有意义。
(1)题中的a不能取0,因为当a取0时,的分母为零,代数式无意义。
(2)题中a+b不能为0。
分析:求代数式在a=-1,b=2,c=3时的值,就是把代数式中的字a、b、c,分别用-1,2,3代替,按原来的运算顺序进行运算即可。
例2 解:
(1)
(2)(a2+b2-c2)2=2=2=16
(3)
分析:本例中代数式(a-)2-+6+a是含字母a的代数式,若已给出a 的值,用a的值代换代数式中的字母a,即可进行运算,但现在没给a的值,又
无法求出a的值。
只知:a-=2,所以我们应把a-作为一个整体,把代数式(a-)2-+6+a进行变形,使代数式中的字母以a-的形成出现,再用2代替a-即可求值。
例3 解:当a-=2时
(a-)2-+6+a=(a-)2+(a-)+6
=22+2+6
=12.
分析:本例仿例3,把看一个整体,把所给代数式进行变形。
例4 解:当=2时
=2×2+3×=5
分析:平均每月增产率为a%,即第二月的产值比第一个月的产值增加
m×a%,所以第二月的产值为m+m·a%.
例5解:
1)第二个月的产值为(m+m·a%)万元;
2)当m=20,a=5时
m+m·a%=20+20×5%=21(万元)
小结:若每月的增产率不变,下一个月的产值就等于本月产值+本月产值×增产率。
请试着写出第三个月的产值,并计算当m=20,a=5时产值。