小学平面几何知识点总结

合集下载

几何公式知识点总结

几何公式知识点总结

几何公式知识点总结一、平面几何公式1. 长方形的面积公式:S = l * w,其中S表示面积,l表示长,w表示宽。

2. 正方形的面积公式:S = a * a,其中S表示面积,a表示边长。

3. 圆的面积公式:S = π * r^2,其中S表示面积,π是圆周率,r是半径。

4. 三角形的面积公式:S = 0.5 * b * h,其中S表示面积,b表示底边长,h表示高。

5. 梯形的面积公式:S = 0.5 * (a + b) * h,其中S表示面积,a、b表示上下底边长,h表示高。

6. 平行四边形的面积公式:S = b * h,其中S表示面积,b表示底边长,h表示高。

7. 等边三角形的面积公式:S = (a^2 * √3) /4,其中S表示面积,a表示边长。

8. 等腰三角形的面积公式:S = 0.5 * b * h,其中S表示面积,b表示底边长,h表示高。

9. 直角三角形的勾股定理公式:a^2 + b^2 = c^2,其中a、b、c分别表示直角三角形的两条直角边和斜边的长度。

10. 三角形的三边关系公式:a + b > c,a + c > b,b + c > a,其中a、b、c分别表示三角形的三条边长度。

11. 三角形的海伦公式:S = √[p * (p - a) * (p - b) * (p - c)],其中S表示面积,p表示半周长,a、b、c分别表示三角形的三条边长。

12. 圆的周长公式:C = 2 * π * r,其中C表示周长,π是圆周率,r是半径。

13. 圆环的面积公式:S = π * (R^2 - r^2),其中S表示面积,π是圆周率,R表示外圆半径,r表示内圆半径。

14. 扇形的面积公式:S = 0.5 * r^2 * θ,其中S表示面积,r表示半径,θ表示弧度。

15. 正多边形的内角和公式:内角和 = (n - 2) * 180°,其中n表示正多边形的边数。

二、立体几何公式1. 直方体的体积公式:V = l * w * h,其中V表示体积,l、w、h分别表示长、宽、高。

平面几何知识点总结

平面几何知识点总结

46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
★28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
★29、塞瓦定理的逆定理:(略)
★30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
★31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
★6、三角形各边的垂直平分线交于一点。
★7、从三角形的各顶点向其对边所作的三条垂线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
★20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
ቤተ መጻሕፍቲ ባይዱ
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。

平面解析几何知识点总结

平面解析几何知识点总结

平面解析几何知识点总结直线方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同.圆的方程1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2;(3) 当D2+E2-4F<0时,该方程不表示任何图形.4. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.5.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2].注意:常用几何法研究圆的弦的有关问题.椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.椭圆定义用集合语言表示如下:P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数.在椭圆定义中,特别强调到两定点的距离之和要大于|F 1F 2|.当到两定点的距离之和等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当到两定点的距离之和小于|F 1F 2|时,动点的轨迹不存在. 2.椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 说明:当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.3.椭圆中的弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a .双曲线1.双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用集合语言表示为:P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e∈(0,1),而双曲线的离心率e∈(1,+∞);(3) a,b,c的关系不同:在椭圆中a2=b2+c2,a>c;而在双曲线中c2=a2+b2,c>a.抛物线1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.这个定点F 叫作抛物线的焦点,这条定直线l 叫作抛物线的准线. 用集合语言描述:P ={M ||MF |d=1},即P ={M ||MF |=d }.注意:抛物线的定义中不可忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线. 2.抛物线的标准方程与几何性质。

小学平面几何重点总结

小学平面几何重点总结

小学平面几何重点总结
1. 直线、线段和射线
- 直线是由无数个点连成的轨迹,没有起点和终点。

- 线段是直线上的两个点及其之间的部分,有起点和终点。

- 射线是直线上的一个点及其之后的部分,有一个起点但没有终点。

2. 角
- 角是由两条射线共享一个端点组成的图形。

- 角的大小可用角度来量度,角度的单位可以是度或弧度。

- 锐角是小于90度的角,直角是90度的角,而钝角是大于90度但小于180度的角。

3. 三角形
- 三角形是由三条线段组成的图形。

- 三角形的三条边和三个内角的关系:任意两边之和大于第三边,任意两角之和小于180度。

- 常见的三角形类型包括等边三角形、等腰三角形和直角三角形。

4. 矩形
- 矩形是一个有四个直角(90度)的四边形。

- 矩形的特点:对角线相等,相对边相等,相邻边互相垂直。

5. 正方形
- 正方形是一个具有四条相等边和四个直角的矩形。

- 正方形的特点:对角线相等,所有边相等,所有角均为直角。

6. 圆
- 圆是由与一个固定点的距离相等的点构成的图形。

- 圆的特征:半径是从圆心到圆上的任意一点的距离,直径是
通过圆心的两个点的距离,圆周是圆的边界。

以上是小学平面几何的一些重点总结,请您参考。

平面解析几何知识点汇总

平面解析几何知识点汇总

1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x .6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=. ③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. ② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x yg x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y kx x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ;条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x (1)过点11(,)A x y ,22(,)B x y 的圆系方程:1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程.(2)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(3)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线. 16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)过圆220x y Dx Ey F ++++=上的点),(00y x P 的切线方程为:0000()()022D x x E y y x x y y F ++++++=. (4) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B则直线AB 的方程为200xx yy r +=(5) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=(6)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 18.空间两点间的距离公式:若A 111(,,)x y z ,B 222(,,)x y z ,则AB =19、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。

小学数学平面与立体几何知识点整理

小学数学平面与立体几何知识点整理

小学数学平面与立体几何知识点整理数学是一门广泛应用于日常生活中的学科,其中的几何学则是研究空间和形状的一门重要分支。

而在小学阶段,数学平面与立体几何是学生所需学习的重要内容之一。

本文将对小学数学平面与立体几何的知识点进行整理和归纳,帮助学生更好地理解和掌握这一部分知识。

一、平面几何1. 直线和线段直线是由无限多个点组成,没有起点和终点,用字母表示。

直线的性质包括平行、垂直等。

线段是直线上的有限多个点构成的部分,有起点和终点,用两个字母表示。

2. 角角是由两条射线共同起点组成的图形。

角的度量单位常用度(°),角度按大小可分为锐角(小于90°),直角(等于90°),钝角(大于90°)和平角(等于180°)。

3. 三角形三角形是由三条线段组成的图形。

根据边长及角度可分为等边三角形、等腰三角形和一般三角形。

还有根据内角可分为直角三角形、锐角三角形和钝角三角形。

4. 四边形四边形是由四条线段组成的图形。

根据边长及角度可分为正方形、长方形、菱形、平行四边形和一般四边形。

5. 圆圆是由平面内到一个固定点的距离相等的所有点组成的图形。

圆的性质包括半径、直径和圆心等。

二、立体几何1. 立体图形与表示方法立体图形是具有长度、宽度和高度的物体。

常见的立体图形有长方体、立方体、圆柱体、圆锥体、球体等。

描述立体图形时,可以使用图形的名称、表面积、体积等进行表示。

2. 直线、直线段与射线直线在空间中没有起点和终点,是由无数个点组成的。

直线段是直线上的一部分,有起点和终点。

射线是由一个起点和无限延伸的部分组成。

3. 空间中的平行与垂直关系平行的线或平面是指在同一平面内不会相交的线或平面。

垂直的线或平面是指两个相交的线或平面,相交的角为90°。

4. 立体图形的表面积与体积立体图形的表面积是指其所有的外部面积之和。

常见的立体图形表面积计算公式包括长方体的公式为2*(长*宽+长*高+宽*高),球体的公式为4*π*半径的平方等。

小学几何知识点总结

小学几何知识点总结

小学几何知识点总结小学几何知识点总结几何,就是研究空间结构及性质的一门学科。

下面是小编带来的几何知识点总结,希望对大家有帮助!一线和角(1)线直线:直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

射线:射线只有一个端点;长度无限。

线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

平行线:在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角1、从一点引出两条射线,所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

2、角的分类锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。

平角180°。

周角:角的一边旋转一周,与另一边重合。

周角是360°。

二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b) s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c= 4a s=a23三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4平行四边形(1)特征两组对边分别平行的四边形。

平面几何知识点总结大全

平面几何知识点总结大全

平面几何知识点总结大全一、基本图形。

1. 点。

- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。

它通常用一个大写字母表示,如点A。

2. 线。

- 直线。

- 直线没有端点,可以向两端无限延伸。

直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。

- 经过两点有且只有一条直线(两点确定一条直线)。

- 射线。

- 射线有一个端点,它可以向一端无限延伸。

射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。

- 线段。

- 线段有两个端点,有确定的长度。

线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。

- 两点之间,线段最短。

3. 角。

- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。

- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。

- 角的分类:- 锐角:大于0^∘而小于90^∘的角。

- 直角:等于90^∘的角。

- 钝角:大于90^∘而小于180^∘的角。

- 平角:等于180^∘的角。

- 周角:等于360^∘的角。

二、相交线与平行线。

1. 相交线。

- 对顶角。

- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。

对顶角相等。

- 邻补角。

- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补,即和为180^∘。

- 垂直。

- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形的分类及概念类别概念图示线直线:没有端点、它是无限长线段:有两个端点、它的长度射线:有一个端点,它的长度弧线:圆上A、B两点间的部分角(由一点引出锐角:大于0°,小于90°的钝角:大于90°,小于180°直角:等于90°的角。

平角:等180°的角。

周角:等于360°的角。

垂直在同一平面内相交成直角的两平行在同一平面内不相交成直角的三角形(由三条边围按边分不等边三角形:三条边都等腰三角形:有两条边相等边三角形:三条边不相按角分锐角三角形:三个角都是直角三角形:有一个角都钝角三角形:三个角都是四边形(由平行四边形(两组对边平行)梯形(只有直角梯形:有一个角等腰梯形:两条腰相圆形一条线段围绕其中一个端点旋1、立体图形的分类及概念平面图形的周长、面积计算公式表2、立体图形的表面积、体积计算公式表3、其它的几何概念1、距离:从直线外一点到这条直线所垂直线段的长度叫做距离。

2、三角形的内角和等于180°。

3、周长:围成一个图形的所有边长的总和叫做这个图形的周长。

4、面积:物体的表面或围成的平面图形的大小,叫做它们的面积。

5、表面积:一个立体图形所有的面的面积总和,叫做它的表面积。

6、体积:一个立体图形所占空间的大小,叫做它的体积。

7、容积:一个容器所能容纳物体体积的多少叫做该容器的容积。

8、角的计量单位是"度",用符号"°"表示。

9、角的大小要看两条边叉开的大小,叉开的越大,角越大。

角的大小与角的两边画出的长短没有关系。

10、平行线间的距离都相等。

11、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合。

这个图形叫做轴对称图形。

12、对称轴:这条直线叫做对称轴。

13、两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

4、关于几何的一些操作知识1、画一个角的步骤如下:2、⑴画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合;3、⑵在量角器所取刻度线的地方点一个点;4、⑶以画出的射线的端点为端点,通过刚画的点,再画一条射线。

5、垂线的画法:1)过直线上一点画这条直线的垂线。

2)过直线外一点画这条直线的垂线。

3、画平行线的步骤是:⑴固定三角板,沿一条直角边先画一条直线;⑵用直尺紧靠三角板的另一条直线边,固定直尺然后平移三角板;⑶再沿一条直角边画出另一条直线4、例:画一个长是厘米,宽是2厘米的长方形。

画的步骤如下:⑴画一条厘米长的线段;⑵从画出的线段两端,在同侧画两条与这条线段垂直的线段,使它们分别长2厘米。

⑶把这两条线段另外的端点连接起来。

5、圆的画法:⑴分开圆规的两脚,在直线上确定半径:⑵固定圆规有针尖的脚,确定圆心;⑶旋转有铅笔尖的一只脚画出一个圆。

平面图形习题精编一、认真思考,准能填好。

1.三角形的一个内角正好等于其余两个内角的和,这是一个()三角形。

2.一个等腰三角形,它的顶角是72º,它的底角是()度。

3.一个等腰三角形的两条边分别是5厘米和8厘米,那么它的周长最多是()厘米,最少是()厘米。

(第三条边为整厘米数)4.用圆规画一个周长是12 .56厘米的圆,圆规两脚间的距离应该是()厘米。

5.用360厘米长的铁丝围成一个三角形,三条边长度的比是1:2:3,它的三条边的长度分别是().()和()厘米。

二、仔细推敲,准确判断。

1.小明说:我用11厘米.1厘米.1厘米的三根小棒围成了一个等腰三角形。

他的话对吗为什么2.小芳说:我用两块一样的三角板拼成了一个大的三角形,这个三角形的内角和是360º。

她的话对吗为什么三、反复权衡,慎重选择。

1.人们常用三角形的()性生产自行车大梁,运用平行四边形的()性应用电动大门。

A.稳定性 B.易变形 C.平衡性2.平行四边形有()高,梯形有()条高,三角形有()条高。

A.无数条 B.一条 C.三条3.圆的半径扩大2倍,则它的直径扩大(),面积扩大()。

A.2倍 B.4倍 C.8倍周长面积习题精编一、对号入座。

1. 270平方厘米=()平方分米公顷=()平方米2. 一个平行四边形的底是9分米,高是底的2倍,它的面积是( )平方分米。

与它等底等高的三角形的面积是()平方厘米。

3. 一个梯形上底与下底的和是15厘米,高是厘米,面积是()。

4. 一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了()厘米,针尖扫的面积是()平方厘米。

5. 用4个边长是2厘米的小正方形拼成一个大长方形,长方形的周长可能是()厘米,也可能是()厘米。

6. 在长20厘米,宽分米的长方形里画一个最大的圆,圆的周长是()面积是()。

二、慎重选择。

(将正确答案的序号填在括号里)1. 两个()梯形可以拼成一个长方形。

A.等底等高B.完全一样C.完全一样的直角2. 用木条钉成的长方形拉成一个平行四边形,它的高和面积()A.都比原来大 B.都比原来小 C.都与原来相等3. 等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,则腰长()。

A.24厘米 B.12厘米 C.18厘米 D.36厘米4. 圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。

A.9 π5.下面图形周长较长的是()三、巧解巧算。

已知下图中正方形的周长为36厘米,求平行四边形的面积。

(2)如果要在窗帘的周围缝上花边,你认为应买回多少花边圆习题精编一、对号入座1.将一个圆平均分成若干份,拼成一近似长方形,长方形的面积与圆的面积,长方形的宽是圆的,长方形的长是圆的。

2.心决定圆的,半径决定圆的。

3.一个时钟的时针长10厘米,一昼夜这时针走了厘米。

4.一圆形水池,直径为30米,沿着池边每隔5米栽一棵树,最多能栽棵。

5.把一平行四边形的框架拉成一长方形,面积,周长。

把一平行四边形通过剪、移、拼的方法拼成一长方形,面积,周长。

6.一个圆的半径扩大3倍,周长扩大,面积扩大。

二、火眼金睛1.半径是2米的圆,周长和面积相等。

()2.两端都在圆上的线段中,直径最长。

()3.大圆的圆周率大于小圆的圆周率。

()4.如果长方形、正方形、圆它们周长相等,那么圆的面积最大。

()三、实践应用1.在一个直径为20厘米的圆内剪一个最大的正方形,正方形的面积占圆面积的几分之几2.从一张长3厘米、宽厘米的长方形纸片上剪下一个最大的正方形,求这个正方形的周长。

3.一个平行四边形和一个三角形等底等高。

已知平行四边形的面积是25平方厘米,三角形的面积是多少4.在一个半径5米的圆形花坛周围修一条宽2米的走道,走道的面积是多少平方米5.一半圆的周长分米,半圆的面积是多少6.用18根1米的小棍靠墙围一长方形,围成的长方形面积最大是多少(画表用列举法)7.用一长20厘米的铁丝正好围一个长方形(长、宽都是整厘米数)计算它的面积。

8.小方从家到学校的距离约有2千米。

一辆自行车轮胎的外直径约70厘米,小方骑这辆自行车,如果轮胎每分种转100周,他从家到学校约需几分种(得数保留整数)能力拔高:1.求阴影部分的面积。

(单位:厘米)2.答案:平方厘米3.4.2.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?5.答案:平方厘米6.7.8.3.求阴影部分的面积。

(单位:厘米)9.答案:平方厘米10.11.12.4、求阴影部分的面积。

(单位:厘米)13.答案:平方厘米14.15.16.17.5、求阴影部分的面积。

(单位:厘米)6、答案:6平方厘米7、8、求阴影部分的面积。

(单位:厘米)9、求阴影部分的面积。

(单位:厘米)10、11、求阴影部分的面积。

(单位:厘米)12、求阴影部分的面积。

(单位:厘米)13、答案:平方厘米14、求阴影部分的面积。

(单位:厘米)15、答案:32平方厘米16、17、18、19、20、10、求阴影部分的面积。

(单位:厘米)21、答案:平方厘米 .22、23、24、25、例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。

分析: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r,则=12,=6圆面积为:π÷2=3π。

圆内三角形的面积为12÷2=6,阴影部分面积为:(3π-6)×=平方厘米例16.求阴影部分的面积。

(单位:厘米)答案:平方厘米例17.图中圆的半径为5厘米,求阴影部分的面积。

(单位:厘米) 答案:平方厘米。

相关文档
最新文档