一元二次方程复习课教学设计知识讲解

合集下载

(完整版)公开课-一元二次方程复习教案

(完整版)公开课-一元二次方程复习教案

课题教课课时教课准备实现目标教学要点目难点标学情剖析导入目标导入方式指引高效导入精讲目标精讲方式高效独立试试导学引领精练思想碰撞合作学习一元二次方程复习课1课时课型复习课常考题型1.理解并掌握一元二次方程的有关观点;2.能采用适合的方法解一元二次方程;3.掌握一元二次方程的根与系数的关系;4.能用一元二次方程解决生活中的实质问题.解法与应用灵巧运用各知识点解决实质问题在学习完第二单元,在月考试卷以及后边出的有关练习题,出现了好多留空,不知道怎么做,不知道哪道题用哪个知识点去解决。

答题格式不规范等存在多种问题,因此针对这一现象,进行一次对本章内容及中考常考典型种类的题目进行一节复习课。

系统归纳本章的主要内容。

导入内容1、一元二次方程的定义:知足方程一般式ax 2bx c 0 (a 0) 这类形式的方程(一个一般式)2、一元二次方程根与系数的关系:__X1+X2=-??????, X1X2= ___ (两个等式 )??3、一元二次方程根的鉴别式:△=b2-4ac(三种状况 )_△ =b2-4ac _>0,___方程有两个不相等的实数根;_△ =b2-4ac _= 0,__方程有两个相等的实数根;_△ =b2-4ac _< 0,__方程没有实数根。

4、一元二次方程的解法:(四种方法): __配方法 _ 、公式法、因式分解法、十字相乘法5、一元二次方程的应用:(五种基本种类)1、小道宽度2、鸡场边长3、勾股定理4、两次增加5、销售收益设计企图:让同学们理清思路,本单元学习的可用到的知识点有哪些。

中考常考题的训练精讲内容1、一元二次方程的一般形式:链接中考:当m____时,1) x m 21 5 x40( m是对于x的一元二次方程.2、一元二次方程的根与系数的关系:假如一元二次方程 ax2bx c0(a0)的两个根是 x1、 x2,那么????X1+X2=- ?? ,X1X2=??链接中考:已知实数a、 b 是方程x2x 1 0的两根,求b aa+ b的值。

人教版九年级数学上册《一元二次方程(复习课)》教学设计

人教版九年级数学上册《一元二次方程(复习课)》教学设计
教学
环节
内 容(或 知 识 点)
时间
纵轴
师 生 活 动
设计意图
创设情景引课




这节课我们系统的复习一元二次方程的概念,解法及一元二次方程根的判别式及根与系数的关系。
知识清单
知识结构
(1)
(2)
(3)
1
4
师:口述提出问题引入新课.
生:认真倾听后,带着问题进入新课的学习和探究.
师: 布置任务:让学生在组内交流自主学习情况,并组织学生展示收获,提出困惑。 检查学生存在问题,并给予指导.
生:在组内交流学习,并展示收获提出困惑.同时积极参与对其他小组收获给予补充,困惑给予解答。
师:进一步明确本节课复习的知识结构,展示结构图
激发学生的学习兴趣和探究的欲望.
培养学生的自主学习能力,主动学习的意识,、合作交流的意识及互帮学习的热情,勇于质疑的精神。
教学
环节
内容(或知识点)
时间
纵轴
师 生 活 动
难点:一元二次方程的解法及其简单的应用
设计意图








小结归纳
布置作业
例1
例2
例3
例4
一、针对训练
二、矫正训练
通过今天的学习,你学会了哪些知识?还有哪些困惑?
练习册21页1—7题
6
20
10
3
师:组织学生先独立完成后
组内再合作探究,并让各小组提出存在的问题。
生:组内合作探究,展示结果,或对某些问题质疑,对其他小组的展示给予补充或提出质疑。
组织学生组独立完成, 1—5题找代表说答案,并简要说明理由。师给予必要的补充。6题找各小组不同层次学生展示过程。师生共同评价,最后对不同题型解法进行总结。7题小组内交流结果,师生评价。

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案教学目标:1.知识与技能:(1)梳理全章知识,理解并掌握一元二次方程的概念及一般形式,熟练掌握方程的解法;(2)理解一元二次方程根的判别式并能运用,会用一元二次方程解决简单的实际问题。

2.过程与方法:(1)经历运用知识、技能解决问题的过程,在解题过程中培养学生的独立思考能力和创新精神;(2)经历观察、操作、想象、推理、交流等活动,发展学生发现问题、提出问题的能力。

3.情感态度与价值观:(1)鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作,体会数学知识的应用价值,提高学生学习兴趣;(2)在合作交流的过程中,渗透数学解题中的方程思想、转化思想、建模思想。

教学重点:一元二次方程的解法及应用及掌握知识过程中的分析问题、解决问题的能力的培养。

教学难点:从实际问题中找等量关系,列出一元二次方程。

课前准备:学生完成课前预习作业,梳理全章知识结构;教师准备教案及课件。

教学过程:第一环节:复习引入,直击问题活动内容:学生分组交流本章知识系统图,教师巡视指导,待学生充分交流后,教师展示PPT上做好的“知识系统图”,及时评价与鼓励,从而进入本课学习。

问题1:一元二次方程的最根本特征是什么?你认为识别它的关键点又是什么?此问题的提出让学生的思维从浅层的“感知”走进深层的“凝思”,思维度增高了。

问题2:前面我们系统学习了一元二次方程的几种解法?分别是哪几种?学生根据前置的讨论易于回答,在此基础上,教师进一步提出下面问题。

问题3:这几种方法中,你认为哪一种是最基础的方法?你能说出这几种解法之间的逻辑关系吗?提出此问题的目的是让学生不仅知道表层上的“是什么?”还要让学生知道深层面上的“为什么?”,从而着力发展学生的思维能力。

问题4:你最喜欢运用上述四种方法中的哪一种去解方程?教师提出这样的问题表面看来“似乎简单”,其实质通过这个问题可引发学生两个思考:其一,适合于自己的最熟练的学得最好的;其二,适合于方程本身结构特点的。

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊一、教材分析1.教材的地位和作用一元二次方程是中学数学的重要内容之一。

一方面,可以对以前学过的一元一次方程、因式分解等知识加以巩固,另一方面,又为以后学习二次函数等知识打下基础。

此外,一元二次方程对其它学科的学习也有重要意义。

因此,其地位可谓是“承上启下”,不可或缺。

2.教学目标分析知识与技能目标:1.理解一元二次方程的概念2.能灵活熟练的解一元二次方程3.会运用一元二次方程解决实际问题。

过程与方法目标:经历一元二次方程求解过程,提高观察分析能力,加深对转化等数学思想的认识。

情感态度与价值观目标:通过自主合作探究学习,养成独立思考的好习惯,培养团队合作意识。

3.教学重难点重点:构建一元二次方程知识体系,全面复习一元二次方程的解法及应用。

难点:利用根的判别式确定字母取值范围和运用一元二次方程解决实际问题。

二、教法与学法分析教法分析:叶圣陶先生主张:“教师务必启发学生的能动性,引导他们尽可能自己去探索。

”结合本节课的内容特点,我将采用启发式、讨论式以及探索式教学方法。

给学生留出足够的思考时间和空间,让学生自己去探索,归纳。

从真正意义上完成对知识的自我构建。

并用多媒体直观演示,最大限度地调动学生学习的积极性。

学法分析:人们常说:“现代文盲不是不识字的人,而是没有掌握学习方法的人”,因此教师要特别注重对学生学习方法的指导。

我贯彻的指导思想是把“学习的主动权还给学生”,倡导“合作交流、自主探究”的学习方式,具体的学法是利用学案导学,小组合作交流法,让学生养成自主学习的习惯,真正实现课堂的高效。

三、教学过程分析教学流程图:1.呈现诊断问题构建知识体系问题1:观察下列方程:⑴(x+3)²=2 ; ⑵x ²-8x+1=0 ; ⑶3x(x-1)=2(x-1);⑷x ²-4x-7=0 ; ⑸x ²+17=8x (无实数根)①这几个都是什么方程?诊断一: ②解这样的方程你有哪些方法? ③它们都有实数根吗?为什么?【教后反思】问题1出示了五个方程,目的是为了引出一元二次方程的概念、解法,以及根的判别式等知识点。

一元二次方程复习课教案

一元二次方程复习课教案

九年级一元二次方程复习课教案一、教学目标:1.通过知识结构图,完成对一元二次方程的知识点的梳理,建构知识体系;2.通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;3.通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。

二、教学重点:理解并掌握一元二次方程的概念及解法,会运用方程解决实际问题。

三、教学难点:灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法。

四、教学过程:(一)导入:本章知识结构图1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,未知数的最高次数是22.一元二次方程的解法:(1)直接开平方法(2 )因式分解法(3 )配方法(4 )求根公式法3.一元二次方程的应用(二)基础训练1.判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由。

x 1 1) (x -1)2=4 2)x ²-2x=8 3)x ²+ =1 4)x ²=y+1 5) x 3-2x ²=1 6)ax ² + bx + c =12.把下列方程化为一元二次方程式,指出二次项系数,一次项系数和常数项 3x ²=1 2y(y-3)= -43.填一填1)若()()02222=-+++x m x m 是关于x 的一元二次方程则m 。

2)若方程02)1()2(22=--++-x m x m m 是关于x 的一元二次方程,则m 的值为 。

3)若x=2是方程x ²+ax-8=0的解,则a= 。

4.选一选1)已知一元二次方程(x+1)(2x -1)=0的解是( )(A )-1 (B )21 (C )-1或-2 (D )-1或212)已知一元二次方程x ²=2x 的解是( )(A )0 (B )2 (C )0或-2 (D )0或25.用适当的方法解下列方程()2130x x -=()22(21)90x --=()2341x x -=()24310x x -+= 6.反败为胜选一选(略)7.一元二次方程应用(略)8.中考链接(2018、2017年广东中考试题)(三)课堂小结:通过今天的学习你有什么收获?(四)课后作业:练习册相应习题。

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案(二)目标:1、让学生进一步掌握解一元二次方程的四种方法;并能灵活选择方法;2、通过典型例子让学生感受到选择适当方法的重要性。

3、进一步探索实际问题中的数量关系及其变化规律,体会数学建模思想,体会数学在应用中的价值4、会根据具体问题中数量关系列出一元二次方程并求解,能根据问题的实际意义检验所得结果是否合理。

教学重难点:重点:掌握解一元二次方程的四种方法。

难点:灵活选择方法解一元二次方程、根据具体问题中数量关系列出一元二次方程并求解是难点。

教学过程:一、典型例题讲解:(一)、一元二次方程的概念1、已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m 时是一元二次方程,当m=时是一元一次方程,当m= 时,x=0。

2、若(m+2)x2 +(m-2)x -2=0是关于x的一元二次方程则m 。

(二)、一元二次方程的解法你还记得吗?请你选择最恰当的方法解下列一元二次方程1、3x² -1=02、x (2x +3)=5(2x +3)3、x² - 3 x +2=04、2 x ² -5x+1=0点评:1、形如(x-k )²=h 的方程可以用直接开平方法求解2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个根丢失了,要利用因式分解法求解。

3、当我们不能利用上边的方法求解的时候就就可以用公式法求解,公式法是万能的。

(三)、巩固提高:1、用配方法解方程2x² +4x +1 =0,配方后得到的方程是 。

2、一元二次方程ax² +bx +c =0,若x=1是它的一个根,则a+b+c= ,若a -b+c=0,则方程必有一根为 。

3、 4.已知方程:5x 2+kx-6=0的一个根是2,则k=_____它的另一个根______.5、方程2 x ²-mx-m² =0有一个根为 – 1,则m= ,另一个根为 。

一元二次方程复习课教案

一元二次方程复习课教案

第三章一元二次方程枳沟初中本章知识结构考点考法说明:课标对于一元二次方程的要求主要包括一元二次方程的概念,会用配方法、公式法、因式分解法解一元二次方程,以及用一元二次方程的知识解决实际问题。

一元二次方程应用广泛,在日常生活、科学技术、环境保护、经济发展等领域均有涉及,解题关键是分析题中的等量关系,列方程解应用题以及方程与不等式、函数等结合的综合性题目将是今后中考的趋势。

中考中对这章的考查形式多样,注重对学生方程思想、转化思想等思想方法的考查,对于学生分析问题和解决问题的能力要求也比较高。

【考点一】考查概念问题通常是考查一元二次方程的定义,此时要注意二次项系数不为0,在讨论含字母系数的一元二次方程问题时,命题者常利用a≠0设计陷阱。

例1.(1)方程(m+1)x m2-2m-1 +7x-m=0是一元二次方程,则m= .思路分析:首先根据一元二次方程的定义得,m2-2m-1=2;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m+1≠0来求m的值.解:m=3.(2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0思路分析:首先得出m2-3m+2=0;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m-1≠0来求m的值.解:m=2.【考点二】一元二次方程的解法要根据方程的特点,灵活选用具体方法。

对于特殊的方程要通过适当的变换,使之转化为常规的一元二次方程,如用换元法。

例2.用适当的方法解一元二次方程(1)x2=3x (2)(x-1)2=3(3)x2-2x-99=0(4)2x2+5x-3=0思路分析:方程(1)选用因式分解法;方程(2)选用直接开平方法;方程(3)选用配方法;方程(4)选用公式法例3.若(x2+y2)2-4(x2+y2)-5=0,则x2+y2=_________。

思路分析:用换元法设x2+y2=m得m2-4m-5=0,解得m1 =5,m2=-1对所求结果,还要结合“x2+y2”进行取舍,从而得到最后结果.解:x2+y2=5【考点三】一元二次方程的根的判别式可以用来:(1)不解方程,判断根的情况;(2)利用方程有无实数根,确定取值范围,解题时,务必分清“有实数根”、“有两个实数根”,“有两个相等实数根”,“有两个不相等实数根”等关键性的字眼。

高考数学复习知识点讲解教案第5讲 一元二次方程、不等式

高考数学复习知识点讲解教案第5讲 一元二次方程、不等式

[解析] 由 + 1 2 − ≥ 0,得 + 1)( − 2 ≤ 0,
故原不等式的解集为{| − 1 ≤ ≤ 2}.
2
若关于的不等式
6.
−∞, 1
+ 2 + 1 < 0有实数解,则的取值范围是___________.
[解析] 当 = 0时,不等式为2 + 1 < 0,有实数解,满足题意;
≤ 0,即 3 − 2 − 3 ≤ 0,且 − 3 ≠ 0,
2
3
≤<3 .
(2)
不等式组0 <
2

[−2, −1) ∪ (2,3]
− − 2 ≤ 4的解集为___________________.
[思路点拨](2)解两个一元二次不等式0 <
2

−−
2
2和
− − 2 ≤ 4,
然后求交集.
例4
是(
对任意的 ∈ 1,4
D
A.[1, +∞)
2
,不等式
− 2 + 2 > 0恒成立,则实数的取值范围
)
B.
1
,1
2
[思路点拨] 分离参数得 >
1,4 上的最大值即可.
1
C.[ , +∞)
2
2−2
对任意的
2

∈ 1,4
D.
1
, +∞
2
2−2
恒成立,则求出 2 在区间

[解析] ∵ 对任意的 ∈ 1,4
数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.
②若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程复习课
教学设计
一元二次方程复习课教学设计
教学目标: 1、完成对一元二次方程的知识点的梳理,构建知识体系。

2、通过对典型例题、易错题的整理,抓住本章的重点、突破学习的难点。

3、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法。

4、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。

教学重点:运用知识,技能解决问题
教学难点:解题分析能力的提高
教师准备:制作课件
教学过程:
一、考点概况
考点1 一元二次方程的概念
只含有一个未知数,且未知数的最高次数是2的整式方程称为一元二次方程.
一元二次方程的一般形式:
)0(02≠=++a c bx ax (a 、b 、c 为常数,a ≠0) 例1.(2011甘肃兰州)下列方程中是关于x 的一元二次方程的是
A .2210x x +=
B .20ax bx c ++=
C .(1)(2)1x x -+=
D .223250x xy y --= 分析:本题是考查一元二次方程的概念.一元二次方程的概念是含有一个未知数且未知数的次数是二次的整式方程.
解: C
考点2 : 一元二次方程的解法
1、直接开方法
2、配方法
3、公式法
4、因式分解法
直接开方法:形如
或 的方程可以用直接开方解其根
配方法:
配方法解一元二次方程的解题过程
1、二次项系数化为1
2、移项:把含有未知数的项放在方程的左边,常数项放在方程的右边。

3、配方:方程的两边同加上一次项系数一半的平方
4、变形:方程变形为(x+m)2=n(n ≥0)的形式
5、利用直接开平方的方法去解
公式法:
公式法解一元二次方程的解题过程
1、把方程化成一元二次方程的一般形式
2、写出方程各项的系数
3、计算出b2-4ac 的值,看b2-4ac 的值与0的关系,若b2-4ac 的值小于0,则此方程没有实数根 。

4、当b2-4ac 的值大于、等于0时, 代入求根公式
计算出方程的值
)
0(2>•=b a b ax ())0,0(2≥≠==a m a n mx 240a
ac ≥±-2-b b x=()
因式分解法:
用因式分解法解一元二次方程的步骤:
1、先化成一元二次方程的一般形式;
2、对含未知数的二次三项式进行因式分解;
3、令每个因式为0,求出一元二次方程的根
例2(2011江苏南京)解方程x 2-4x +1=0
分析:本题考查解一元二次方程.方法有多种,可以灵活选择方法.
考点3 一元二次方程根的判别式
一元二次方程
)0(02≠=++a c bx ax 根的情况决定于一元二次方程的判别式ac b 42-。

若24b ac ->0,方程有两个不相等的实数根;
若24b ac -=0,方程有两个相等的实数根;
若24b ac -<0,方程没有实数根;
注意:以上讨论是在一元二次方程(a≠0)的前提条件下,还要注意各项系数及符号。

例3.(2011江西)试写一个..
有两个不相等实根的一元二次方程: 分析:此题是一个开放性试题,写出的方程满足根的判别式大于0即可. 解:答案不唯一.如:2450x x +-=
考点四:一元二次方程的根与系数的关系
一元二次方程20(0)ax bx c a ++=≠当24b ac -≥0时,方程有实数根,设这
两个实数根为21,x x ,这两个根与系数的关系:a
c x x a b x x =⋅-=+2121,
例4.(2011四川南充市)关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。

(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。

分析:本题把根的判别式及根与系数的关系结合在一起分析.都是在不解方程的前提下,运用判别式及根与系数的关系代入方程的系数而得.
解:∵(1)方程有实数根.∴⊿=22-4(k+1)≥0解得:k≤0 K的取值范围是k≤0.
(2)根据一元二次方程根与系数的关系,得x1+x2=-2,x1x2=k+1.
x 1+x
2
-x
1
x
2
=-2-( k+1)
由已知,得:-2-(k+1)<-1.解得:k>-2.
又由(1)k≤0∴ -2<k≤0∵k为整数∴k的值为-1和0. 考点五:一元二次方程的应用
列一元二次方程解应用题的一般步骤:
1、审题
2、设未知数
3、列方程
4、解方程
5、检验
6、答
例5.(2011广西桂林)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
解:(1)设该市对市区绿化工程投入资金的年平均增长率为x,则
2000(1+x)2=2420.
解得:x=10%(负值已舍).
即该市对市区绿化工程投入资金的年平均增长率为10%.
(2)2012年需投入的资金为2420·(1+10%)2=2928.2万元.
二、疑难点与易错点
1、(2011四川南充市)方程(x+1)(x-2)=x+1的解是()
(A)2 (B)3 (C)-1,2 (D)-1,
解:D
2、(2011贵州黔南)已知三角形的两边的长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()
A.11
B.13
C.11或13
D.11和13
解:B
3、(2011重庆江津)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )
A.a<2 B,a>2 C.a<2且a≠1 D.a<-2·
.解:C
三、练习
四、小结一元二次方程的定义、一元二次方程的标准形式、一元二次方程的根的意义;解一元二次方程、根的判别式以及根与系数的关系;用代数式表示实际问题的数量关系,找实际问题中的相等关系、根据相等关系列出一元二次方程、运用一元二次方程的思想解决实际问题.
五、作业
完成复习资料相应习题。

相关文档
最新文档