数学选修4-5不等式选讲练习题
不等式选讲(选修4-5)典型题及答案

不等式选讲 选修4-51.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.2.设函数()241f x x =-+. (1)画出函数()y f x =的图象;(2)若不等式()f x a x ≤的解集非空,求a 的取值范围.3.已知函数f (x )=|2x +1|+|2x -3|. (1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围. 4.已知函数()2123f x x x =++-,(Ⅰ)若关于x 的不等式()13f x a >-恒成立,求实数a 的取值范围;(Ⅱ)若关于t 的一次二次方程()20t f m -=有实根,求实数m 的取值范围. 5.选修4—5:不等式选讲已知函数ƒ(x)=|2x -a|+ |x -1|.(Ⅰ)当a=3时,求不等式ƒ(x)≥2的解集;(Ⅱ)若ƒ(x)≥5-x 对V.r6 R 恒成立,求实数a 的取值范围. 6.已知函数()()12f x x x m m R =-++∈ (1)若m=2时,解不等式()3f x ≤;(2)若关于x 的不等式()[]230,1f x x x ≤-∈在上有解,求实数m 的取值范围。
7.已知m ,n ∈R +,f (x )=|x +m |+|2x -n |. (1)当m =n =1时,求f (x )的最小值; (2)若f (x )的最小值为2,求证122m n +≥.8.选修4-5:不等式选讲已知函数()11f x m x x =---+.(1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.9.已知函数()312f x x x =-+-的最小值为m . (1)求m 的值;(2)设实数,a b 满足222a b m +=,证明: 2a b +≤10.设函数()2f x x a a =++.(1)若不等式()1f x ≤的解集为{|24}x x -≤≤,求实数a 的值;(2)在(1)的条件下,若不等式()24f x k k ≥--恒成立,求实数k 的取值范围. 11.(导学号:05856266)[选修4-5:不等式选讲] 设函数f (x )=|2x -1|-|x +2|. (Ⅰ)解不等式f (x )>0;(Ⅱ)若∃x 0∈R,使得f ()0x +2m 2<4m ,求实数m 的取值范围. 12.设函数()3f x x =+, ()21g x x =-. (1)解不等式()()f x g x <;(2)若()()24f x g x a x +>+对任意的实数x 恒成立,求a 的取值范围. 13.已知函数()2321f x x x =+-- (1)求不等式()2f x <的解集;(2)若存在x R ∈,使得()32f x a >-成立,求实数a 的取值范围. 14.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 15.设函数()2f x x x a =-+-. (Ⅰ)若2a =-,解不等式;(Ⅱ)如果当x R ∈时, ()3f x a ≥-,求a 的取值范围.参考答案1.(1);(2).【解析】试题分析:(1)方法一:分类讨论去掉绝对值,转化为一般的不等式,即可求解不等式的解集;方法二:去掉绝对值,得到分段函数,画出函数的图象,结合图象即可求解不等式的解集.(2)不等式即关于的不等式恒成立,利用绝对值不等式,得,进而求解实数的取值范围.试题解析:(1)当时,函数,则不等式为,①当时,原不等式为,解得:;②当时,原不等式为,解得:.此时不等式无解;③当时,原不等式为,解得:,原不等式的解集为.方法二:当时,函数,画出函数的图象,如图:结合图象可得原不等式的解集为.(2)不等式即为,即关于的不等式恒成立.而,所以, 解得或,解得或.所以的取值范围是.2.(1)见解析(2)()1,2,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭【解析】试题分析:(1)先讨论x 的范围,将函数f x ()写成分段函数,然后根据分段函数分段画出函数的图象即可;(II )根据函数y f x =()与函数y ax =的图象可知先寻找满足f x a x ≤()的零界情况,从而求出a 的范围.试题解析: (1)由于()25,2{23,2x x f x x x -+<=-≥,则()y fx =的图象如图所示:(2)由函数()y f x =与函数y ax =的图象可知,当且仅当12a ≥或2a <-时,函数()y f x =与函数y ax =的图象有交点,故不等式()f x a x ≤的解集非空时, a 的取值范围是()1,2,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭.3.(1){|12}x x -≤≤;(2)()(),35,-∞-⋃+∞ 【解析】试题分析:(1)由题意结合不等式的性质零点分段可得不等式的解集为{}|12x x -≤≤.(2)由绝对值三角不等式的性质可得()4f x ≥,结合集合关系可得关于实数a 的不等式14,a ->求解绝对值不等式可得实数a 的取值范围为()(),35,-∞-⋃+∞.试题解析:(1)原不等式等价于()()3{221236x x x >++-≤或()()13{2221236x x x -≤≤+--≤或()()1{ 221236x x x <--+--≤,解得322x <≤或1322x -≤≤或112x -≤<-.∴原不等式的解集为{}|12x x -≤≤. (2)()()()212321234fx x x x x =++-≥+--=,14,3a a ∴->∴<-或5a >,∴实数a 的取值范围为()(),35,-∞-⋃+∞.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.4.(Ⅰ)51,3⎛⎫- ⎪⎝⎭;(Ⅱ)35{|}22m m -≤≤. 【解析】试题分析:(1)由题意结合绝对值三角不等式可得()f x 的最小值为4,据此可得134a -<,则实数a 的取值范围为51,3⎛⎫- ⎪⎝⎭;(2)方程的判别式()32421230m m ∆=-++-≥,即21238m m ++-≤,零点分段可得实数m 的取值范围是35{|}22m m -≤≤.试题解析: (Ⅰ)因为()2123f x x x =++-≥()()21234x x +--=,所以134a-<,即513a -<<,所以实数a 的取值范围为51,3⎛⎫- ⎪⎝⎭;(Ⅱ)()32421230m m ∆=-++-≥,即21238m m ++-≤,所以不等式等价于()()3{221238m mm >++-≤或13{2221238m m m -≤≤+-+≤或()()1{221238m m m <--+--≤,所以3522m <≤,或1322m -≤≤,或3122m -≤<-,所以实数m 的取值范围是35{|}22mm -≤≤.5.(Ⅰ){x|x≤32或x≥2}.(Ⅱ)[6,+∞).【解析】试题分析:(Ⅰ) 3a =时,即求解2312x x -+-≥,分33,1,122x x x ≥<<≤三种情况,分别去掉绝对值得不等式的解集即可;(Ⅱ)根据题设条件得251x a x x -≥---恒成立,令()62,151{ 4,1x x g x x x x -≥=---=<,再根据再根据数形结合可求得a 的范围.试题解析:(Ⅰ)当3a =时,即求不等式2312x x -+-≥的解集. 33,1,122x x x ≥<<≤①当32x ≥时, 2312x x -+-≥,解得2x ≥;②当312x <<时, 3212x x -+-≥,解得0x ≤,此时无解;③当1x ≤时, 3212x x -+-≥,解得23x ≤.综上,原不等式的解集为2{ 3x x ≤或}2x ≥.(Ⅱ)由题设得不等式251x a x x -≥---对x R ∀∈恒成立.令()62,151{ 4,1x x g x x x x -≥=---=<,作出函数()g x 和2y x a =-的图象(如图所示),则只需满足32a ≥,即6a ≥.故所求实数a 的取值范围是[)6,+∞.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向. 6.(1)4{|0}3x x -≤≤;(2)32m -≤≤. 【解析】试题分析:(1)当2m =时,不等式为1223x x -++≤,根据分类讨论解不等式即可.(2)由题意可得当[]0,1x ∈时, 22x m x +≤-有解,即[]2230,1x m x x --≤≤-∈在上有解,故只需(()m in m ax 2)23x m x --≤≤-,由此可得结论. 试题解析:(1)当2m =时,不等式为1223x x -++≤,若1x ≤-,则原不等式可化为412233x x x -+--≤≥-,解得,所以413x -≤≤-;若11x -<<,则原不等式可化为12230x x x -++≤≤,解得,所以10x -<≤; 若1x ≥,则原不等式可化为212233x x x -++≤≤,解得,所以x ∈Φ.综上不等式的解集为4{|0}3x x -≤≤.(2)当[]0,1x ∈时,由()23f x x ≤-,得1232x x m x -++≤- 即22x m x +≤-故222223x x m x x m x -≤+≤---≤≤-,解得, 又由题意知(()m in m ax 2)23x m x --≤≤-, 所以32m -≤≤.故实数m 的取值范围为[]3,2-. 7.(1)32. (2)见解析.【解析】试题分析:(1)代入m =n =1,却掉绝对值,得到分段函数,判定分段函数的单调性,确定函数的最小值;(2)由题意得,函数的最小值为2,得22n m += ,利用基本不等式求解最值,即可证明.试题解析:(1)∵f (x )=∴f (x )在(-∞,)是减函数,在(,+∞)是增函数,∴当x =时,f (x )取最小值.(2)∵f (x )=,∴f (x )在(-∞,)是减函数,在(,+∞)是增函数, ∴当x =时,f (x )取最小值f ()=m +.∵m ,n ∈R,∴+= (+)(m +) = (2++)≥2点晴:本题主要考查了绝含有绝对值的函数的最小值问题及分段函数的图象与性质、基本不等式的应用,属于中档试题,着重考查了分类讨论思想与转化与化归思想的应用,本题的解答中,根据绝对值的概念合理去掉绝对值号,转化为分段函数,利用分段函数的图象与性质,确定函数的最小值,构造基本不等式的条件,利用基本不等式是解答问题的关键. 【答案】(1) 3322x x ⎧⎫-<<⎨⎬⎩⎭(2) 4m ≥ 【解析】试题分析:(1)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由二次函数y=x 2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f (x )在x=﹣1处取得最大值m ﹣2,故有m ﹣2≥2,由此求得m 的范围. 试题解析:(1)当5m =时, ()()()()521{311 521x x f x x x x +<-=-≤≤->,由()2f x >得不等式的解集为3322x x ⎧⎫-<<⎨⎬⎩⎭. (2)由二次函数()222312y x x x =++=++, 知函数在1x =-取得最小值2,因为()()()()21{211 21m x x f x m x m x x +<-=--≤≤->,在1x =-处取得最大值2m -,所以要是二次函数223y x x =++与函数()y f x =的图象恒有公共点. 只需22m -≥,即4m ≥. 9.(1)53;(2)见解析【解析】试题分析: ()1写出分段函数,求得()f x 在1,3⎡⎫+∞⎪⎢⎣⎭上单调递增,在1,3⎛⎫-∞ ⎪⎝⎭上单调递减,即可求出m 的值; ()2计算()22a b +,利用基本不等式即可得出结论。
高中数学选修4-5《不等式选讲》练习题(含详解)

数学选修4-5 不等式选讲[基础训练A 组]一、选择题1.下列各式中,最小值等于2的是( )A .x y y x +B .4522++x x C .1tan tan θθ+ D .22x x -+2.若,x y R ∈且满足32x y +=,则3271x y ++的最小值是( )A .B .1+C .6D .7 3.设0,0,1x y x y A x y +>>=++, 11x y B x y=+++,则,A B 的大小关系是( )A .AB = B .A B <C .A B ≤D .A B >4.若,,x y a R +∈,且y x a y x +≤+恒成立,则a 的最小值是( )A .2B .1 D .125.函数46y x x =-+-的最小值为( )A .2B .4 D .6 6.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-二、填空题1.若0a b >>,则1()a b a b +-的最小值是_____________。
2.若0,0,0a b m n >>>>,则b a , a b , m a m b ++, nb n a ++按由小到大的顺序排列为 3.已知,0x y >,且221x y +=,则x y +的最大值等于_____________.4.设1010101111112212221A =++++++-,则A 与1的大小关系是_____________。
5.函数212()3(0)f x x x x =+>的最小值为_____________.三、解答题1.已知1a b c ++=,求证:22213a b c ++≥2.解不等式7340x x +--+>3.求证:221a b ab a b +≥++-4.证明:1)1...<+<数学选修4—5 不等式选讲[综合训练B 组]一、选择题1.设,a b c n N >>∈,且ca n cb b a -≥-+-11恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .6 2. 若(,1)x ∈-∞,则函数22222x x y x -+=-有( )A .最小值1B .最大值1C .最大值1-D .最小值1-3.设P =,Q =R =,则,,P Q R 的大小顺序是( )A .P Q R >>B .P R Q >>C .Q P R >>D .Q R P >>4.设不等的两个正数,a b 满足3322a b a b -=-,则a b +的取值范围是( )A .(1,)+∞B .4(1,)3C .4[1,]3D .(0,1)5.设,,a b c R +∈,且1a b c ++=,若111(1)(1)(1)M a b c=---,则必有( )A .108M ≤<B .118M ≤< C .18M ≤< D .8M ≥6.若,a b R +∈,且,a b M≠=, N =,则M 与N 的大小关系是 A .M N > B .M N < C .M N ≥ D .M N ≤二、填空题1.设0x >,则函数133y x x =--的最大值是__________。
新课程标准数学选修4—5 不等式选讲课后习题答案(word版)

新课程标准数学选修4—5 不等式选讲课后习题解答第一讲 不等式和绝对值不等式 习题1.1 (P9)1、(1)假命题. 假如32>,但是3(1)2(1)⋅-<⋅-. (2)假命题. 假如32>,但是223020⋅=⋅. (3)假命题. 假如12->-,但是22(1)(2)-<-.(4)真命题. 因为c d <,所以c d ->-,因此a c a d ->-. 又a b >,所以a d b d ->-. 因此a c b d ->-. 2、因为22(1)(2)(3)(6)(32)(318)200x x x x x x x x ++--+=++-+-=> 所以(1)(2)(3)(6)x x x x ++>-+3、(1)因为a b >,10ab >,所以11a b ab ab ⨯>⨯,即11b a>,即11a b <; (2)因为a b >,0c <,所以ac bc <. 因为c d <,0b >,所以bc bd <. 因此ac bd <.4、不能得出. 举反例如下:例如23->-,14->-,但是(2)(1)(3)(4)-⨯-<-⨯-.5、(1)因为,a b R +∈,a b ≠,所以22a b ≠,即b a a b ≠. 所以2b a a b +>.(2)因为0a b +>>,所以1a b <+所以122ab ab a b ⨯<=+2ab a b <+6、因为,,a b c 是不全相等的正数所以a b +≥b c +≥,c a +≥,以上不等式不可能全取等号.所以(1)()()()8a b b c c a abc +++>=(2)()()()a b b c c a +++++>所以a b c ++>7、因为222a b ab +≥,222b c bc +≥,222c d cd +≥,222d a da +≥ 所以22222222()()()()2()a b b c c d d a ab bc cd da +++++++≥+++ 即2222a b c d ab bc cd da +++≥+++8、因为2211112a x a x +≥,2222222a x a x +≥,……,222n n n n a x a x +≥ 所以22222212121122()()2()n n n n a a a x x x a x a x a x +++++++≥+++即112222()n n a x a x a x ≥+++ ,所以11221n n a x a x a x +++≤9、因为2222222222(2)()()02244x y x y x y x y xy x y +++-++--==≥, 所以222()22x y x y ++≥. 10222=≥=22≥11、因为,,a b c R +∈,1a b c ++=,所以2222222223()2()()a b c a b c a b c ++=+++++222222222222()()()()222()()1a b b c c a a b c a b b c c a a b ca b c =++++++++≥+++++=++=所以22213a b c ++≥12、(1)因为,,a b c R +∈,所以3a b c b c a ++≥=,3b c a a b c ++≥= 所以()()9a b c b c ab c a a b c++++≥(2)因为,,a b c R +∈,所以0a b c ++≥>,2220a b c ++≥所以222()()9a b c a b c abc ++++≥= 13、设矩形两边分别为,a b ,对角线为定值d ,则222a b d +=∴222222()22()2a b a b ab a b d +=++≤+=∴a b +≤,2()a b +≤ ∴当且仅当a b =时,以上不等式取等号.∴当矩形为正方形时,周长取得最大值,最大值为因为22222a b d ab +≤=,当且仅当a b =时等号成立 所以当矩形为正方形时,面积取得最大值,最大值为22d14、因为222()2h r R +=,所以22244r h R +=.根据三个正数的算术—几何平均不等式,得2222422R r r h =++≥所以,球内接圆柱的体积2V r h π=≤当且仅当222r h =,即r =,h =时,V 取最大值. 15、因为222a b ab +≥,所以2212ab a b ≤+,即2212b a a b ⨯≤+. 由于220min{,}b h a a a b <=≤+,22220min{,}b bh a a b a b <=≤++所以22212b h a a b ≤⨯≤+,从而h ≤习题1.2 (P19)1、(1)()()22a b a b a b a b a a ++-≥++-==(2)2()2a b b a b b a b -+≥-+=+,所以2a b a b b +--≤2、证法一:2212112x xx x x x x x+++==≥=. 证法二:容易看出,无论0x >,还是0x <,均有11x x x x+=+所以112x x x x +=+≥3、(1)()()x a x b a x x b a x x b a b -+-=-+-≥-+-=- (2)因为()()a b x b b a x b b a x b x a -+-=-+-≥-+-=- 所以x a x b a b ---≤-另证:()()x a x b x a x b a b ---≤---=-4、(1)()()()()22A B a b A a B b A a B b εεε+-+=-+-≤-+-<+=(2)()()()()22A B a b A a b B A a b B A a B b εεε---=-+-≤-+-=-+-<+=5、4646(4)(6)2y x x x x x x =-+-=-+-≥-+-= 当且仅当(4)(6)0x x --≥,即[4,6]x ∈时,函数y 取最小值2.6、7、8、(1)5235x -<-< 228x -<< 14x -<<∴原不等式的解集为(1,4)-(2)251x -≤-或251x -≥ 24x ≤或26x ≥ 2x ≤或3x ≥∴原不等式的解集为(,2][3,)-∞+∞ (3)13132x -<+< 1422x -<<84x -<<∴原不等式的解集为(8,4)-(4)2418x -≥ 414x -≥414x -≤-或414x -≥ 43x ≤-或45x ≥ 34x ≤-或54x ≥ ∴原不等式的解集为35(,][,)44-∞-+∞(1)6341x -≤+<-或1346x <+≤ 1035x -≤<-或332x -≤≤ 10533x -≤<-或213x -≤≤ ∴原不等式的解集为1052[,)(1,]333--- (2)9523x -<-≤-或3529x ≤-<1428x -<-≤-或224x -≤-< 47x ≤<或21x -<≤ ∴原不等式的解集为(2,1][4,7)-(1)令30x -=,50x -=得3x =,5x = ①当3x <时354x x -+-+≥2x ≤∴2x ≤②当35x ≤<时 354x x --+≥9、(1,)a ∈+∞第二讲 证明不等式的基本方法 习题2.1 (P23)1、因为a b >,所以0a b ->. 因此33()a b ab a b ---222222()()()()()()()0a b a ab b ab a b a b a ab b ab a b a b =-++--=-++-=-+>所以33()a b ab a b ->-2、因为ad bc ≠,所以22222()()()a b c d ac bd ++-+(2)令20x -=,30x +=得2x =,3x =- ①当3x <-时234x x -+--≥ 52x ≤-∴3x <-②当32x -≤<时234x x -+++≥ 54≥ ∴32x -≤< ③当2x ≥时234x x -++≥32x ≥∴2x ≥∴原不等式的解集为R(3)令10x -=,20x -=得1x =,2x = ①当1x <时122x x -+-+<12x >∴112x << ②当12x ≤<时 122x x --+< 12< ∴12x ≤< ③当2x ≥时122x x -+-<52x <∴522x ≤<∴原不等式的解集为15(,)22222222222222()(2)()0a c a dbc bd a c a b c d b da dbc =+++-++=->所以22222()()()a b c d ac bd ++>+3、因为a b ≠,所以42242264()a a b b ab a b ++-+4224222222222222424()4()2()(2)(2)(2)()0a ab b a b ab a ba b a b a b a b a b a b a b =++-++=+-+⋅+=+-=->所以42242264()a a b b ab a b ++>+ 4、因为,,a b c 是正数,不妨设0a b c ≥≥>,则()1a b a b -≥,()1b c b c -≥,()1c a ca -≥因为0b c c aaa bc+++>,且222222()()(a b c a bcbcab ccaaba bc a babca bcbc a---------+++==≥所以222a b c b c c a a b a b c a b c +++≥ 习题2.2 (P25)1、因为222252(2)(2)(1)0a b a b a b ++--=-+-≥,所以2252(2)a b a b ++≥-.2、(1)因为2(1)()(1)(1)()()ab a b ab ac bc c a b a c b c ++++++=++++16c a b c ≥⨯= 所以2(1)()16ab a b ab ac bc c abc ++++++≥(2)因为3322()()()()()a b a b ab a b a ab b a b ab +-+=+-+-+222()(2)()()0a b a a b b a b a b =+-+=+-≥ 所以33()a b a b ab +≥+,33()b c b c bc +≥+,33()c a c a ca +≥+ 所以3332222()()()()a b c a b c b a c c a b ++≥+++++ 3、略.4、要证明1110a b b c c a ++>---,即证明111a b b c a c+>--- 因为a b c >>,所以0a c a b ->->,从而110a b a c>>-- 又因为10b c >-,所以111a b b c a c +>---,所以1110a b b c c a ++>---5、要证2m m n +≥()2m nn m m n m n ++≥.因为2()()2m n m n m nm n mn ++++≥= 只需证2()m n n m mn m n +≥,即证22()m n n m mn m n +≥,只需证()1m n mn -≥,不妨设m n ≥,则0m n -≥所以()1m n mn -≥. 所以,原不等式成立.6、要证明()()f a f b a b -<-,即a b <-,即a b <-因为a b ≠,所以只需证a b +<∵a b a b +≤+<∴a b +<,从而原不等式成立.7、22log (1)log (1)[(log (1)log (1)][(log (1)log (1)]a a a a a a x x x x x x --+=-++--+21l o g (1)l o g 1a a x x x -=-+ 又因为01x <<,所以2011x <-<,1011xx-<<+. 所以21log (1)log 01a axx x -->+ 所以22log (1)log (1)0a a x x --+>,即22log (1)log (1)a a x x ->+ 从而log (1)log (1)a a x x ->+8、因为0n >,所以2244322n n n n n +=++≥= 9、因为22221(1)(1)0ab a b a b ---=-->,所以1ab a b ->-习题2.3 (P29)1、因为0,,1a b c <<,根据基本不等式2(1)10(1)()24a a a a -+<-≤= 2(1)10(1)()24b b b b -+<-≤=,2(1)10(1)()24c c c c -+<-≤= 所以31(1)(1)(1)()4a a b b c c -⨯-⨯-≤假设(1),(1),(1)a b b c c a ---都大于14,则31(1)(1)(1)()4a b b c c a -⨯-⨯->这与31(1)(1)(1)()4a ab bc c -⨯-⨯-≤矛盾. 所以(1),(1),(1)a b b c c a ---不能都大于14.2、一方面,222211111111234233445(1)n n n ++++>++++⨯⨯⨯+1111111111()()()()233445121n n n =-+-+-++-=-++ 另一方面,222211111111234122334(1)n n n++++<++++⨯⨯⨯-111111111(1)()()()1223341n n n n n-=-+-+-++-=-=-所以,2222111111121234n n n n --<++++<+3、当1n =时,不等式1+++<1<.当2n ≥<<<<所以1<,<,<,……,<所以1(3+4、假设2211(1)(1)9x y--<. 由于,0x y>且1x y+=所以2222221111(1)(1)x yx y x y----=⨯2222(1)(1)(1)(1)(1)(1)111291x x y yx yx y y xx yx yx yx xx x+-+-=⨯++=⨯++=⨯+-=⨯<-得2(21)0x-<,这与2(21)0x-≥矛盾,所以2211(1)(1)9x y--≥5、因为2r h Vπ=(定值)所以,圆柱的表面积222S r rhππ=+22r rh rhπππ=++≥==当且仅当22r rh rhπππ==时,等号成立.所以,当2h r=,即h r==.6、2(1π第三讲柯西不等式与排序不等式习题3.1 (P36)1、函数定义域为[5,6],且0y≥5y=≤当且仅当=13425x=时,函数有最大值5.2、三维柯西不等式2222222123123112233()()()a a ab b b a b a b a b++++≥++三维三角不等式2221)(z x+≥-3、因为22236x y+≤,所以2x y+≤≤.因此2x y+4、因为221a b+=,所以cos sin1a bθθ+≤=5、因为1a b+=,所以2212121212()()(()ax bx bx ax a b x x x x++≥=+=6、222()(14)(2)1x y x y++≥+=,即2215x y+≥当且仅当12,55x y==时,22x y+有最小值157、2119()(2)22a bb a++≥=当且仅当21ab=(,a b R+∈)时,函数有最小值928、12()()pf x qf x+=12()f px qx=+9、3sin3siny x x=+=+≤=当且仅当tan x=习题3.2 (P41)1、22111111()()39a b ca b c a b c++=++++≥==推广:若12,,,nx x x R+∈,且121nx x x+++=,则212111nnx x x+++≥.证:121212111111()()n n nx x x x x x x x x +++=++++++22n ≥+= 2、因为2222222222224()(1111)()a b c d a b c d +++=++++++ 222(1111)()11a b c d a b c d ≥⋅+⋅+⋅+⋅=+++==所以222214a b c d +++≥ 3、221212111()()n n x x x n x x x ++++++≥+= 4、2221112()a b b c c a a b b c c a ++=++++++++222111()()9a b b c c a a b c a b c a b c a b b c c aa b c+++=+++++++++++++≥+===++上式中等号不成立,这是由于,,a b c 是互不相等的正数, 所以111:::a b b c c a a b c a b a b c b c a b c c a+++≠≠+++++++++.5、因为22222222()(234)(234)10100x y z x y z ++++≥++==,所以22210029x y z ++≥.当且仅当203040,,292929x y z ===时,222x y z ++有最小值10029. 6、因为2221212()(1)111nnx x x n x x x +++++++222121212212()[(1)(1)(1)]111()1n n n n x x x x x x x x x x x x =++++++++++++≥+++=所以222121211111n n x x x x x x n +++≥++++ 习题3.3 (P45)1、由加法交换律及12,,,n c c c 的任意性,不妨假设12n a a a ≤≤≤ ,这不影响题意.由排序不等式,等222112212n n na c a c a c a a a +++≤+++ . 2、由于要证的式子中,,abc 是轮换对称的,所以不妨假设a b c ≤≤. 于是222a b c ≤≤.由排序不等式,得222222a a b b c c a b b c c a ++≥++222222a a b b c c a c b a c b ++≥++两式相加,得3332222()()()()a b c a b c b c a c a b ++≥+++++ 3、由于要证的式子中123,,a a a 是轮换对称的,所以不妨假设123a a a ≥≥. 于是123111a a a ≤≤,233112a a a a a a ≤≤ 由排序不等式,得122331233112231312312111a a a a a a a a a a a a a a a a a a a a a ++≥⋅+⋅+⋅=++ 即122331231312a a a a a a a a a a a a ++≥++ 4、用柯西不等式证明如下:因为2222212123112231()()()n n n n n a a a a a a a a a a a a a a a -++++++++≥+++所以222212112231n n n n a a a aa a a a a a a -++++≥+++ .用排序不等式证明如下:设120n i i i a a a ≥≥≥> ,其中12,,,n i i i 是1,2,,n 的一个排列 则12222ni i i a a a ≥≥≥ ,12111ni i i a a a ≤≤≤.由排序不等式知,反序和最小,从而12122222222121231111n nn n i i i n i i i a a a a a a a a a a a a a a -++++≥⋅+⋅++⋅1212n i i i n a a a a a a =+++=+++所以222212112231n n n n a a a a a a a a a a a -++++≥+++习题4.1 (P50)1、(1)当1n =时,左边=1,右边=1, 所以,左边=右边,命题成立.(2)假设当(1)n k k =≥时,命题成立,即2135(21)k k ++++-= . 当1n k =+时,22135(21)2(1)12(1)1(1)k k k k k ++++-++-=++-=+ .所以,当1n k =+时,命题成立. 由(1)(2)知,2135(21)n n ++++-=2、(1)当1n =时,左边=1,右边11(11)(211)16=⨯⨯+⨯+=, 所以,左边=右边,命题成立. (2)假设当(1)n k k =≥时,命题成立,即21149(1)(21)6k k k k ++++=++ . 当1n k =+时,2221149(1)(1)(21)(1)6k k k k k k ++++++=++++ 21(1)(276)61(1)(2)[2(1)1]6k k k k k k =+++=++++所以,当1n k =+时,命题成立.由(1)(2)知,21149(1)(21)6n n n n ++++=++3、(1)当1n =时,左边144=⨯=,右边2124=⨯=, 所以,左边=右边,命题成立. (2)假设当(1n k k =≥时,命题成立,即21427310(31)(1)k k k k ⨯+⨯+⨯+++=+ . 当1n k =+时,1427310(31)(1)[3(1)1]k k k k ⨯+⨯+⨯+++++++2(1)(1)[3(1)1]k k k k =+++++ 22(1)(44)(1)[(1)1]k k k k k =+++=+++ 所以,当1n k =+时,命题成立.由(1)(2)知,21427310(31)(1)n n n n ⨯+⨯+⨯+++=+4、(1)当1n =时,因为211211x y x y ⨯-⨯-+=+能被x y +整除,所以命题成立. (2)假设当(1)n k k =≥时,命题成立,即2121k k x y --+能被x y +整除. 当1n k =+时, 2(1)12(1)12121k k k k x y x y +-+-+++=+2122212122212212212212121222212121()()()()()k k k k k k k k k k k k x x y y x x x y x y y y x xyyy x x x y yy x y x------------=+=+-+=++-=+++-上式前后两部分都能被x y +整除,所以,当1n k =+时命题成立. 由(1)(2)知,2121n n x y --+能被x y +整除.5、凸n 边形有1(3)2n n -条对角线. 下面证明这个命题.(1)当3n =时,三角形没有对角线,即三角形有0条对角线,命题成立.(2)假设当(3)n k k =≥时,命题成立,即凸k 边形有1(3)2k k -条对角线.当1n k =+时, 凸(1)k +边形的对角线条数为2111(3)(2)1(2)(1)[(1)3]222k k k k k k k -+-+=--=++- 所以,当1n k =+时,命题成立.由(1)(2)知,凸n 边形有1(3)2n n -条对角线.6、这样的n 条直线把平面分成的区域数目为1(1)2n nf n =++. 下面证明这个命题.(1)当1n =时,平面被分为112+=个区域,111(11)22f =++=,命题成立.(2)假设当(1)n k k =≥时,命题成立,即有1(1)2k kf k =++.当1n k =+时, 第1k +条直线与前面k 条直线有k 个不同交点即,它被前面k 条直线截成1k +段,其中每一段都把它所在的原区域一分为二,也即使原区域数目增加1k +.于是11(1)1(1)(1)1(2)22k k k k f f k k k k ++=++=++++=++ 2111(3)(2)1(2)(1)[(1)3]222k k k k k k k -+-+=--=++- 所以,当1n k =+时,命题成立. 由(1)(2)知,对任意正整数n ,命题都成立. 习题4.2 (P53)1、(1)当3n =时,左边11(123)(1)1123=++++=,右边233111=+-=所以,左边=右边,命题成立. (2)假设当(3)n k k =≥时,命题成立,即211(12)(1)12k k k k++++++≥+- . 当1n k =+时,111(121)(1)21k k k k ++++++++++22222111111(12)(1)(12)(1)(1)2121111111111(1)(1)(1)2121211111111(1)(1)(1)21223413251221231(1)(1)1k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k =++++++++++++++++++≥+-+++++++++++++++>+-+++++++++=+-+++>++=+++-所以,当1n k =+时,命题成立. 由(1)(2)知,命题对大于2的一切正整数成立. 2、(1)当17n ≥时,有42n n >.①当17n =时,17421310728352117=>=,命题成立. ②假设当(17)n k k =≥时,命题成立,即42k k > 当1n k =+时,14422221k kk k k k k k k k +=⋅>>+>++++=+所以,当1n k =+时,命题成立.由①②知,命题对一切不小于17的正整数成立.(2)当3n ≥时,有1(1)n n n+<.①当3n =时,3164(1)3327+=<,命题成立. ②假设当(3)n k k =≥时,命题成立,即1(1)k k k+<当1n k =+时,1111(1)(1)(1)111k k k k k ++=+++++ 11(1)(1)11(1)11k k k k k k <+++<++<+ 所以,当1n k =+时,命题成立.由①②知,命题对一切不小于3的正整数成立.3、(1)当2n =时,212122-<,命题成立.(2)假设当(2)n k k =≥时,命题成立,即222111123k k k -+++<当1n k =+时,2222211111123(1)(1)k k k k k -++++<+++3232221(1)1(1)(1)1k k k k k k k k k k +-++-=<=+++ 所以,当1n k =+时,命题成立. 由(1)(2)知,命题对任意大于1的正整数成立. 4、不妨设a b c <<,a b d =-,c b d =+.(1)当2n =时,2222222()()222a c b d b d b d b +=-++=+>,命题成立. (2)假设当(2)n k k =≥时,命题成立,即2k k k a c b +> 当1n k =+时,1111k k k k k k a c a ac ac c +++++=+-+1()()()2222()22()22k k k k k k kkkkkk k a a c c c a a a c d ca b d c b d b d cb d b d b b+=++-=++>+=-+>-+= 所以,当1n k =+时,命题成立. 由(1)(2)知,命题对一切大于1的正整数成立.5、(1)当1n =时,212(11)22⨯+<<,命题成立.(2)假设当(1)n k k =≥时,命题成立,即2(1)(1)22k k k k a ++<<. 当1n k =+时,2(1)(1)22k k k k a +++<+<21(1)(1)23(1)222k k k k k k a ++++++<<+ 21(1)(2)(2)22k k k k a ++++<<所以,当1n k =+时,命题成立.由(1)(2)知,命题对一切正整数成立.6、(1)当2n =时,12121212sin()sin cos cos sin sin sin αααααααα+=+<+,命题成立.(2)假设当(2)n k k =≥时,命题成立,即1212sin()sin sin sin k k αααααα+++<+++当1n k =+时,121sin()k k αααα+++++121121121121sin()cos cos()sin sin()sin sin sin sin sin k k k k k k k k αααααααααααααααα++++=+++++++≤++++<++++所以,当1n k =+时,命题成立. 由(1)(2)知,命题对一切大于1的正整数成立.7、(1)当2n =时,2222212121122()()()a a b b a b a b ++≥+,命题成立.(2)假设当(2)n k k =≥时,命题成立,即222222212121122()()()k k k k a a a b b b a b a b a b ++++++≥+++当1n k =+时,22222222121121()()k k k k a a a a b b b b ++++++++++2222222222222222121212111211()()()()k k k k k k k k a a a b b b a a a b a b b b a b ++++=+++++++++++++++222112211122211221112112211()2()2()k k k k k k k k k k k k k k a b a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++≥+++++≥+++++=+++所以,当1n k =+时,命题成立. 由(1)(2)知,命题对一切不小于2的正整数成立即,222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ .8、(1)21212111()()n n a a a n a a a ++++++≥ (2)①当1n =时,21111a a ⋅=,命题成立. ②假设当(2n k k =≥时,命题成立,即21212111()()k ka a a k a a a ++++++≥ 当1n k =+时,1211211111()()k k k k a a a a a a a a ++++++++++12121121122221111111()()()()111(1)k k k k k ka a a a a a a a a a a a a a k k k ++=+++++++++++++++≥++≥++=+所以,当1n k =+时,命题成立.由①②知,命题对一切正整数成立。
高中数学选修4-5不等式选讲复习训练题

不 等 式 选 讲A 组1.若,a b 是任意的实数,且a b >,则( )(A)22b a > (B)1<a b(C) lg()0a b -> (D)ba )21()21(< 2.不等式32->x的解集是( ) (A ) )32,(--∞ (B) )32,(--∞),0(+∞ (C) )0,32(-),0(+∞ (D) )0,32(-3.不等式125x x -++≥的解集为( ) (A)(][)+∞-∞-,22, (B)(][)+∞-∞-,21, (C)(][)+∞-∞-,32, (D)(][)+∞-∞-,23,4.若0n >,则232n n+的最小值为 ( ) (A) 2(B) 4(C) 6(D) 85.若A=(3)(7)x x ++,B=(4)(6)x x ++,则A ,B 的大小关系为__________. 6.设a ,b ,c 是不全相等的正数,求证: 1)()()()8a b b c c a abc +++>;2)a b c ++>7..已知x ,y R ∈,求证222x y +≥2()2x y +8.如图1,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转作成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?9.已知a ,b ,0c >,且不全相等,求证222222()()()6a b c b a c c a b abc +++++>.10. 已知1a ,2a ,…,+∈R a n ,且121=n a a a ,求证nn a a a 2)1()1)(1(21≥+++ .B 组11.已知x ,0>y ,且2>+y x .试证:yx +1,xy+1中至少有一个小于2.12.求函数x x y 21015-+-=的最大值.13. 已知122=+b a ,求证θθsin cos b a +≤1.14. 已知12=+y x ,求22y x +的最小值.15. 已知10432=++z y x ,求222z y x ++的最小值.16. 已知a ,b ,c 是正数,求证2229a bb cc aa b c++≥+++++.17.证明:)(53+∈+N n n n 能够被6整除.18. 设,,a b c R +∈,求证:32a b c b cc aa b++≥+++.不 等 式 选 讲 答 案1.D .提示:注意函数1()2xy =的单调性;2.B .提示:先移项,再通分,再化简;3.D .提示:当x ≤-2时,原不等式可以化为(1)(2)x x ---+≥5,解得x ≤-3,即不等式组2125x x x ≤-⎧⎪⎨-++≥⎪⎩的解集是(,3]-∞-.当21x -<<时,原不等式可以化为(1)(2)x x --++≥5, 即3≥5,矛盾.所以不等式组21125x x x -<<⎧⎪⎨-++≥⎪⎩,的解集为∅,当x ≥1时,原不等式可以化为(1)(2)x x -++≥5,解得x ≥2,即不等式组1125x x x ≥⎧⎪⎨-++≥⎪⎩的解集是[2,)+∞.综上所述,原不等式的解集是(,3][2,)-∞-+∞ ; 4.C . 提示:22323222n n n nn+=++;5. A B <.提示:通过考察它们的差与0的大小关系,得出这两个多项式的大小关系. 因为(3)(7)(4)(6)x x x x ++-++22(1021)(1024)x x x x =++-++30=-< 所以(3)(7)(4)(6)x x x x ++<++;6.提示:a b +≥ b c +≥ ,c a +≥ 分别将以上三式相乘或相加即可; 7.提示:222222222()()2()2442x y x y x y x y xyx y +++++++=≥=;8.提示: 设切去的正方形边长为x ,无盖方底盒子的容积为V ,则2(2)V a x x=-3311(2)(2)42(2)(2)4[]44327a x a x x a a x a x x -+-+=--⨯≤=当且仅当224a x a x x -=-=,即当6a x =时,不等式取等号,此时V 取最大值3227a.即当切去的小正方形边长是原来正方形边长的16时,盒子容积最大.9.分析:观察欲证不等式的特点,左边3项每一项都是两个数的平方之和与另一个数之积,右边是三个数的积的6倍.这种结构特点启发我们采用如下方法.证明:因为22b c +≥2b c ,0a >,所以22()a b c +≥2abc . ①因为22c a +≥2ac ,0b >,所以22()b c a +≥2abc . ②因为22a b +≥2ab ,0c >,所以22()c a b +≥2abc . ③由于a ,b ,c 不全相等,所以上述①②③式中至少有一个不取等号,把它们相加得222222()()()6a b c b a c c a b abc +++++>.10.提示:观察要证明的结论,左边是n 个因式的乘积,右边是2的n 次方,再结合121=n a a a ,发现如果能将左边转化为1a ,2a ,…,n a 的乘积,问题就能得到解决.证明:因为+∈R a 1,所以111121a a a =⋅≥+,即1121a a ≥+.同理,2221a a ≥+,……n n a a 21≥+.因为1a ,2a ,…,+∈R a n ,由不等式的性质, 得nn nn a a a a a a 22)1()1)(1(2121≥≥+++ .因为1=i a 时,i i a a 21≥+取等号,所以原式在121====n a a a 时取等号.11. 提示:要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰.另外,如果从正面证明,需要对某一个分式小于2或两个分式都小于2等进行分类讨论,而从反面证明,则只要证明两个分式都不小于2是不可能的即可.于是考虑采用反证法. 证明:假设yx +1,xy +1都不小于2,即21≥+yx ,且21≥+xy .因为x ,0>y ,所以y x 21≥+,且x y 21≥+.把这两个不等式相加,得)(22y x y x +≥++, 从而2≤+y x .这与已知条件2>+y x 矛盾.因此,yx +1,xy +1都不小于2是不可能的,即原命题成立.12. 提示:利用不等式解决极值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为bd ac +的形式就能利用柯西不等式求其最大值.解:函数的定义域为[]5,1,且0>y .x x y -⨯+-⨯=5215≤36427=⨯=当且仅当x x -⨯=-⨯5512时,等号成立,即27127=x 时函数取最大值36.13.提示: cos sin a b θθ+=1≤=14.提示: 22222221(2)(12)()5()x y x y x y =+≤++=+ 2215x y ∴+≥.15.提示: 2222222100(234)(234)()x y z x y z =++≤++++ 222100.29x y z ∴++≥16.提示:111[2()]()a b c a bb cc a+++++++2111[()()()]()(111)9.2229.a b b c c a a bb c c aa bb cc aa b c=+++++++≥++=+++∴++≥+++++17. 提示:这是一个与整除有关的命题,它涉及全体正整数,若用数学归纳法证明,第一步应证1=n 时命题成立;第二步要明确目标,即在假设k k 53+能够被6整除的前提下,证明)1(5)1(3+++k k 也能被6整除.证明:1)当1=n 时,653=+n n 显然能够被6整除,命题成立. 2)假设当)1(≥=k k n 时,命题成立,即k k 53+能够被6整除. 当1+=k n 时,55133)1(5)1(233+++++=+++k k k k k k 633)5(23++++=k k k k6)1(3)5(3++++=k k k k .由假设知k k 53+能够被6整除,而)1(+k k 是偶数,故)1(3+k k 能够被6整除,从而6)1(3)5(3++++k k k k 即)1(5)1(3+++k k 能够被6整除.因此,当1+=k n 时命题成立.由1)2)知,命题对一切正整数成立,即)(53+∈+N n n n 能够被6整除; 18.证明:(法一)要证原不等式成立,只须证:91112a b c b cc aa b+++++≥+++即只须证:111[2()]()9a b c b cc aa b++++≥+++由柯西不等式易知上式显然成立,所以原不等式成立。
高中数学选修4-5不等式选讲训练题组含答案

高中数学选修4-5不等式选讲训练题组含答案新课程高中数学训练题组》是一套根据最新课程标准编写的资料,参考了内部资料并结合了教学实践和辅导经验。
资料分为必修系列、选修系列和选修4系列,每章或节都有基础训练A组、综合训练B组和提高训练C组。
建议用于同步练、单元自我检查和高考综合复。
资料配有详细的参考答案,对于单项选择题和填空题还有详细的解题过程。
对于基础较好的同学来说,这是一套非常好的自我测试题组。
对于基础不是很好的同学,该资料可以帮助他们捉摸清楚解题过程的每一步,并思考题目所考察的知识点和可能要用到的数学方法和思想。
目录:数学选修4-5不等式选讲基础训练A组]数学选修4-5不等式选讲综合训练B组]数学选修4-5不等式选讲提高训练C组]以下是数学选修4-5不等式选讲的基础训练A组选择题:1.下列各式中,最小值等于2的是()A。
1xyx2+5B。
x-x+2C。
tanθ+x2+4yD。
2+2tanθ2.若x,y∈R且满足x+3y=2,则3+27+1的最小值是()A。
339B。
1+22C。
6D。
73.设x>0,y>0,A=xy/(x+y)+1/(1+x)+1/(1+y),B=1+x+y/(1+x)(1+y),则A,B的大小关系是()A。
A=BB。
A<BC。
A≤BD。
A>B4.若x,y,a∈R+,且x+y≤ax+y恒成立,则a的最小值是()A。
1/2B。
2C。
1D。
2/2以上选择题没有明显的格式错误和问题段落,因此不需要修改。
)一、选择题5.函数y=x-4+x^-6的最小值为()。
A。
2B。
2C。
4D。
66.不等式3≤5-2x<9的解集为()。
A。
[-2,1)∪[4,7)B。
(-2,1](4,7]C。
(-2,-1][4,7)D。
(-2,1][4,7)解析:此题考查对不等式解集的理解和求解能力。
二、填空题1.若a>b>0,则a+1/b(a-b)的最小值是__________。
不等式选讲选修4-5答案

不等式选讲(选修4-5)1、答案 (-4,2) 解析 由|x +1|<3得-3<x +1<3⇒-4<x <2,所以不等式|x +1|<3的解集为(-4,2).2、答案 {x |x ≥1} 解析 当x >2时,(x +3)-(x -2)=5≥3恒成立;当-3≤x ≤2时,x +3-(-x +2)=2x +1≥3,解得x ≥1,即1≤x ≤2;当x ≤-3时,(-x -3)-(-x +2)=-5≥3不成立,综上可得此不等式的解集为{x |x >2,或1≤x ≤2}={x |x ≥1}.3、答案 [3+22,+∞) 解析 依题意得1x +1y =⎝⎛⎭⎫1x +1y (x +2y )=3+⎝⎛⎭⎫2y x +x y ≥3+2 2y x ·x y=3+22,当且仅当2y x =x y ,即x =2-1,y =2-22时取等号,因此1x +1y的取值范围是[3+22,+∞).4、答案 a ≥3或a ≤-3 解析 由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需|a |≥3即可,所以a ≥3或a ≤-3.5、答案 3 解析 令f (x )=⎪⎪⎪⎪x +1x ,由题意只要求|a -2|+1≤f (x )恒成立时a 的最大值,而f (x )=⎪⎪⎪⎪x +1x =|x |+⎪⎪⎪⎪1x ≥2, ∴|a -2|+1≤2,解得1≤a ≤3,故a 的最大值是3.6、答案 1 解析 ∵x 1-y 2+y 1-x 2≤(x 2+1-x 2)(1-y 2+y 2)=1,∴最大值为1.7、答案 -4 解析 在同一直角坐标系中分别画出函数y =|2x -m |及y =|3x +6|的图象(如图所示),由于不等式|2x -m |≤|3x +6|恒成立,所以函数y =|2x -m |的图象在y =|3x +6|的图象的下方,因此,函数y =|2x -m |的图象也必须经过点(-2,0),所以m =-4.8、答案 5 解析 由柯西不等式得(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,m 2+n 2≥5,故m 2+n 2的最小值是 5.9、答案102 8+510解析 由柯西不等式得(a +b +4c 2)⎝⎛⎭⎫1+1+12=[(a )2+(b )2+(2c )2]·⎣⎡⎦⎤12+12+⎝⎛⎭⎫222≥(a +b +2c )2, 因此a +b +2c ≤(a +b +4c 2)⎝⎛⎭⎫1+1+12=102×a +b +4c 2=102, 当且仅当a 1=b 1=2c 22=22c ,即a =b =22c ,此时a =b =8c 2, 因此a +b +4c 2=8c 2+8c 2+4c 2=20c 2=1,解得c =510,a =b =25,因此a +b +c =25+25+510=8+510.。
人教版数学选修4-5《不等式选讲》基础训练题[综合训练B组](含答案)
](https://img.taocdn.com/s3/m/f035404a1ed9ad51f01df235.png)
数学选修4-5 不等式选讲[基础训练A 组]一、选择题1.下列各式中,最小值等于2的是( )A .x y y x +B .4522++x x C .1tan tan θθ+ D .22x x -+ 2.若,x y R ∈且满足32x y +=,则3271x y ++的最小值是( )A ..1+.6 D .73.设0,0,1x y x y A x y +>>=++, 11x y B x y=+++,则,A B 的大小关系是( ) A .A B = B .A B <C .A B ≤D .A B >4.若,,x y a R +∈,且y x a y x +≤+恒成立,则a 的最小值是( )A .2B .1 D .12 5.函数46y x x =-+-的最小值为( )A .2B .4 D .66.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-二、填空题1.若0a b >>,则1()a b a b +-的最小值是_____________。
2.若0,0,0a b m n >>>>,则b a , a b , m a m b ++, n b n a ++按由小到大的顺序排列为 3.已知,0x y >,且221x y +=,则x y +的最大值等于_____________。
4.设1010101111112212221A =++++++-,则A 与1的大小关系是_____________。
5.函数212()3(0)f x x x x =+>的最小值为_____________。
三、解答题1.已知1a b c ++=,求证:22213a b c ++≥2.解不等式7340x x +--+3.求证:221a b ab a b +≥++-4.证明:1)1...<++<新课程高中数学训练题组参考答案数学选修4-5 不等式选讲 [基础训练A 组]一、选择题1.D 20,20,222x x x x -->>∴+≥=2.D 3331117x y ++≥==3.B 11111x y x y x y B A x y x y y x x y+=+>+==++++++++,即A B <4.B 22,)222x y x y x y ++≥+,2≥,而yxayx+≤+,1a恒成立,得1aa≤≥即5.A 46462y x x x x=-+-≥-+-=6.D259925927253,2534,1253x x xx x x xx⎧-<-<-<-<<⎧⎧⎪⇒⇒⎨⎨⎨-≥-≤-≥≤-≥⎩⎩⎪⎩或或,得(2,1][4,7)-二、填空题1.31()3()a b bb a b-++≥=-2.b b m a n aa a mb n b++<<<++由糖水浓度不等式知1b b ma a m+<<+,且1b b na a n+<<+,得1a a nb b n+>>+,即1a n ab n b+<<+32x yx y+≤+≤=4.1A<1010101011101010102111111111 22122212222 A=++++<++++=++-个5.922123312()3922x xf x xx x=+=++≥=三、解答题1.证明:2222()(222)a b c a b c ab bc ac++=++-++2222()2()a b c a b c≥++-++22223()()1a b c a b c∴++≥++=22213a b c∴++≥另法一:22222221()33a b ca b c a b c++++-=++-2222221(222222)31[()()()]03a b c ab bc aca b b c a c=++---=-+-+-≥22213a b c∴++≥另法二:2222222(111)()()1a b c a b c++++≥++=即2223()1a b c ++≥,22213a b c ∴++≥ 2.解:原不等式化为73410x x +--> 当43x >时,原不等式为7(34)10x x +-->得52x <+,即4532x <<+; 当473x -≤≤时,原不等式为7(34)10x x ++->得124x >--,即14243x --<≤; 当7x <-时,原不等式为7(34)10x x +-->得62x >-,与7x <-矛盾;所以解为15242x --<<+3.证明:22()(1)a b ab a b +-++- 2222222222211(222222)21[(2)(21)(21)]21[()(1)(1)]02a b ab a b a b ab a b a ab b a a b b a b a b =+---+=+---+=-++-++-+=-+-+-≥ 221a b ab a b ∴+≥++-4.证明:1k<<++∴<<1)1...∴<+++<。
高中选修4-5不等式选讲习题

怀仁大地学校高二年级文科数学配餐编号:39 班级:姓名:李甫主备:日期: 4.28 一、选择题1.若1a<1b<0,则下列不等式正确的有 ( ).①a+b<ab;②|a|>|b|;③a<b;④ac>bc.A.1个B.2个C.3个D.4个2.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的( ).A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.下列不等式成立的是 ( ).A.log32<log23<log25 B.log32<log25<log23C.log23<log32<log25 D.log23<log25<log324.设a,b∈R,若a-|b|>0,则下列不等式正确的是 ( ).A.b-a>0 B.a3+b3<0C.a2-b2<0 D.b+a>0二、填空题5.已知12<a<60,15<b<36,则a-b及ab的取值范围分别是________.6.设x=a2b2+5,y=2ab-a2-4a,若x>y,则实数a、b满足的条件是________.7.设x∈R,则x21+x4与12的大小关系是________.8.已知三个不等式:①ab>0;②ca >db;③bc>ad.以其中两个作条件,余下一个作结论,则可组成________个正确命题.三、解答题9.已知a,b∈{正实数}且a≠b,比较a2b+b2a与a+b的大小.10.已知a,b∈R,求证:a2+b2≥ab+a+b-1.11.已知α,β满足⎩⎨⎧-1≤α+β≤1①1≤α+2β≤3 ②试求α+3β的取值范围.怀仁大地学校高二年级文科数学配餐编号:40班级:姓名:主备:李甫日期: 4.29一、选择题1.若a ,b ∈R +,且a +b =2,则1a +1b的最小值为( ).A .1B .2 C. 2D .42.函数y =log 2⎝ ⎛⎭⎪⎫x +1x -1+5(x >1)的最小值为 ( ).A .-3B .3C .4D .-43.若a ,b ,c >0且(a +b )(a +c )=4-23,则2a +b +c 的最小值为 ( ). A.3-1 B.3+1 C .23+2D .23-2 4.在下列函数中最小值是2的是( ).A .y =x 5+5x (x ∈R 且x ≠0)B .y =lg x +1lg x (1<x <10)C .y =3x+3-x(x ∈R ) D .y =sin x +1sin x ⎝⎛⎭⎪⎫0<x <π2 二、填空题5.设0<a <1,0<b <1且a ≠b ,则下列数中 ①a 2+b 2;②2ab ;③2ab ;④a +b ;⑤a +b 最大的数是________;最小的数是________.6.若x ,y ,z ∈R +,则x -2y +3z =0,y 2xz的最小值是________.7.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 为________吨. 8.对任意锐角θ,都有sin θcos 2θ+cos θsin 2θ≥λ恒成立,则λ的最大值为________. 三、解答题9.已知a ,b ∈(0,+∞),求证:(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.10.已知直线l 过点(3,2),且与x 轴、y 轴的正半轴分别相交于A 、B 两点,求当△AOB 的面积最小时,直线l 的方程.11.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元. 若使每个同学游8次,每人最少应交多少元钱?怀仁大地学校高二年级文科数学配餐 编号:41班级: 姓名: 主备: 李甫 日期: 4.30一、选择题1.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1,则x 的取值范围为( ).A.⎣⎢⎡⎭⎪⎫0,18 B.⎣⎢⎡⎭⎪⎫18,1 C .[1,8)D .[8,+∞)2.已知x ,y 都为正数,且1x +4y=1,则xy 有( ).A .最小值16B .最大值16C .最小值116D .最大值1163.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是 ( ). A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π4.如果圆柱的轴截面周长l 为定值,那么圆柱的体积最大值是 ( ).A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 二、填空题5.周长为2+1的直角三角形面积的最大值为________.6.用长为16 cm 的铁丝围成一个矩形,则可围成的矩形的最大面积是________ cm 2. 7.函数y =x2x 4+9(x ≠0)有最大值______,此时x =______.8.制造容积为π2 m 3的无盖圆柱形桶,用来做底面的金属板的价格为30元/m 2,做侧面的金属板价格为20元/m 2,要使用料成本最低,则圆柱形桶的底面半径r =________,高h =________. 三、解答题9.求函数y =2x 2+3x(x >0)的最小值.10.某城建公司承包旧城拆建工程,按合同规定在4个月内完成.若提前完成,每提前一天可获2千元奖金,但这要追加投入费用;若延期则每延期一天将被罚款5千元.追加投入的费用按以下关系计算:6x +784x +3-118(千元),其中x 表示提前完工的天数,试问提前多少天,才能使此公司获得最大附加效益?(附加效益=所获奖金-追加费用).11.设a 1,a 2,…,a n 为正数,证明a 1+a 2+…+a n n ≥n1a 1+1a 2+…+1a n.怀仁大地学校高二年级文科数学配餐 编号:42班级: 姓名: 主备: 日期: 5.5一、选择题 1.设P =2,Q =7-3,R =6-2,则P ,Q ,R 的大小顺序是( ). A .P >Q >R B .P >R >Q C .Q >P >RD .Q >R >P2.若log x y =-2,则x +y 的最小值是 ( ). A.3322B.2333C.323 D.232 3.若x ,y ∈R 且满足x +3y =2,则3x +27y +1的最小值是 ( ).A .339 B .1+2 2 C .6D .74.不等式3≤|5-2x |<9的解集为 ( ). A .[-2,1)∪[4,7) B .(-2,1]∪(4,7] C .(-2,-1]∪[4,7)D .(-2,1]∪[4,7)5.函数y =|x -4|+|x -6|的最小值为 ( ). A .2 B. 2 C .4D .66.若x ∈(-∞,1),则函数y =x 2-2x +22x -2有 ( ).A .最小值1B .最大值1C .最大值-1D .最小值-17.设a >b >c ,n ∈N ,且1a -b +1b -c ≥n a -c恒成立,则n 的最大值是 ( ). A .2 B .3 C .4D .68.若a ,b ∈R +,且a ≠b ,M =a b +ba ,N =a +b ,则M 与N 的大小关系是( ).A .M >NB .M <NC .M ≥ND .M ≤N 9.设b >a >0,且P =21a2+1b2,Q =21a +1b,M =ab ,N =a +b 2,R =a 2+b 22,则它们的大小关系是 ( ). A .P <Q <M <N <R B .Q <P <M <N <R C .P <M <N <Q <RD .P <Q <M <R <N10.若a >0,b >0,a +b =1,则⎝ ⎛⎭⎪⎫1a 2-1⎝ ⎛⎭⎪⎫1b 2-1的最小值是 ( ).A .6B .7C .8D .9二、填空题11.不等式|x -2|<|x +1|解集为________.12.设x >0,y >0,且xy -(x +y )=1,则x +y 的取值范围为________. 13.(2010·陕西高考)不等式|x +3|-|x -2|≥3的解集为________.14.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为________. 三、解答题15.(10分)设x 、y 、z >0,且x +3y +4z =6,求x 2y 3z 的最大值.16.(10分)解不等式|2x -4|-|3x +9|<1.17.(10分)已知a >0,b >0,求证:⎝ ⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2≥9.18.(10分)设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)解不等式f(x)≤5;(2)若g(x)=1f x+m的定义域为R,求实数m的取值范围.19.(10分)桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块占地1 800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分如图所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S平方米,其中a∶b=1∶2.(1)试用x,y表示S;(2)若要使S最大,则x,y的值各为多少?怀仁大地学校高二年级文科数学配餐编号:43 班级:姓名:主备:日期: 5.5 一、选择题1.若集合A={x||2x-1|<3},B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|2x+13-x<0,则A∩B是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-1<x<-12,或2<x<3 B.{x|2<x<3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-12<x<2 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-1<x<-122.若实数a,b满足ab>0,则①|a+b|>|a| ②|a+b|<|b|③|a+b|<|a-b| ④|a+b|>|a-b|这四个式子中正确的是( ).A.①②B.①③C.①④D.②④3.如果存在实数x,使cos α=x2+12x成立,那么实数x的集合是( ).A.{-1,1} B.{x|x<0,或x=1}C.{x|x>0,或x=-1} D.{x|x≤-1,或x≥1}4.函数y=|x+1|+|x-2|的最小值及取得最小值时x的值分别是 ( ).A.1,x∈[-1,2] B.3,0C.3,x∈[-1,2] D.2,x∈[1,2]二、填空题5.已知|a+b|<-c(a、b、c∈R),给出下列不等式:①a<-b-c;②a>-b+c;③a<b-c;④|a|<|b|-c;⑤|a|<-|b|-c.其中一定成立的不等式是________(注:把成立的不等式的序号都填上).6.函数y=|x+2|-|x-2|的最大值是________.7.(2011·江西高考)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.8.若|x-4|+|x+5|>a对于x∈R均成立,则a的取值范围为__________.)三、解答题9.已知|x+1|<ε4,|y-2|<ε4,|z+3|<ε4,求证:|x+2y+z|<ε.10.已知|A-a|<s3,|B-b|<s3,|C-c|<s3.求证:|(A+B+C)-(a+b+c)|<s. 11.已知f(x)=ax2+bx+c,且当|x|≤1时,|f(x)|≤1,求证:(1)|c|≤1;(2)|b|≤1.怀仁大地学校高二年级文科数学配餐编号:44班级:姓名:主备:日期: 5.6一、选择题1.如果1x<2和|x|>13同时成立,那么x的取值范围是 ( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-13<x<12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x>12,或x<-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x>12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<-13,或x>132.若不等式|ax+2|<6的解集为(-1,2),则实数a等于 ( ).A.8 B.2C.-4 D.-83.不等式1<|x+1|<3的解集为 ( ).A.(0,2) B.(-2,0)∪(2,4)C.(-4,0) D.(-4,-2)∪(0,2)4.若不等式|x-2|+|x+3|>a,对于x∈R均成立,那么实数a的取值范围是( ).A.(-∞,5) B.[0,5)C.(-∞,1) D.[0,1]二、填空题5.不等式12(5|x|-1)+1≤3的解集为________.6.若不等式|x -1|<a 成立的充分条件是0<x <4,则a 的范围为____________. 7.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则a 的取值范围是________. 8.不等式|x +1||x +2|≥1的实数解集为________.三、解答题9.已知关于x 的不等式|ax -1|+|ax -a |≥1(a >0). (1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.10.设函数f (x )=|x +1|+|x -a |(a >0).(1)作出函数f (x )的图象;(2)若不等式f (x )≥5的解集为(-∞,-2]∪[3,+∞),求a 的值.11.(2011·福建高考)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.怀仁大地学校高二年级文科数学配餐 编号:45班级: 姓名: 主备: 日期: 5.7一、选择题1.已知a >2,b >2,则有( ).A .ab ≥a +bB .ab ≤a +bC .ab >a +bD .ab <a +b2.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ).A .a 1b 1+a 2b 2B .a 1a 2+b 1b 23.设a =lg 2+lg 5,b =e x (x <0),则a 与b 的大小关系是( ).A .a <bB .a >bC .a =bD .a ≤b4.若0<x <y <1,则 ( ).A .3y<3xB .log x 3<log y 3C .log 4x <log 4yD.⎝ ⎛⎭⎪⎫14x <⎝ ⎛⎭⎪⎫14y 5.若不等式2x 2+ax +b <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-12<x <13,则a -b 的值是( ).A.13 B.23 C.16D.1126.设关于x 的方程2kx 2-2x -3k -2=0的两个实根一个大于1,另一个小于1,则实数k 的取值范围是 ( ).A .k >0B .k >1C .k <-4D .k >0或k <-47.若p <0,-1<q <0,则p 、pq 、pq 2间的大小关系是( ).A .p >pq >pq 2B .pq 2>pq >pC .pq >p >pq 2D .pq >pq 2>p8.下列命题中,命题M 是命题N 成立的充要条件的一组命题是( ).A .M :a >b ,N :ac 2>bc 2B .M :a >b ,c >d ,N :a -d >b -cC .M :a >b >0,c >d >0,N :ac >bdD .M :|a -b |=|a |+|b |,N :ab ≤09.已知0<a <b ,且a +b =1,则下列不等式中正确的是( ).A .log 2a >0B .2a -b <12C .log 2a +log 2b <-2D .2a b +b a <1210.若a ∈⎝ ⎛⎭⎪⎫π,54π,M =|sin α|,N =|cos α|,P =12|sin α+cos α|,Q = 12sin 2α,则它们之间的大小关系为( ). A .M >N >P >Q B .M >P >N >Q C .M >P >Q >N D .N >P >Q >M二、填空题11.某工厂第一年年产量为A ,第二年增长率为a ,第三年增长率为b ,则这两年的平均增长率x 与a +b2的大小关系是______________.12.用反证法证明命题“三角形中最多只有一个内角是钝角”时的反设是________. 13.不等式|x +1|-|x -1|<m 的解集是R 的非空真子集,则实数m 的取值范围是________. 14.请补全用分析法证明不等式“ac +bd ≤a 2+b 2c 2+d 2”时的推论过程:要证明ac +bd ≤a 2+b 2c 2+d 2,①____________________________________________________________. 只要证(ac +bd )2≤(a 2+b 2)(c 2+d 2),即要证:a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2, 即要证:a 2d 2+b 2c 2≥2abcd .②____________________________________________________________. 三、解答题15.(10分)求证:a 2+b 2+3≥ab +3(a +b ).16.(10分)已知a >0,b >0,且a +b =1,求证:a +12+b +12≤2.17.(10分)实数a 、b 、c 、d 满足a +b =c +d =1,ac +bd >1,求证:a 、b 、c 、d 中至少有一个是负数.18.(10分)已知a ,b ,c ∈R +,且a +b +c =1,求证:(1)⎝ ⎛⎭⎪⎫1a -1·⎝ ⎛⎭⎪⎫1b -1·⎝ ⎛⎭⎪⎫1c -1≥8;(2)1a +2b +4c≥18.19.(10分)数列{a n }为等差数列,a n 为正整数,其前n 项和为S n ,数列{b n }为等比数列,且a 1=3,b 1=1,数列{b an }是公比为64的等比数列,b 2S 2=64.(1)求a n ,b n ;(2)求证:1S 1+1S 2+…+1S n <34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修4-5 不等式选讲 [基础训练A 组] 一、选择题
1.下列各式中,最小值等于2的是( )
A .x y y x +
B .4
522++x x C .1tan tan θθ+ D .22x x
-+
2.若,x y R ∈且满足32x y +=,则3271x
y
++的最小值是( )
A .
B .1+
C .6
D .7 3设0,0,1x y x y A x y +>>=
++, 11x y
B x y
=+
++,则,A B 的大小关系是( ) A .A B = B .A B < C .A B ≤ D .A B > 4.若,,x y a R +∈,且y x a y x +≤+
恒成立,则a 的最小值是( )
A .
2
B C .1 D .12
5.函数46y x x =-+-的最小值为( )
A .2
B
C .4
D .6 6.不等式3529x ≤-<的解集为( )
A .[2,1)[4,7)-
B .(2,1](4,7]-
C .(2,1][4,7)--
D .(2,1][4,7)- 二、填空题
1.若0a b >>,则1
()
a b a b +
-的最小值是_____________。
2.若0,0,0a b m n >>>>,则
b a , a b , m a m b ++, n
b n a ++按由小到大的顺序排列为 3.已知,0x y >,且221x y +=,则x y +的最大值等于_____________。
4.设1010101111112212221
A =++++++- ,则A 与1的大小关系是_____________。
5.函数212
()3(0)f x x x x
=+>的最小值为_____________。
三、解答题
1.已知1a b c ++=,求证:2
2
2
13
a b c ++≥
2.解不等式7340x x +--+>
3.求证:2
2
1a b ab a b +≥++-
4.证明:
1)1...
<++<
数学选修4-5 不等式选讲 [综合训练B 组] 一、选择题
1.设,a b c n N >>∈,且
c
a n
c b b a -≥-+-11恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .6
2. 若(,1)x ∈-∞,则函数222
22
x x y x -+=-有(
A .最小值1
B .最大值1
C .最大值1-
D .最小值1-
3.设P =Q =R =,,P Q R 的大小顺序是( ) A .P Q R >> B .P R Q >> C .Q P R >> D .Q R P >> 4.设不等的两个正数,a b 满足3
3
2
2
a b a b -=-,则a b +的取值范围是( ) A .(1,)+∞ B .4(1,)3 C .4[1,]3
D .(0,1)
5.设,,a b c R +
∈,且1a b c ++=,若111(1)(1)(1)M a b c
=---,则必有( )
A .108M ≤<
B .1
18
M ≤< C .18M ≤< D .8M ≥
6.若,a b R +
∈ ,且,a b M
≠=
N =,则M 与N 的大小关系是 A .M N > B .M N < C .M N ≥ D .M N ≤
二、填空题
1.设0x >,则函数1
33y x x
=--
的最大值是__________。
2.比较大小:36log 4______log 7
3.若实数,,x y z 满足23()x y z a a ++=为常数,则222x y z ++的最小值为
4.若,,,a b c d 是正数,且满足4a b c d +++=,用M 表示,,,a b c a b d a c d b c d ++++++++中的最大者,则M 的最小值为__________。
5.若1,1,1,10x y z xyz ≥≥≥=,且lg lg lg 10x y z x y z ⋅⋅≥,则_____x y z ++=。
三、解答题
1.如果关于x 的不等式34x x a -+-<的解集不是空集,求参数a 的取值范围。
23
a b c
++
3.当3,n n N ≥∈时,求证:22(1)n n ≥+
4.已知实数,,a b c 满足a b c >>,且有2221,1a b c a b c ++=++= 求证:413
a b <+<
数学选修4-5 不等式选讲 [提高训练C 组] 一、选择题
1.若log 2x y =-,则x y +的最小值是( )
A . 2233
B .3
3
23 C .
233 D .
3
2
2
2.,,a b c R +∈,设a b c d
S a b c b c d c d a d a b
=
+++++++++++,则下列判断中正确的是( )
A .01S <<
B .12S <<
C .23S <<
D .34S <<
3.若1x >,则函数21161
x
y x x x =+++的最小值为
A .16
B .8
C .4
D .非上述情况
4.设0b a >>
,且P =
2
11Q a b
=+,
M = 2a b N +=
,R =,则它们
的大小关系是( )
A.P Q M N R <<<< B .Q P M N R <<<< C.P M N Q R <<<< D .P Q M R N <<<< 二、填空题 1.函数23(0)1
x
y x x x =
<++的值域是 .
2.若,,a b c R +
∈,且1a b c ++=,则c b a ++的最大值是 3.已知1,,1a b c -<<,比较ab bc ca ++与1-的大小关系为 .
4.若0a >
,则1a a +
的最大值为 . 5.若,,x y z 是正数,且满足()1xyz x y z ++=,则()()x y y z ++的最小值为______。
三、解答题
1. 设,,a b c R +
∈,且a b c +=,求证:2223
3
3
a b c +>
2.已知a b c d >>>,求证:1119a b b c c a a d
++≥----
3.已知,,a b c R +∈,比较333a b c ++与222
a b b c c a ++的大小。
4.求函数y =的最大值。
5.已知,,x y z R ∈,且2228,24x y z x y z ++=++= 求证:444
3,3,3333
x y z ≤≤≤≤≤≤。