画环己烷及多环化合物分子构象之规律[1]

合集下载

第四章环烃1(脂环烃)

第四章环烃1(脂环烃)

H3C H3C
COOH + O C
CH3
可用于区别
CH3
环烷烃和烯烃
加热时用强氧化剂, 加热时用强氧化剂,或在催化剂作用下用空 气直接氧化, 气直接氧化,环烷烃可被氧化成不同的产物
O2,钴催化剂 钴催化剂
140~180℃,1~2.5MPa ℃
OH
O
+
CH2 CH2 COOH CH2 CH2 COOH
CH CH3 + HBr CH2
CH3 C Br
CH CH3
I CH3 + H I CH3CHCH2CH3
3. 氧化反应(小环对氧化剂相当稳定) 氧化反应(小环对氧化剂相当稳定)
O
O2
O +
O
H3C H3C
CH C
CH3 CH3
KMnO4 常温下, 常温下,饱和的环 对氧化剂稳定 H2O
双键对 氧化剂 不稳定
1,7,7-三甲基二环[2.2.1]庚 烷
三环[ 2.2.1.02,6 ]庚烷
环丙烷的结构
环的结构及其稳定性
环丙烷的结构: 环丙烷的结构:
碳原子为 sp3杂化 为缓解角张力 形成弯曲键

105°


具有重叠构象, 氢原子排斥产生 “重叠张力”
C-C-C键角 偏离正常键 角产生角张 力 环丙烷分子具 有较高的内能, 有较高的内能, 不稳定
C2H5
CH3
十氢萘的构象
1. 名称
8 7 6 5 4 1 2 3
7 6 5 8 9 1 2 3 10 4
10 1 9 8 7 6
2 3 4 5
萘 naphthalene
十氢合萘(暜通名) 十氢合萘(暜通名) Decahydronaphthalene

5--环烷烃

5--环烷烃

109°28′,无张力;
七到十二个碳原子组成的环烷烃,环内氢原子间的扭 转张力使它们的稳定性略有下降;
当环进一步增大时, 稳定性与环己烷相似。
环二十二烷
1 顺反异构
环烷烃环中C-C单键受环约束不能自由旋转,导致产生 顺反异构。
CH3 CH3 H H
CH3 H H CH3
顺-1,2-二甲基环丙烷
比一般C-C键短
轨道夹角105.5° 说明: C-C键被弯曲了
环丙烷分子轨道图
环丁烷
从环丁烷开始,成环碳原子均不在同一平面上。
蝴蝶型(环丁烷)
信封型
扭曲型
环戊烷分子中,碳碳键的夹角为
108°,接近sp3杂化轨道间夹角,
角张力很小,是比较稳定的环。
环戊烷
环己烷分子不在同一平面上,碳原子之间的键角为
e键
同类型键: 邻位指向相反, 间位指向相同。
3 取代环己烷的构象
(1) 一元取代环己烷的构象 一元取代环己烷中,取代基占据e键的构象更稳定。
CH3
室温
CH3
5% 95%
原因:a键上的甲基和环同一边相邻的两个a键氢原子
距离较近,存在较大的斥力。
这种斥力称为范得华张力。
0.233nm
H H
H H
0.255nm
C
H
H
0.30nm
H
氢分子
H
(2) 二元取代环己烷的构象
稳定的构象是e键上取代基最多的构象,若取代基不
同时,大的取代基在e键上的构象最稳定。
1,2-二取代:
CH3
CH3 CH3
CH3
CH3
CH3 C(CH3)3
C(CH3)3
(CH3)3C

有机化学课件第-二-章烷烃和环烷烃_图文

有机化学课件第-二-章烷烃和环烷烃_图文
熔点高低取决于分子间的作用力 和晶格堆积的密集度。
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较

环己烷

环己烷
储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持容器密封。应与氧化 剂分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏 应急处理设备和合适的收容材料。
安全信息
安全术语
风险术语
S9:Keep container in a well-ventilated place. 保持容器在通风良好的场所。 S16:Keep away from sources of ignition - No smoking. 远离火源,禁止吸烟。 S25:Avoid contact with eyes. 避免眼睛接触。 S33:Take precautionary measures against static discharges. 对静电采取预防措施。 S60:This material and/or its container must be disposed of as hazardous waste. 该物质及其容器必须作为危险废物处置。 S61:Avoid release to the environment. Refer to special instructions/Safety data sheets.
谢谢观看
操作处置与储存
操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴 自吸过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作 场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂接触。灌装时应 控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消 防器材及泄漏应急处理设备。倒空的容器可能残留有害物。

有机3-环烷烃(2)-(1)_图文

有机3-环烷烃(2)-(1)_图文

cis-1, 4-二叔丁基环己烷的构象
有较大的1, 3-竖键作用
扭船型构象
多取代环己烷: (1)环己烷多元取代物的最稳定的构象是e-取代最
多的构象; (2)环上有不同取代基是,大的取代基在e-键的构
象最稳定。
课堂练习:
1、画出1,1-二甲基环己烷的椅式构象,指出直立位甲基和平 伏位甲基。
1. 【解析】
椅式构像:① 所有两个相邻的碳原子的碳氢键都处于 交叉式位置;
② 所有环上氢原子间距离都相距较远,无 非键张力。
船式构像:① C2-C3及C5-C6间的碳氢键处于重叠式位 置;
② 船头和船尾上的两个碳氢键向内伸展,相 距较近,比较拥挤,存在非键张力。
环己烷碳架是折叠的
椅式构象
C2, C3, C5, C6 共平面
a, e-
能量相等
e, a-
cis-1, 4-二甲基环己烷
1, 4-cis
a, e-
e, a-
能量相等
trans-1, 4-二甲基环己烷
1, 4-trans
a, a有1. 3-竖键作用
e, e优势构象
不同基团二取代环己烷
1, 2-cis
大基团总是 占据 e键
1, 3-竖键作用较大
优势构象
扭曲式构象
各种环己烷构象的势能图
2. 单取代环己烷的构象分析
甲基环己烷的构象
1,3-竖键作用
CH3与C3为对位交叉 优势构象,室温时占95%
CH3与C3为邻位交叉
取代环己烷的构象1
叔丁基环己烷的构象
优势构象 室温:100%
1. 3-竖键作用非常大
3. 二取代环己烷的构象分析
cis-1, 2-二甲基环己烷

环烷烃的构造异构和命名.ppt

环烷烃的构造异构和命名.ppt

沸点/℃ -32.9 12 49.3 72 80.8 100.8 118 148
相对密度(d420) 0.720(-79℃) 0.703(0℃)
0.745 0.779 0.779 0.769 0.810 0.836
2.12 环烷烃的化学性质
2.12.1 取代反应
。 + Br2 300 C
+ Cl2 紫外光
6636
664
环己烷 6
3951
659
环十五烷 15
9885
660
环庚烷 7
4637
662
开链烷烃
659
由环丙烷到环戊烷,随环增大,每个亚甲基单元
的燃烧热依次降低;由环己烷开始,亚甲基单元的
燃烧热趋于恒定。
2.9.2 环丙烷的结构
由于角张力作用,使得环丙烷和环丁烷分 子稳定性下降,容易发生加成反应使环打开
第2节 环烷烃
•2.8 环烷烃的构造异构和命名 •2.8.1 环烷烃的构造异构 •2.8.2 环烷烃的的命名 •2.9 环烷烃的结构 •2.9.1 环的大小与环的稳定性 •2.9.2 环丙烷的结构 •2.10 环己烷和一取代环己烷的构象 •2.10.1 环己烷的构象 •2.10.2 一取代环己烷的构象 •2.11 环烷烃的物理性质 •2.12 环烷烃的化学性质
CH3 CH2 CH2 CH3
+ H2 3N00i。C CH3 CH2 CH2 CH2 CH3
2)加卤素
+ Br2 CCl4
CH2 CH2 CH2
Br
Br
不能用溴褪 色的方法来
+ Br2 heat
1,3-二溴丙烷
CH2 CH2 CH2 CH2

有机化学第三章环烷烃

有机化学第三章环烷烃

※ 在不同的环烃中键角大于或小于 109o28’,而正常的 SP3 杂化轨道之间的夹角为 109°28′ 即 C - C 之间的电子云 没有达到最大程度的重叠。
1 (109° 28′-60° )= 24° 64′ 2 1 (109° 28′-90° )= 9° 44′ 2 1 (109° 28′-108° )= 0° 44′ 2 1 (109° 28′-120° )= -5° 16′ 2
两个环共用两个或两个以上碳原子的化合物称桥环化合物。
3、环戊烷的结构
C:sp3杂化,轨道夹角109.5o,五边形内角为108o角张力: 109.5-108=1.5o 可见,环戊烷分子中几乎没有什么角张力,故五元 比较稳定,不易开环,环戊烷的性质与开链烷烃相似。
事实上,环戊烷分子中的五个碳原子亦不共 平面,而主要是以“信封式”构象存在,使 五元环的环张力可进一步得到缓解。
二、化学性质
结构分析:C-C, C-H σ键牢固,化性稳定,似烷烃;
但C3—C4环易破,环可以加成,似烯烃。
1、取代反应
+ Cl2 光照 + HCl Cl Cl + HCl
+ Cl2
加热 300oC
反应条件加强, 反应程度减弱。
2、加成反应
小环烷烃,特别是环丙烷,和一些试剂作用时易发生开环。 A: 加氢(随碳原子数增加,环的稳定性增加;加氢反应条 件也愈苛刻)
7 6 5 4 3
9 1 2 8
10
1 2 5
7
6
5 4
3 2 1 CH3
7 CH3
6
4
3
8
9
螺[2, 4]庚烷
7-甲基螺[4, 5]癸烷
1-甲基螺[3,5]-5-壬烯

环烷烃(环丙烷、环丁烷、环戊烷、环己烷)的构象

环烷烃(环丙烷、环丁烷、环戊烷、环己烷)的构象

环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。

一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。

尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。

2、C原子是不等性杂化或弯曲键,有“角张力”存在。

二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。

蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。

通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。

蝶式是优势构象。

也有扭转能力和角张力存在。

三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。

两者处于平衡。

因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。

E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。

Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。

Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。

Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。

Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。

2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。

形状象只船,C3和C6相当船头和船尾,故称“船式”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档