三角形中角与角之间关系探究
《实验探究:三角形中边与角之间的不等关系》教学设计

人教版《数学》八年级上册《实验探究:三角形中边与角之间的不等关系》教学设计一、内容和内容解析1.内容“大边对大角”与“大角对大边”两个互逆命题。
2.内容解析在这节课是学生在学过等腰三角形的性质与判定之后,这个“实验与探究”进一步让学生探究了三角形中边与角的不等关系。
安排它的目的有两个:一是让学生探究三角形中边与角的不等关系,即教科书中给出的两个互逆命题;二是通过这两个问题的探究,介绍利用相等关系来解决不等关系的一种方法。
在一些问题中,有时会遇到三角形中的边角不等关系。
例如:在七年级下册中介绍过“垂线段最短”这个结论,是通过观察和探究得到的,应用边角不等关系的结论,可以证明,在直角三角形中,斜边最长,从而可以证明它。
两个互逆命题的探索是通过轴对称进行的,借助于轴对称发现了两个互逆命题,也获得了添加辅助线证明的方法。
两个互逆命题的证明是将欲证明的两个角(或两条边)置于一个三角形的外角和不相邻的一个内角(或一个三角形的三边)之中,这是证明两个角不等或两条边不等的基本策略之一。
命题的探索与证明体现了转化的思想。
基于以上分析,确定本节课的教学重点:【教学重点】探索并证明两个互逆命题。
二、目标和目标解析1.目标(1)探究三角形中边与角的不等关系,即教科书中给出的两个互逆命题(2)能利用轴对称的性质进行探究三角形的边角不等关系,能利用三角形边角相等的知识,解决边角之间的不等问题.2.目标解析达成目标(1)的标志是:通过探究发现,在一个三角形中边角之间的不等关系。
达成目标(2)的标志是:通过探究和推理论证,结合图形,发展学生的分析问题和解决问题的能力,通过探索总结形成,利用图形的翻折等变换是解决几何问题的常见策略。
三、教学问题诊断分析学生通过前一段时间对三角形、等腰三角形相关知识的探究,已经具有一定的独立思考和探究问题的能力。
但学生由于添加辅助线的经验不足,对于何时添加辅助线,如何添加辅助线仍没有规律性了解,添加辅助线本身就是一种探究性数学活动,是获得证明所采取的一种尝试,既可能成功,也可能失败。
《实验探究:三角形中边与角之间的不等关系》教学设计5

学科数学教师年级八年级课题实验与探究:三角形中边与角之间的不等关系教学目标教学重点三角形中边与角的不等关系的探究与证明教学难点如何添加辅助线证明“大边对大角”教具准备三角形纸片、剪刀、三角板、彩笔、磁石、几何画板课件等教学流程师生活动设计意图一、回顾思考1.等腰三角形有哪些性质?2.我们主要是通过什么方法,发现了等腰三角形的性质?又是通过什么方法进行证明的?二、提出问题1.当三角形的三条边都不相等时,还有“三线合一”的性质吗?2.在一个三角形中,如果两条边不相等,那么,它们所对的角相等吗?3.如果不相等,是较大边所对的角大,还是较小边所对的角大?三、探究新知(一)观察图形,提出猜想1.教师提出问题,学生思考并回答;2.教师利用几何画板动画演示折纸过程,回顾证明方法。
1.教师改变三角形的状,并提出问题;2.学生结合图形思考并回答。
1.教师利用几何画板动画演示图形;回顾所学知识及探究方法,为新知的实验与探究做好铺垫。
类比等腰三角形的性质,提出问题,引出本节课的探究主题。
在△ABC 中,当改变边AB 和AC的长短时,它们所对的角∠C、∠B的大小也改变。
当AB>AC时,通过肉眼观察,可以得到∠C>∠B。
猜想:在一个三角形中,如果两条边不相等,那么它们所对的角也不相等,较大边所对的角也较大.(二)实验探究,验证猜想1.学生利用事先制作好的不等边三角形通过折纸验证猜想。
(为了教学方便,统一制作△ABC,规定AB>AC)2.学生走上讲台,展示验证猜想的探究过程;3.几何画板动态演示各种折纸方法;4.师生归纳猜想:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大(简写成:大边对大角).(三)推理探究,证明猜想1.根据文字命题画出图形,写出已知、求证;已知:如图,在△ABC 中,AB>AC . 2.学生观察图形变化,提出猜想;3.教师板书猜想.1.学生进行分组实验探究,教师巡视指导;①叠合法:沿垂直平分线折叠:如图1,将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,发现∠C>∠B。
《三角形中边与角之间的不等关系》教学设计

人教版八年级上册第十三章实验与探究《三角形中边与角之间的不等关系》教学设计【教学目标】1.知识与技能:〔1〕通过实验探究发现:在一个三角形中边与角之间的不等关系;〔2〕能利用轴对称的性质进行探究三角形的边角不等关系,能利用三角形边角相等的转化解决边角之间的不等问题.2.过程与方法:通过实验探究和推理论证,开展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略;获得利用截长补短等方法来构造全等三角形的经验.3.情感与态度:提供动手操作的时机,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣,获得解决问题的成功体验.【教学重难点】重点:三角形中边与角之间的不等关系及其探究过程.难点:如何从实验操作中得到启示,写成几何证明的表达.【学情分析】学生在前面已经学习了全等三角形、轴对称以及等腰三角形,对全等三角形、轴对称以及等腰三角形的性质有一定的认识,同时在探究等腰三角形性质的过程中已经有了折纸的经验,所以对于本节课的探究学生应该拥有相应的知识和经验根底.但是,同时学生又普遍缺乏将动手过程转化为几何语言的能力.在教学过程中直接表达出来的难点便是学生很难用几何语言去表达辅助线的做法.【教学内容分析】本节课是新人教版八年级上册第13章的实验与探究内容.在教材的编排上是在学习了全等三角形、轴对称以及等腰三角形之后而设置的.整个探究过程充分利用了轴对称的性质,在动手翻折的过程中得到启发,从而构造全等三角形进行探究.所以本节课既是全等三角形、轴对称等知识的拓展,更是从特殊的等腰三角形性质的折纸探究到一般的不等边三角形折纸探究的思想方法上的拓展.同时本节课的探究过程中的转化思想又为将来解决几何问题提供了重要的经验和方法.因此本节课的教学对学生全面认识几何问题起着积极地作用,对培养学生综合运用几何知识的能力也起着重要的作用.【教学媒体与资源的选择与应用】根据本节课内容的特点,为了更直观、形象的突出重点、突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式,在教学过程中,通过设置一系列学生的折纸活动,几何画板配合演示,创设问题情境,启发学生思考,让学生亲身体验知识的产生、开展和形成的过程.【学具准备】三角形纸片数张、剪刀、三角板、圆规等.【课时安排】一课时【教学过程】活动一、温故知新,铺垫新知1、如图,在△ABC中,∠1=30°,∠2=20°,那么∠3= °,∠1 ∠3〔填“>〞“<〞〕2、如图,在△ABC中,AB=AC,∠B=70°,那么∠C= °3、如图,△ABC中,AB=AC,AD⊥BC,那么BD CD,∠1 ∠2〔填“>〞“<〞“=〞〕第1题图第2题图第3题图【设计意图】复习三角形的外角和等腰三角形的性质,为探究三角形中边与角之间的不等关系做好知识和经验铺垫.活动二、创设情境,引入新知问题1:我们知道,在一个三角形中,如果有两条边相等,那么它们所对的角也相等。
三角形的角度与角度关系

三角形的角度与角度关系三角形是我们初中数学教学中最常见的几何图形之一,它由三条边和三个内角组成。
本文将着重讲解三角形的角度与角度关系,帮助读者更好地理解和运用相关知识。
1. 三角形角度的定义在三角形中,每个顶点都对应一个内角,我们以A、B、C来表示三个顶点,对应的内角分别为∠A、∠B、∠C。
根据角度的定义,我们知道每个角度具有以下特点:- 角度是由两条射线或线段组成,以一个定点为起点,其中一条射线或线段叫做始边,另一条射线或线段叫做终边。
- 角度的度量单位是度,常用符号°表示。
2. 三角形内角和为180°在任意一个三角形ABC中,三个内角∠A、∠B、∠C的度数之和等于180°,即∠A + ∠B + ∠C = 180°。
这是三角形角度关系中最基本的一个定理,也是我们解决三角形相关问题的重要依据。
证明思路:我们可以通过绘制一条平行于边BC且经过顶点A的直线段AD,将三角形ABC分成两个小三角形ACD和ABD。
根据平行线性质,我们可以得到∠C = ∠ACD和∠B = ∠ABD。
根据三角形的内角和为180°,我们可以得到∠A + ∠ACD + ∠ABD = 180°。
将∠C = ∠ACD和∠B = ∠ABD代入上式,可得∠A + ∠B + ∠C = 180°,即证明了三角形内角和为180°。
3. 三角形角度关系定理在三角形中,除了内角和为180°的基本定理外,还存在一些角度关系定理,它们更加具体地描述了三角形内各角之间的关系。
3.1 角平分线定理如果一条直线将一个角分为两个相等的角,则这条直线称为该角的角平分线。
在三角形ABC中,如果∠BAD是∠BAC的角平分线,那么∠BAD = ∠DAC。
证明思路:我们绘制角ABC的角平分线BD,连接点D与点C。
由于∠BAD = ∠DAC,且∠ABD = ∠ACB(角平分线的定义),两边的对应角相等,根据三角形的角度和为180°,我们可以得到∠ABC + ∠ACB + ∠BAC = 180°。
三角形中边与角之间的不等关系课件

A
E
C
已知:△ABC中, ∠ B<∠C 求证: AB>AC
在△ABC中,如果∠ B<∠C ,那么 在∠C 内部可以作∠BCD= ∠ B. 因为∠BCD= ∠ B, 所以BD=CD 而AD+CD>AC 所以AD+BD>AC B 即AB>AC D
A
C
在一个三角形中,如果两个角不相 等,那么它们所对的边也不相等,大角 所对的边较大。
1
2
C
在一个三角形中,如果两条边不相 等,那么它们所对的角也不相等,大边 所对的角较大。
A
∵AB>AC ∴∠C>∠B(大边对大角)
B
C
已知:△ABC中, ∠B<∠C 求证: AB>AC
在△ABC中,如果∠B<∠C , 那么我们可以将△ABC折叠, 使点B落在C上, ∠B落在∠C 内部,则, BD=CD 而AD+CD>AC B 所以AD+BD>AC 即AB>AC D
∴∠B=∠C(等边对等角) ∵∠ B=∠C ∴AB=AC(等角对等边)
如果AB>AC,那么∠B与∠C 大小如何? 如果∠C>∠B,那么AB与AC 大小如何?
已知:△ABC中,AB>AC
求证:∠C> ∠B
A
B
C
已知:△ABC中,AB>AC 求证:∠C> ∠B
在△ABC中,如果AB>AC,那么 我们可以将△ABC折叠,使边AC 落在AB上,点C落在AB上的D点, 则, ∠C= ∠ADE 而∠ADE> ∠B
A
∵∠C>∠B ∴AB>AC (大角对大边)
B
C
利用上面两个结论,回答下面的问题:
三角形中的角度关系与性质

三角形中的角度关系与性质在数学中,三角形是一个基本的几何形状,它由三条线段组成,并形成三个角。
三角形的性质和角度关系是我们研究几何学中的重要内容之一。
本文将介绍三角形中的角度关系和性质,以帮助读者更好地理解和应用这些知识点。
一、三角形的内角和定理对于任意的三角形,其内角和总是等于180度。
这是三角形的一个重要性质,可以通过简单的证明得出。
我们可以通过以三角形的一个顶点作为圆心,另外两个顶点分别为圆周上的两个点,画一个圆。
根据圆周角的性质,该圆周角的度数等于圆内角的度数。
由于圆周角的度数是360度,所以每个圆内角的度数都是等于360度除以三的结果,即120度。
同样地,我们可以通过以三角形的另外两个顶点作为圆心,第三个顶点分别为圆周上的两个点,画两个圆。
根据相同的推理,每个圆内角的度数也都是120度。
将这三个圆的圆内角和加起来,即得到了三角形的内角和。
可以看出,三个圆内角和的总和为360度,即等于圆周角的度数。
二、三角形中的角度关系在三角形中,角度之间有许多重要的关系。
下面是一些常见的角度关系:1. 三角形的两个锐角之和等于90度。
根据三角形内角和定理,三角形的内角和等于180度。
而对于一般的三角形,其中一个内角是锐角,另外两个内角是钝角。
因此,两个锐角之和等于180度减去钝角的度数。
由此可推得,两个锐角之和等于90度。
2. 直角三角形的两个锐角分别等于45度。
直角三角形是指其中一个内角为90度的三角形。
根据前面的推论,直角三角形的两个锐角之和等于90度。
因此,直角三角形的两个锐角分别等于45度。
3. 三角形的两个边角互补。
对于任意的三角形,其两个边角互补。
这是因为在三角形中,两个边的延长线一定会相交,形成一个补角。
以上是一些三角形中常见的角度关系。
通过了解这些关系,我们可以更好地解题和分析三角形的性质。
三、三角形的性质除了角度关系外,三角形还具有一些重要的性质。
下面是一些常见的三角形性质:1. 等边三角形的三个角相等。
三角形中边与角的不等关系

积累数学活动经验.
情感与态度:提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学
教学重点
习几何的兴趣,获得解决问题的成功体验. 添加辅助线,将边角之间的不等问题转化为“一个角是另一个角所在三角形的外角”的问题.
教学难点 折纸的无意操作与辅助线的有意添加结合.
教学过程
教学过程
设计意图
2
过 A 作 BC 的垂线,垂足为 D,在 BD 边上截取 DC’,使 DC’=DC,连接 AC’ .
小结:沿角平分线所在直线翻折,使∠B 或∠C 转移位置,利用三角形外角的性 培养学生总结归纳的能
质证明了∠C > ∠B.
力,和评价反思的意识.
证法三: 在边AB上截取AD,使AD=AC,连接CD.
B
② 沿角平分线折叠:作∠BAC 的角平分线
AD,将△ADC 沿 AD 翻折(或将△ADB
沿 AD 翻折).
B
B
D
C
A
A
培养学生的动手操作能 力,为后面证明时添加
辅助线作铺垫.
C'
C' D C
D
C
1
③沿高翻折:作 BC 边的高 AD,将△ADC 沿 AD 翻折(或将△ADB 沿 AD 翻折). 追问:通过折纸,如何说明∠C > ∠B?
不同方法添加辅助线的
A
本质是相同的.
由等边对等角可知∠ADC=∠ACD. 又由三角形中外角的性质知∠ADC=∠B+∠DCB.
D B
C 例题条件中没有角平分
所以∠ADC>∠B, 又因为∠ACB=∠ACD+∠DCB.
线、高等条件,区别于
所以∠ACB>∠ACD 所以∠ACB>∠B.
沪科版八年级数学上册教案:13.1.2 三角形中角的关系

2.三角形中角的关系教学目标知识与技能1、了解三角形的内角;2、会用平行线的性质与平角的定义证明三角形内角和等于180度;3、学会解决与求角有关的实际问题;过程与方法经历实验活动的过程,掌握三角形的内角和定理,初步掌握添加辅助线的方法.情感态度价值观初步培养学生的说理能力。
教学重点三角形的内角和定理及其运用教学难点三角形内角和定理的推理过程教学准备三角尺、小剪刀、量角器。
教学过程(师生活动)设计理念动手操作初步感知我们都知道,任意一个三角形的内角和都等于180°,怎么说明这个结论的正确性呢?在纸上画一个三角形将将它的内角剪下,试着拼拼看。
情境教学对激发学生的学习兴趣有很大的作用。
实践说理深入新知用折纸的方法探究三角形内角和的证明思路:同学们动手把一个三角形的两个角剪下拼在第三个角的顶点处,你有哪些方法?你发现了什么?问题:由刚才拼合而成的图形,你能想出说明“三角形内角和等于180度"这个结论的正确方法吗?证明:试以你所发现的方法谈谈是如何说明三角形的内角和等于180°的?如图⑴已知:△ABC, 求证:∠A+∠B+∠C=180°.证明:延长BC到D,过点C作CE∥AB .∵CE∥AB (已知)∴∠2=∠B (两直线平行,同位角相等)从拼图活动中发展学思维的灵活性,创造性在说理过程中,更加深刻地理解多种拼图方法,创设不同说理方法的表达情境。
∠1=∠A (两直线平行,内错角相等)又∵∠1+∠2+∠3=180°(平角定义)∴∠A+∠B+∠ACB=180°(等量代换)三角形内角和定理:三角形的内角和等于180°应用新知1、如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C岛看A、B两岛的视角∠ACB是多少度?分析:虽然本题已给图形,但我们必须从画图入手, 记住画图的过程就是理解题目的开始,C岛在A岛的北偏东50°方向,就是以A岛为中心画方向线AC,B岛在A 岛的北偏东80°,也是以岛为中心画方向线AB,C岛在B岛的北偏西40°方向,这就是以B 岛为中心画出方向线BC、AC与BC交于C.由于A、B、C三点构成△ABC.所求∠ACB是△ABC的一个内角,这样就要懂得∠CAB和∠ABC的度数.根据方向线不难得到∠CAB=80°-50°=30°,由BF∥AE得∠FBA=100°,即∠CBA=60°,解:(略)向学生展示分析问题的基本方法,培养学生思维的广阔性。