三角形中的边角关系知识点
直角三角形边角关系知识点

直角三角形边角关系专题复习
一. 知识体系:
1. 三种三角函数与直角三角形中边与角的关系,在Rt△中
在此应注意的问题是无论是求哪一个角的三角函数,一定要先把这个角放在直角三角形中 2. 特殊角的三角函数值
3. 三角函数的有关计算(对于一般角的三角函数值可利用计算器)
41 2 3 4
.三角函数的应用
()测山的高度()测楼的高度()测塔的高度()其它
⎧
⎨
⎪
⎪
⎩
⎪
⎪
题型一:三角形内的计算问题(计算三角函数值、面积等)
例1.在ABC Rt ∆中,∠C=90° ,且21sin =
A ,AB=3,求BC ,AC 及
B ∠.
例2.已知,四边形ABCD 中,∠ABC = ∠ADB =090,AB = 5,AD = 3,BC = 32,求四边形ABCD 的面积。
例3.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,5,4BC CD ==,求AC 的长。
A B D。
直角三角形的边角关系知识点

直角三角形的边角关系知识点一、勾股定理勾股定理是指在直角三角形中,直角边的平方等于两个其他两边平方的和。
即a^2+b^2=c^2,其中c表示直角边,a和b分别表示斜边。
二、正弦定理正弦定理是指在任意三角形中,任意两边的比例等于它们所对的角的正弦值的比例。
在直角三角形中,不包含直角的两个角分别为A和B,直角所对的边为c,则正弦定理可以表示为sinA=a/c,sinB=b/c。
三、余弦定理余弦定理是指在任意三角形中,任意一边的平方等于另外两边的平方和减去它们的两倍乘以它们夹角的余弦。
在直角三角形中,不包含直角的两个角分别为A和B,直角边所对的边为c,则余弦定理可以表示为cosA=b/c,cosB=a/c。
四、正切定理正切定理是指在任意三角形中,两条边的比例等于它们所对的角的正切值的比例。
在直角三角形中,不包含直角的两个角分别为A和B,直角所对的边为c,则正切定理可以表示为tanA=a/b,tanB=b/a。
五、边角关系1.直角三角形中,一个角是90度,另外两个角的和是90度。
2.直角三角形中,直角边所对的角是90度,而另外两边所对的角是锐角。
3.直角三角形中,两个锐角的正弦、余弦、正切值彼此互为倒数。
4.直角三角形中,两个锐角的余弦值等于彼此的正弦值。
5.直角三角形中,一个锐角的正弦值等于另一个锐角的余弦值。
六、特殊三角形1.在直角三角形中,当两个直角边的长度相等时,该直角三角形为等腰直角三角形。
2.在等腰直角三角形中,两个锐角相等,且为45度。
3.在等腰直角三角形中,斜边的长度等于直角边的平方根的两倍。
以上是直角三角形的边角关系的主要知识点。
通过对直角三角形的边长和角度关系的了解,我们可以应用这些关系来解决与直角三角形相关的问题。
同时,直角三角形也是三角学中一个重要的基础概念,为后续学习提供了坚实的基础。
三角形的概念及边角关系

三角形的概念及边角关系一、知识梳理(一)三角形的基本概念及性质:1.三角形的定义① 边② 顶点③ 角④ 外角2.三角形中的几条主要线段:① 三角形的角平分线;② 三角形的中线;③ 三角形的高线3.三角形的主要性质:① 三角形的任何两边之和大于第三边,任何两边之差小于第三边.180② 三角形的三个内角之和等于③ 三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角和.④ 三解形中,等角对等边,等边对等角,大角对大边,大边对大角.⑤ 三角形具有稳定性,即三边长确定后三角形的形状保持不变.(二)三角形的分类:二、典例剖析例1. △ABC中,AB=5,BC=7,则AC的取值范围是____________________.变式1.有4根木条,长度分别为12 、10 、8 、4选其中三根组成三角形则能组____个三角形.变式2.若等腰三角形,一边长为4 cm,另一边为9 cm,则三角形的周长是 _______ cm.变式3.AD是△ABC的中线,AC=3,AB=4,那么△ABD和△ADC的周长之差是 __ 。
变式4. 等腰三角形的一边长是8 cm,周长是18 cm,则等腰三角形的腰长是 cm.例2. △ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC是______三角形.变式1. 如图,AD、BC相交于O点,AB∥CD,∠B=30º,∠AOB=100°,则∠ADE=__________.变式2. 如图,已知∠1=20º,∠2=25º,∠A=36°,则∠BDC=______.变式3.已知△ABC的三个内角∠A,∠B,∠C,满足∠B+∠C=3∠A,则此三角形()A.一定有一个内角45°B.一定有一个内角80°C.一定是直角三角形D.一定是钝角三角形ABDCE例3. 下列结论正确的是( )A. 三角形的外角一定大于内角 B . 三角形的三条高线都在三角形的内部 C. 三角形任何两边之和不小于第三边D. 三角形的内角平分线与相邻外角的平分线互相垂直变式1.三角形的角平分线、中线、高都是( )A .直线B .射线C .线段D .不确定变式2. 若a ,b ,c 为△ABC 的三边,则代数式 (a -b +c)(a -b -c) 的值为( )A .大于零B .等于零C .小于零D .无法确定变式3. 在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.24例4. 在△ABC 中,∠A=50°,高BE 与,角平分线AD 所在的直线交于点O,求∠BO D 的度数.变式1. (山西中考题) 如图,已知△ABC 中,AD ⊥BC 于D ,AE 为∠BAC 的平分线, 且∠B=35˚,∠C=65˚,求∠DAE 的度数。
《直角三角形的边角关系》复习教案

直角三角形的边角关系复习一、知识点总结:1、三角函数定义:sinA= cosA= tanA=2、特殊角的三角函数值:30°:sin 30°= , cos 30°= ,tan 30°= 45°:sin 45°= , cos 45°= ,tan 45°= ,60°:sin 60°= , cos 60°= ,tan 60°= , 3、三角函数公式: ① sin(90°-A)=cosA ; cos(90°-A)=sinA; ② =+A A 22cossin ;4、在直角三角形中,除直角外,一共有5个因素,即3条边和2个锐角,由直角三角形中除直角外的已知元素(两边或者一边一锐角),求出所有未知元素的过程,叫做解直角三角形5. 坡度与坡角的定义: 6、tanA 的值越大,梯子 ;sinA 的值越大,梯子 ;cosA 的值越大,梯子二、巩固练习1、在Rt △ABC 中,∠C =90°,a =1,c =4,则sinA 的值是_ __。
2、已知∠A+∠B=90°,且cosA =1/5,则cosB 的值为____。
3、已知α为锐角,tan (90°-α)α的度数为__ _。
4、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是 _ _。
5、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于______6、如右图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。
(精确到0.1m)7、菱形ABCD 的对角线AC=10,BD=6,则 tanA/2= _____8、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角仪高为1.5米.那么旗杆的高是_________米(用含α的三角函数表示).9、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米。
第13章 三角形中的边角关系、命题与证明(总复习)

证明三角形内角和定理的方法
添加辅助线思路:1、构造平角
A D E 1 2 F E A
A E 1
2
D
B 图2 C
1
2 D
B
图1
C
B
C
图3
添加辅助线思路:2、构造同旁内角
E A
E
A
F 4 C
1 2
B 图1 C
3
B
D
图2
9.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
4.三角形的分类:
1:按边分类
不等边三角形 三角形 腰与底不相等的等腰三角形 等腰三角形 腰与底相等的等边三角形
2:按角分类
直角三角形 三角形 锐角三角形 斜三角形 钝角三角形
5. 对“定义”的理解:
能明确界定某个对象含义的语句叫做定义 。 注意:明确界定某个对象有两种形式:
7.有关“公理、定理、证明、推论、演绎推理、 辅助线”等概念 (1)公理:从长期实践中总结出来的,不需要再作 证明的真命题。
(2)定理:从公理或其他真命题出发,用推理方法证明 为正确的,并被选作判断命题真假的依据的真命题 (3)推论:由公理、定理直接得出的真命题。 (4)演绎推理:从已知条件出发,依据定义、公理、 定理,并按照逻辑规则,推导出结论的方法。
(2)三角形中线:连结一个顶点和它对边中点的线段. 表示法: ① AD是△ABC的BC上的中线. ② BD=DC=½BC.
B A
注意: ①三角形的中线是线段;
D
C
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.
(完整)直角三角形的边角关系全章总结复习,推荐文档

2017—2018学年寒假辅导第1讲直角萨娇新的边角关系一、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA 122232cosA 322212tanA 331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,∠A=30°,则c=,b=.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sinA==cosB=ac,cosA=sinB=bc,tanA=ab.(4)相等的角①商的关系:tanA= ;②平方关系:sin2A+cos2A=1.(5)互余的两角:若∠A+∠B=90°,则sinA=cosB, cosA=sinB.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.二、 专题讲座专题一:锐角三角函数的概念注意:1.sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有 ,这些比值只与 有关,与直角三角形的 无关2.取值范围 <sinA< ; < cosA< ; tanA> 例1.如图所示,在Rt △ABC 中,∠C =90°.①斜边)(sin =A =______, 斜边)(sin =B =______;②斜边)(cos =A =______, 斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =__ ___,cos A =___ ___,tan A =____ __, sin B =___ ___,cos B =_____ _,tan B =___ ___.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .类型一:直角三角形求值例4.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .例5.已知A ∠是锐角,178sin =A ,求A cos ,A tan 的值类型二. 利用角度转化求值:例6.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2. 求:sinB 、cosB 、tanB .例7.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .A D ECBF例7图 例8图 例9图 例13图例8.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2. 例9.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34 B.43 C.35 D.45类型三. 化斜三角形为直角三角形例10.如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例11.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tan B .例12.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.类型四:利用网格构造直角三角形例13如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12 B .55 C .1010D .255对应训练:1.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为( )A .55 B .255 C .12D .2 2.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ) A .35 B. 45 C. 34 D. 433. 如图,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( ) A .2 B .2 C .1 D .224. 如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316;求∠B 的度数及边BC 、AB 的长.DABC5.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)6.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .7. 在△ABC 中,∠A=60°,AB=6 cm ,AC=4 cm ,则△ABC 的面积是 ( )A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 28.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.9.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为( ) A.41 B. 31 C.21D. 110.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A .5 5 B. 2 5 5 C.12D. 2CB A ABO专题二:特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.(1)︒-︒+︒60tan 45sin 230cos 2 (2)︒-︒+︒30cos 245sin 60tan 2(3)3-1+(2π-1)0-33tan30°-tan45°(4)30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+ (5) tan 45sin 301cos 60︒+︒-︒;例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α (5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是( ) A. 0°< ∠A < 30° B. 30°< ∠A <60° C. 60°< ∠A < 90° D. 30°< ∠A < 90° 2. 已知∠A 为锐角,且030sin cos <A ,则 ( )A. 0°<∠ A < 60°B. 30°<∠ A < 60°C. 60°< ∠A < 90°D. 30°<∠ A < 90°例4. (三角函数在几何中的应用)已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.对应练习:1.计算:10123tan 45(2 1.41)3-⎛⎫--++- ⎪⎝⎭2.计算:1201314.330sin 21)()(-++---π3.计算:212322cos602°. 4计算:(2014-5)0-(cos60°)-2+38-3tan30°;5.计算:6.计算:|1﹣|﹣()﹣1﹣4cos30°+(π﹣3.14)0.7.已知α是锐角,且sin(α+15°)=32. 计算10184cos ( 3.14)tan 3απα-⎛⎫---++ ⎪⎝⎭的值.8.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求: (1)∠BAD ; (2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .9. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .10. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.11.(本小题5分)如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.DCBAACB专题三:解直角三角形的应用例1.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()例1图例2图A.200米B.200米C.220米D.100()米例2.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m例3. “兰州中山桥”位于兰州滨河路中段白搭山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥”之美誉。
三角形的边角之间的关系

(1)三角形三内角和等于180°(在球面上,三角形内角之和大于180°);(2)三角形的一个外角等于和它不相邻的两个内角之和;(3)三角形的一个外角大于任何一个和它不相邻的内角;(4)三角形两边之和大于第三边,两边之差小于第三边;(5)在同一个三角形内,大边对大角,大角对大边.(6)三角形中的四条特殊的线段:角平分线,中线,高,中位线.(7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.(8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等.(9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。
(10)三角形的三条高的交点叫做三角形的垂心。
(11)三角形的中位线平行于第三边且等于第三边的1/2。
(12)三角形的一边与另一边延长线的夹角叫做三角形的外角。
注意: ①三角形的内心、重心都在三角形的内部. ②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上。
(直角三角形的垂心为直角顶点,外心为斜边中点。
)④锐角三角形垂心、外心在三角形内部。
三角形相关定理重心定理三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.上述交点叫做三角形的重心.外心定理三角形的三边的垂直平分线交于一点.这点叫做三角形的外心.垂心定理三角形的三条高交于一点.这点叫做三角形的垂心.内心定理三角形的三内角平分线交于一点.这点叫做三角形的内心.旁心定理三角形一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.三角形的重心、外心、垂心、内心、旁心称为三角形的五心.它们都是三角形的重要相关点.中位线定理三角形的中位线平行于第三边且等于第三边的一半.三边关系定理三角形任意两边之和大于第三边,任意两边之差小于第三边.勾股定理在Rt三角形ABC中,A≤90度,则AB·AB+AC·AC=BC·BC梅涅劳斯定理梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
八年级上册数学 三角形三边关系-命题与证明

三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中的边角关系知
识点
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
第十四章三角形中的边角关系
一、三角形的分类
1、按边分类:
2、按角分类:
不等边三角形直角三角形三角形三角形锐角三角形
等腰三角形(等边三角形是特例)斜三角形钝角三角形
二、三角形的边角性质
1、三角形的三边关系:
三角形中任何两边的和大于第三边;任何两边的差小于第三边。
2、三角形的三角关系:
三角形内角和定理:三角形的三个内角的和等于180°。
三角形外角和定理:三角形的三个外角的和等于360°。
3三角形的外角性质
(1)三角形的一个外角等于与它不相邻的两个内角的和;
(2)三角形的一个外角大于与它不相邻的任何一个内角。
三、三角形的角平分线、中线和高
(说明:三角形的角平分线、中线和高都是线段)
四、命题
1、命题:凡是可以判断出真(正确)、假(错误)的语句叫做命题。
2、命题分类
真命题:正确的命题
命题假命题:错误的命题
3、互逆命题
4、反例:符合命题条件,但不满足命题结论的例子称为反例。
原命题:如果p,那么q;
逆命题:如果q,那么p。
(说明:交换一个命题的条件和结论就是它的逆命题。
)。