圆柱与圆锥的体积练习

合集下载

(完整版)圆锥的体积练习题

(完整版)圆锥的体积练习题

圆锥的体积练习题一、填空:1、等底等高的圆柱和圆锥,圆柱体的体积是90立方米,那么圆锥的体积是()立方米。

2、等底等高的圆柱和圆锥,圆锥的体积是9立方米,圆柱体的体积是()立方米。

3、等底等高的圆柱和圆锥,圆柱体的体积是33立方米,那么圆锥的体积是()立方米。

二、判断。

①圆锥的体积等于圆柱体积的。

()②两个体积相等的等底圆柱和圆锥,圆锥的高一定是圆柱高的3倍。

()③一个圆锥形物体,底面积是a 平方米,高是b 米,它的体积是ab 立方米。

()④把一根圆体木头,削成一个最大的圆锥体,削去体积是圆锥体积的2倍。

()⑤圆柱体的体积一定比圆锥体的体积大()⑥圆锥的体积等于和它等底等高圆柱体积的三分之一。

()⑦正方体、长方体、圆锥体的体积都等于底面积×高。

()⑧一个圆柱的体积是27立方米,和它等底等高的圆锥的体积是9立方米。

()三、求下列各圆锥的体积:(1)底面周长是9.42米,高是1.8米;(2)底面半径是4厘米,高是21厘米;(3)底面直径是6分米,高是6分米;四、解决问题。

①一堆圆锥形的煤堆,底面半径是1.5 米,高是1.2 米。

如果每立方米煤约重1.4 吨,这堆煤有多少吨?②有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆锥体,被削去的体积是多少?③在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。

每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)④一个圆锥形沙堆,底面周长是25.12米,高1.5米,每立方米的沙重1.5吨,这堆沙有多少吨?⑤把一块底面半径2厘米、高6厘米的圆柱形泥巴捏成一个与圆柱底面相等的圆锥形。

请你算出它的高。

1.把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )一、圆柱体积。

1. 求下面各圆柱的体积。

(1)底面积0.6平方米,高0.5米(2)底面半径是3厘米,高是5厘米。

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。

7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。

8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。

9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。

三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。

11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。

四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。

13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。

答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。

11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。

(完整版)圆柱和圆锥20道专项练习题.doc

(完整版)圆柱和圆锥20道专项练习题.doc

圆柱和圆锥 20 道专项练习题1、一个圆柱形油桶,从里面量的底面半径是20 厘米,高是 3 分米。

这个油桶的容积是多少?2、一个圆柱,侧面展开后是一个边长9.42 分米的正方形。

这个圆柱的底面直径是多少分米?3、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的后,还剩12 升汽油。

如果这个油桶的内底面积是10 平方分米,油桶的高是多少分米?4、一只圆柱形玻璃杯,内底面直径是8 厘米,内装药水的深度是16 厘米,恰好占整杯容量的。

这只玻璃杯最多能盛药水多少毫升?5、有两个底面半径相等的圆柱,高的比是 2 : 5。

第二个圆柱的体积是175 立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?6、一个圆柱和一个圆锥等底等高,体积相差 6.28 立方分米。

圆柱和圆锥的体积各是多少?7、东风化工厂有一个圆柱形油罐,从里面量的底面半径是 4 米,高是20 米。

油罐内已注入占容积的石油。

如果每立方分米石油重700 千克,这些石油重多少千克?8、一个无盖的圆柱形铁皮水桶,底面直径是30 厘米,高是 50 厘米。

做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)9、一个圆锥形沙堆,高是 1.8 米,底面半径是 5 米,每立方米沙重 1.7 吨。

这堆沙约重多少吨?(得数保留整数)10 、一个圆锥与一个圆柱的底面积相等。

已知圆锥与圆柱的体积的比是1: 6,圆锥的高是 4.8 厘米,圆柱的高是多少厘米?11 、把一个体积是282.6 立方厘米的铁块熔铸成一个底面半径是 6 厘米的圆锥形机器零件,求圆锥零件的高?12 、在一个直径是20 厘米的圆柱形容器里,放入一个底面半径 3 里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3 厘米。

圆锥形铁块的高是多少厘米?13 、把一个底面半径是 6 厘米,高是10 厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是 5 厘米的圆柱形容器里,求圆柱形容器内水面的高度?14 、做一种没有盖的圆柱形铁皮水桶,每个高 3 分米,底面直径 2 分米,做 50 个这样的水桶需多少平方米铁皮?15 、学校走廊上有10 根圆柱形柱子,每根柱子底面半径是 4 分米,高是 2.5 分米,要油漆这些柱子,每平方米用油漆0.3 千克,共需要油漆多少千克?16 、一个底面周长是 43.96 厘米,高为8 厘米的圆柱,沿着高切成两个同样大小的圆柱体,表面积增加了多少?17 、一个圆柱体木块,底面直径和高都是10 厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?18 、用铁皮制成一个高是 5 分米,底面周长是12.56 分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?若水桶里盛满水,共有多少升水?19 、一根圆柱形钢材,截下 1 米。

《圆锥的体积》练习题

《圆锥的体积》练习题

圆锥的体积练习题姓名:学号:1.填一填。

(1)准备等底等高的圆柱形容器和圆锥形容器各一个,将圆锥形容器装满沙子,再倒入圆柱形容器,()次能倒满。

或将圆柱形容器装满水,再倒入圆锥形容器,能将圆锥形容器倒满()次。

因为圆柱的体积=()×(),所以圆锥的体积=(),用字母表示圆锥的体积计算公式是()。

(2)一个圆柱和一个圆锥等底等高,如果圆锥的体积是9dm3,那么圆柱的体积是();如果圆柱的体积是9dm3,那么圆锥的体积是()。

(3)下图中,圆锥()的体积与圆柱的体积相等。

(4)一个圆锥的底面直径和高都是6cm,那么这个圆锥的体积是()cm3。

(5)一个圆锥的体积是15.7m3,底面积是3.14m2,那么它的高是()m。

(6)将24个圆锥形铁块熔化后,可以重新铸成和原来圆锥形铁块等底等高的圆柱形铁块()个。

(损耗忽略不计)(7)圆柱底面半径是圆锥底面半径的3倍,它们的高相等,那么圆柱体积是圆锥体积的()倍。

(8)一个圆锥形沙堆,底面积是12m2,高是1.5m,用这堆沙铺在长8m、宽5m的长方体跳远坑中,厚()m。

(9)一个圆锥的底面半径是3cm,高是6cm,它的体积是()cm³;与这个圆锥等底等高的圆柱的体积是()cm³。

(10)一个圆锥的底面周长是18.84dm,高是5dm,它的体积是()dm³。

(11)把一个体积为94.2cm³的圆柱木料削成个最大的圆锥,这个圆锥的体积是()cm³,削去部分的体积是()cm³。

(12)一个圆柱与一个圆锥的底面积相等,体积也相等。

若圆锥的高是1.8dm,则圆柱的高是()dm;若圆柱的高是1.8dm,则圆锥的高是()dm。

2.有一堆圆锥形的沙子,底面直径是12m,高是5m。

(1)这堆沙子有多少立方米?(2)如果把这堆沙子以3cm的厚度铺在宽10m的路上,能铺多长的路?3.计算下面圆锥的体积。

4.一个圆锥形路障警示标志如下图,这个路障标志的体积约是多少立方厘米?5.把一个体积是282.6cm³的铁块熔铸成一个底面半径为6cm的圆锥形机器零件,圆锥形零件的高是多少厘米?6.如图,先将甲容器注满水,再将甲容器中的水倒入空的乙容器中,这时乙容器中的水面有多高?7.把一个横截面是正方形的长方体木块削成个最大的圆锥。

【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

圆柱和圆锥的体积练习题

圆柱和圆锥的体积练习题

二、解决问题。 1.一个圆柱的底面直径是 6 厘米,高是
米, 10 厘米,体积是多少?
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

圆柱圆锥的转化练习题

圆柱圆锥的转化练习题圆柱和圆锥是我们生活中常见的几何体,它们都有着独特的特点和性质。

在数学课堂上,我们经常遇到一些涉及圆柱和圆锥的转化练习题,通过解决这些问题,我们可以更好地理解这两种几何体之间的关系以及应用。

第一个练习题是关于圆柱和圆锥的体积转化。

题目如下:一个半径为3cm,高为6cm的圆柱,将顶部削成了一个相似的圆锥形状,要求求出削去的部分体积。

解答:首先,我们需要计算圆柱的体积。

圆柱的体积公式是V=πr^2h,其中r为半径,h为高。

根据题目中给出的数据,我们可以代入计算得到圆柱的体积为V=π(3^2)(6)=54π cm^3。

然后,我们需要计算削去的圆锥形状的体积。

根据几何形体性质,相似形体的体积比例等于边长比例的立方。

由于圆柱头部削去部分相似于圆锥,我们可以得出圆柱削去的体积与原圆锥的体积比值为(3/6)^3=1/8。

因此,削去的部分体积为1/8 * 54π = 6.75π cm^3。

第二个练习题是关于表面积转化的。

题目如下:一个圆柱的直径为10cm,高为8cm,将其削为了一个表面积相等的圆锥,要求求出圆锥的高和半径。

解答:首先,我们需要计算圆柱的表面积。

圆柱的表面积由上下底面积和侧面积组成。

上下底面积等于πr^2,侧面积等于2πrh。

根据题目中给出的数据,我们可以代入计算得到圆柱的表面积为S=2π(5^2)+2π(5)(8)=280π cm^2。

然后,我们需要计算圆锥的高和半径。

由于圆柱削去部分相似于圆锥,它们的表面积相等。

而圆锥的表面积由底面积和侧面积组成。

底面积等于πr^2,侧面积等于πrl,其中l为斜高。

设圆锥的半径为r,高为h,则侧面积等于πrh。

因此,根据题目中给出的表面积与圆锥的特性,我们可以得到方程2π(5^2)+2π(5)(8)=πr^2+πrh。

化简过程后,得到10+16=5r+h。

由此,我们可以得到一个方程,但由于没有给出一个关于圆锥的特定条件,无法进一步求解圆锥的高和半径。

人教版六年级数学下册圆柱与圆锥体积专项练习题精选

人教版六年级数学下册圆柱与圆锥体积专项练习题精选1.把圆柱的侧面沿着高剪开,得到一个矩形,这个矩形的长等于圆柱底面的周长,宽等于圆柱的高,所以圆柱的侧面积等于底面周长乘以高。

2.单位换算:1升=1000毫升=1立方分米=1000立方厘米1平方米=平方分米,1公顷=平方米415平方厘米=41.5平方分米,4.5立方米=4500立方分米2.4立方分米=2400毫升,4070立方分米=4.07立方米3立方分米40立方厘米=3040立方厘米325立方米=立方分米,5380毫升=5.38升380毫升3.基础练:1.将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是20平方分米,体积是4立方分米。

2.一个圆柱底面半径2分米,侧面积是113.04平方分米,这个圆柱体的高是9分米。

4.把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是15.04平方厘米。

5.一个圆柱体的底面半径为r,侧面展开图形是一个正方形。

圆柱的高是r根2.6.一个圆柱的底面周长是12.56厘米,高是6厘米,那么底面半径是2厘米,底面积是4平方厘米,侧面积是75.36平方厘米,体积是50.24立方厘米。

7.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆柱的体积是圆锥的3倍,圆柱的体积的2/3就等于圆锥的体积。

8.一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是4厘米。

9.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是32立方米,圆锥的体积是16立方米。

10.一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是40立方厘米。

11.圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是2厘米。

12.一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。

这个圆锥体的高是6分米。

13.把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重16千克。

六年级下册数学圆柱圆锥练习题(含答案)

六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。

解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。

其中r为底面半径,h为高度。

先求出底面半径r = 8/2 = 4厘米。

体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。

解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。

先求出底面半径r = 6厘米。

体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。

解:首先计算底面半径r = 12.6/2 = 6.3厘米。

体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。

解:先计算底面半径r = 9.8/2 = 4.9厘米。

体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。

解:底面半径r = 5厘米。

体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。

2023年春季新版人教六年级数学下册 第三单元 圆柱与圆锥 1圆柱 练习五

30×10×4÷6=200(cm3)=200mL
答:平均每杯倒200毫升。
14.*右面这个长方形的长是 20cm,宽是10cm。分别以 长和宽为轴旋转一周,得 到两个圆柱。它们的体积 各是多少?
以长为轴旋转一周的体积 3.14×102×20=6280(cm3) 以宽为轴旋转一周的体积 3.14×202×10=12560(cm3)
3.14×(60÷2)2×90=254340(cm3)
254340cm3=254.34L 答:这个油桶柱形花坛。花坛的底面 内 直 径 是 4m , 高 是 0.8m 。 如 果 里 面 填 土 的 高 度 是 0.5m,两个花坛一共需要填土多少立方米?
9.两个底面积相等的圆柱,一个高为4.5dm, 体积为81dm3。另一个高为3dm,它的体积 是多少?
81÷4.5×3=54(dm3) 答:它的体积是54dm3。
10.一个装水的圆柱形容器的底面内直径是10cm, 一个铁块完全浸没在这个容器的水中,将铁块取 出后,水面下降2cm。这个铁块的体积是多少?
35-3.14×(2÷2)2×(25÷100) =34.215(立方米) 答:现在用了34.215立方米土石。
8.明明家里来了两位小客人,妈妈榨了1L果汁。
如果用右图中的玻璃杯喝果汁,够明明和客人们
每人一杯吗?(数据是从杯子内部测量得到的。)
3.14×(6÷2)2×11=310.86(mL) 1L=1000mL 1000÷310.86≈3.22 3.22>3 答:够明明和客人们每人一杯。
3.14×(4÷2)2×0.5=6.28(m3) 6.28×2=12.65(m3) 答:两个花坛中一共需要填土12.56立方米。
4.一个圆柱的体积是80cm3,底面积是 16cm2。它的高是多少厘米?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱与圆锥基础练习
1、圆柱形队鼓的侧面由铝皮围成,上、下底面蒙的是羊皮。

队鼓的底面直径是6分米,高是2.6分米。

做一个这样的队鼓,至少需要铝皮多少平方分米?羊皮呢?
2、一个圆柱形的油桶,底面直径是0.6米,高是1米。

做一个这样的油桶至少需要多少平方米铁皮?(得数保留两位小数)
3、做一根长2米、管口直径0.15米的白铁皮通风管,至少需要白铁皮多少平方米?
4、一个圆柱形的灯笼,底面直径是24厘米,高是30厘米。

在灯笼的下底和侧面糊上彩纸,至少要多少平方厘米的彩纸?
5、做一个高6分米、底面半径1.8分米的无盖圆柱形铁皮水桶,大约要用铁皮多少平方分米?(得数保留整十平方分米)
6、“博士帽”是用黑色卡纸做成的,上面是边长为30厘米的正方形。

下面是底面直径16厘米、高是10厘米的无底的圆柱。

制作20顶这样的“博士帽”,至少需要黑色卡纸多少平方分米?
7、广场上一根花柱的高是3.5米,底面半径是0.5米,花柱的侧面和顶面都布满塑料花。

如果每平方米有42朵花,这根花柱上有多少朵花?
8、上下两层楼之间的柱子高3米,底面周长3.14米。

给5根这样的柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少千克?
9、一个圆柱形保温茶桶,从里面量,底面半径是3分米,高是5分米。

如果每立方米水重1千克,这个保温桶能盛150千克水吗?
10、银行的工作人员用纸把40枚1元的硬币摞在一起卷成圆柱的形状,圆柱的底面直径是2.5厘米,高是7.4厘米。

你能算出每一枚元的硬币的体积大约是多少立方厘米吗?(得数保留一位小数)
11、一个圆柱形茶杯,从里面量出它的高是30厘米,底面直径是8厘米,算出这个茶杯大约可盛水多少克?(1立方厘米水重1克)
12、牙膏厂将牙膏口的直径由原来的0.4厘米改为0.5厘米。

如果每人每天用牙膏的长度是2厘米左右,一年里,每个人大约要比原来多用去多少立方厘米牙膏?
13、一个圆柱形水池,从里面量得底面直径是8米,深3.5米。

(1)在这个水池的底面和四周抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个水池最多能蓄水多少吨?(1立方米水重1吨)
14、一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。

(1)搭建这个大棚要用多少平方米的塑料薄膜?
(2)大棚内的空间大约有多大?
15、有两个空的玻璃容器。

圆锥的底面直径是10厘米,高是12厘米;圆柱的底面直径是10厘米,高是12厘米,。

在圆锥形容器里注满水,再把这水倒入圆柱形容器,圆柱形容器里的水深多少厘米?
16、一个近似于圆锥形状的野营帐篷,它的底面半径是3米,高是2.4米。

(1)帐篷占在面积是多少?
(2)帐篷里面的空间有多大?
17、(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。

(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。

18、张师傅要把一根圆柱形木料,木料的底面直径是2分米,高是3分米,削成一个圆锥。

(1)削成的圆锥的体积最大是多少立方分米?
(2)你还能提出什么数学问题?
19、一个圆锥形沙堆,底面直径是8米,高是1.8米。

的体积大约是多少立方米?
20蒙古包由一个圆柱和一个圆锥组成。

圆柱的底面直径是6米,高中2米;圆锥的高是1米。

蒙古包所占的空是大约是多少立方米?
21、一种压路机的前轮是圆柱形状的,轮宽1.6米,直径0.8米。

前轮滚动一周,压路的面积是多少平方米?前进了多少米?
22、有两个不同形状的装饰瓶,里面放满了五彩石。

从里面量,圆柱瓶的底面直径是10厘米,高10厘米;长方体瓶的长和宽都是11厘米,高是9厘米。

哪个瓶里的五彩石多一
些?
23、一种圆柱形的饮料罐,底面直径7厘米,高12厘米。

将24罐这样的饮料放入一个长方体的纸箱。

(1)这个长方体的纸箱的长、宽、高至少各是多少厘米?
(2)这个纸箱的容积至少是多少?
(3)做一个这样的纸箱,至少要用硬纸板多少平方厘米。

相关文档
最新文档