原子跃迁时需注意的四个问题
理清原子能级跃迁的几个问题

o f
Ph s c Te c i g y is a hn
谈 谈 用 电 流 表 与 电压 表 测 电 阻 的 方 法
蒋 敏
北 碚 西 师 附 中 , 庆 市 北 碚 区 4 0 0 重 070
在 高 考 实 验 中经 常 出 现 测 量 电 阻 的 题 目。
, L
很小 ) 导 线 、 、 开关 外 , 电流 表 应 选 一 一 , 压 表 电
计 G 中示 数 为零 。 6 读 出电压表 、 . 电流表 的示 数 , 。 J () 据处 理 : 4数 即为 R 两端 的 电压 , J即 为流 过 R 的 电
rr
U=(+ AR,一 l: ̄ p 鲁 鲁 = F) JA R 1 R 2 P R F 』』 2
维普资讯
第2 6卷 总 第 3 8期 2
20 0 8年 第 1 1期 ( 半 月 ) 下
V o. 6 N o 3 8 12 . 2
( 1.08 X) 120
. 9.
理 清 原 子 能 级 跃 迁 的 几 个 问题
陈超 众
南 乐 第 一 中学 校 , 南 省 南 乐 县 4 7 0 河 540
在高 中阶段 , 方便 的是 用 多用 电表 的欧姆 档对 最
应选 … 一 ( 代 号 )并 一 一 一 一 一 - - 一。 填 - 一 一 一 一 一 一 将设 计 好 的 测 量 电 路 原 :
理 图画在 虚线 框 内 。
4 mA, 阻 约 0 5 0 内 . Q) 1 mA, 阻 约 0 6 0 内 . Q) V 电 压 表 ( 程 6 , 量 V 内阻 约 3 k ) 0 ̄ 2 V 电 压 表 ( 程 1 2 内 阻 约 2 k2 量 . V, Q  ̄) f R 滑 动 变 阻 器 ( 围 0— 1  ̄) 范 0 2
原子的跃迁问题

原子的跃迁问题摘要:普通高中课程标准实验教科书中对原子的跃迁叙述较少,使学生在学习原子的跃迁问题时比较困难;因此总结有关原子跃迁的知识很有必要。
原子跃迁主要的知识有跃迁假设;跃迁方式;电离以及跃迁过程能量的变化关键词:高中物理原子跃迁一、跃迁假设:指原子从一种定态跃迁到另一种定态时,要辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定即hν=Em-En。
二、跃迁方式1、自发辐射:指原子处于激发态是不稳定的会自发地向低能级跃迁,一直跃迁到基态的过程。
结论①一个氢原子处于量子数n的激发态时,可辐射的光谱条数最多为(n-1)种;②一群氢原子处于量子数为n的激发态时,由于向各个低能级跃迁的可能性均存在,因此可辐射的光谱条数最多为n?(n-1)/2种2、受激跃迁:指原子处于基态或低能级,因吸收能量向高能级跃迁的过程。
激发方式有:①用光照射:由于光子是一份一份,每个光子的能量hν是不可分的,故要求光子的能量必须等于两个定态的能量差值,才能被原子吸收。
能量不等于两定态能量差值的光子不能被原子吸收(原子电离除外)。
即光子要么全部吸收,要么不吸收②用实物粒子碰撞(如电子):由于电子的动能是可分的,故只要电子的动能大于或等于两个定态的能量差值,就可以使原子跃迁;原子从电子上吸收等于两个定态能量差值的能量,剩余能量作为入射电子的动能。
三、原子的电离一一种特殊的跃迁电离指原子中的电子脱离原子核束缚成为自由电子的过程;即电子从某一定态的轨道跃迁到无穷远处的过程。
处于能级为En的原子恰好电离时,需要吸收的能量为-En;当入射光子能量大于-En时,原子电离吸收能量为-En,剩余能量作为自由电子的动能。
四、跃迁过程能量的变化1.电子的动能:原子中原子核带电荷量为+Ze,核外电子带的电荷量为-e,电子在库仑力作用下绕核做匀速圆周运动有KZe2/r2=mⅴ2/r,故电子的动能EK=mv2/2=KZe2/2r2.原子的电势能:在原子中由于原子核与核外电子库仑引力作用而使原子具有电势能,当电子绕核运动的轨道半径减少时库仑引力的正功,原子的电势能减少,反之当电子绕核运动的轨道半径增大时,库仑引力的负功,原子的电势能增大,取无穷远处电势能为0,则原子的电势能Ep=-kZe2/r3.原子的能量:原子的能量E由核外电子的动能和原子的电势能构成,即E=EK+Ep=-KZe2/2r4.当电子绕核运动轨道半径增大时,电子的动能减少,原子的电势能增大,原子的能量增大;当电子绕核运动轨道半径减少时,电子的动能增大,原子的电势能减少,原子的能量减少例1、氢原子能级图如图,光子能量在1.63ev--3.10ev的光为可见光.要使处于基态的氢原子激发后可辐射出可见光光子,最少应给氢原子提供的能量为() A.12.09ev B.10.20ev C.1.89ev D.1.51ev解:因为可见光光子的能量范围是1.63ev--3.10ev,所以氢原子至少激发到n=3能级,最少应给氢原子提供的能量为E=(-1.51+13.60)ev=12.09ev,选项A正确.答案A例2、氢原子能级图如图,大量氢原子从n=4能级向n=2能级跃迁辐射出可见光,则( )A.从n=4的能级向n=3的能级跃迁时辐射出紫外线B.n=1能级的氢原子吸收13ev的光子后可辐射出6种频率的光子C.n=2能级的氢原子不能吸收13ev的光子D.n=1能级的氢原子与动能为13ev的电子碰撞后可辐射出6种频率的光子E.氢原子从n=4能级向n=2能级跃迁时,电子的动能增加,原子的电势能减少,原子的能量减少解:从n=4的能级向n=3的能级跃迁时辐射出光子的频率小于从n=4的能级向n=2的能级跃迁时辐射出光子的频率,而紫外线的频率大于可见光的,故A错误;13ev不等于两定态的能量差,故n=1能级的氢原子不吸收该光子,B错误;13ev的光子可以使n=2能级的氢原子电离,故可吸收C错误;动能13ev的电子可以给n=1能级的氢原子12.75ev的能量使其跃迁到n=4的能级,再自发辐射出6种频率的光子D正确;由跃迁过程能量的变化规律可知E正确.答案DE例3、用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到一定数目的光谱线,如图调高电子的能量再次进行观测,发现光谱线的数目比原来增加5条.用?n表示两次观测中最高激发态的量子数n之差;E表示调高后电子的能量,根据氢原子能级图判断,?n和E的可能值为( )A.?n=1,13.22ev<E<13.32evB.?n=2,13.22ev<E<13.32evC.?n=1,12.75ev<E<13.06evD.?n=2,12.75ev<E<13.06ev解:基态的氢原子吸收电子的能量后先跃迁到某一激发态再自发辐射出光子,第二次观测,发现光谱线的数目比第一次增加5条,可能的情况有①n1=2,n2=4;②n1=5,n2=6;当n1=2,n2=4时,?n=2,(-0.85+13.6)ev<E<(-0.54+13.6)ev,即12.75ev<E<13.06ev,D正确;当n1=5,n2=6时,?n=1,(-0.38+13.6)ev<E<(-0.28+13.6)ev,即13.22ev<E<13.32ev,A正确.答案AD例4、能量为E的光子照射基态氢原子,刚好能使该原子中的电子成为自由电子,这一能量称为氢的电离能。
原子结构知识:原子能级上的跃迁

原子结构知识:原子能级上的跃迁原子结构是物质世界的基础,了解原子结构的知识对于理解物质的性质和相互作用至关重要。
在原子结构中,原子能级上的跃迁是一种重要的现象,它可以产生一系列的光谱现象,对于研究物质的性质和相互作用具有重要的意义。
本文将围绕原子能级上的跃迁展开讨论,探讨其在物质科学中的重要性以及相关的理论和实验研究。
1.原子结构基础知识要了解原子能级上的跃迁,首先需要了解原子的基本结构。
在经典物理学的框架下,原子结构可以通过布尔模型来描述,即原子核由质子和中子组成,质子带正电荷,中子是中性的;围绕原子核运动的电子带负电荷,处在不同的能级轨道上。
在量子力学的描述下,原子结构可以用量子力学模型来描述,即原子中的电子存在于一系列离散的能级上,每个能级上存在一定数量的电子,且电子的运动状态由波函数来描述。
2.原子能级与能量在量子力学的描述下,原子中的电子存在于一系列离散的能级上,每个能级对应着一定的能量。
原子中的电子可以在不同的能级之间进行跃迁,从低能级跃迁到高能级会吸收能量,从高能级跃迁到低能级会释放能量。
这种能级之间的跃迁,导致了光谱线的产生,光谱线的位置和强度可以用来研究原子结构和原子间的相互作用。
3.能级跃迁的类型根据跃迁的性质和原子结构的特点,能级跃迁可以分为不同的类型。
例如,电子从一个能级跃迁到另一个能级可分为激发态跃迁和基态跃迁;跃迁的方式有辐射跃迁和非辐射跃迁;跃迁的性质有允许跃迁和禁止跃迁等。
每一种类型的跃迁都有其特定的规律和特征,对于不同类型的跃迁,我们可以通过不同的实验手段来观测和研究。
4.能级跃迁的物理过程在能级跃迁的过程中,电子的运动状态发生了变化,会伴随着能量的吸收或释放。
在跃迁的初态和末态之间,电子的波函数发生变化,伴随着辐射的吸收或释放。
这种物理过程不仅在光谱现象中有所体现,在原子的激光和荧光等现象中也有着重要的应用。
通过对能级跃迁的物理过程的研究,我们可以深入理解原子结构与物质性质之间的关系。
物理跃迁知识点

物理跃迁知识点物理跃迁是一种物质从一个状态转变为另一个状态的过程。
在物理学中,跃迁可以发生在不同层次和领域中,例如原子、分子、宏观物体、电子、光子等。
在这篇文章中,我们将讨论一些常见的物理跃迁及其相关知识点。
1. 原子、分子能级跃迁原子和分子的能级跃迁是量子力学中的基本概念。
当原子或分子在外界的作用下,吸收或放出能量时,其能级会发生变化,从而导致物理跃迁的发生。
原子和分子能级跃迁是由光子的吸收或辐射引起的。
当一个光子与一个原子或分子相互作用时,它将传递其能量和动量给这个原子或分子,导致电子的激发和能级跃迁。
根据能级的不同,能级跃迁可以分为多种类型,如基态到激发态的跃迁、激发态到基态的跃迁、共振跃迁等。
例如,在光谱学中,原子或分子的吸收或发射光谱对应着能级跃迁过程。
2. 电子能带跃迁电子能带跃迁是指电子从一个能带跃迁到另一个能带的过程。
它是固体物理学中的重要概念,用于解释许多材料的电学、光学、磁学性质。
在固体中,能带是一系列连续的能量态,其中每个能量态都容量一定数量的电子。
当固体受到外界电场或光照射时,电子会被激发到高能量带,从而发生能带跃迁。
能带跃迁可以简化为晶格中的电子的发生运动,这种运动是非常微妙和复杂的。
因此,掌握电子能带跃迁的相关知识点对于理解固体物理学和材料学是至关重要的。
3. 宏观物体相变宏观物体的相变是指物质从一种相转变为另一种相的过程。
例如,水从液态向气态转变为蒸汽,这是一种相变。
相变是由外部能量的变化引起的。
当物质吸收外部热源时,其分子运动开始加速,相应的能量梯度中的键变得更容易断裂,分子之间的联系变得松散,从而导致相变的发生。
宏观物体的相变包括固态到液态、液态到气态、固态到气态等不同类型。
在 thermodynamics 中,相变被描述为物质焓的变化。
因此,对相变的几种类型以及相变焓变等相关知识点的理解对于物理学和化学学科都是至关重要的。
结论在这篇文章中,我们讨论了三种不同类型的物理跃迁及其相关知识点。
原子跃迁几个问题剖析2

关于原子跃迁几个问题的剖析原子的能级跃迁及其光子的发射和吸收在近几年高考中经常考查,本文就原子跃迁时应注意几个问题作一一阐述例析,希望能帮助到同学们的学习。
一、跃迁与电离的区别根据玻尔理论,原子从低能级向高能级跃迁时,吸收一定能量的光子.只有当光子的能量hv满足hv= En- Em时,才能被某一个原子吸收而从底能级Em跃迁到高能级En;而当光子的能量hv大于或小于En- Em时都不能被原子吸收而跃迁。
当原子从高能级向低能级跃迁时,减小的能量以光子的向外辐射,所辐射光子的能量恰好等于发生跃迁的两能级间的能量差,即hv= En- Em。
欲想把处于某一定态的原子的电子电离出去,就需要给原子一定的能量.如使氢原子从n=l的基态上升到n=∞的状态,这个能量的大小至少为13.6ev,即处于基态的氢原子的电离能E=13.6ev。
当入射光的能量大于13.6ev时,光子一定被原子吸收而电离。
例1一个氢原子处于基态,用光子能量为15 ev的电磁波去照射该原子,问能否使氢原子电离?若能使之电离,则电子被电离后所具有的动能是多大?解析处于基态的氢原子的电离能E=13.6ev, 15 ev>13.6ev,氢原子能被电离;电离后电子具有动能为1.4eV。
二、一群氢原子和一个氢原子跃迁出现的情况氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上.氢原子的半径公式r n=n2r1(n=1,2,3…),其中r1为基态半径,r1=0.53×10-10m. 氢原子的能级公式En=E1/n2(n=1,2,3…), 其中E1基态能量,E1=13.6ev。
电子在r1的轨道上运动时,原子的能量为E1,如此往下类推。
当电子从某一轨道跃迁到另一个轨道时,原子的能量发生变化,即原子发生跃迁。
如当一个氢原子从n=3的状态跃迁到发n=1的状态时,可能发生从n=3→l的跃迁,也可能发生从n=3→2→1的跃迁,但只能处于其中的一种,故发出谱线最多的是从n=3→2→1的跃迁,即可能的光谱线数最多为n-1。
高中物理:原子的能级跃迁及其光子的发射和吸收

1 、注意是“一个原子”还是“一群原子”氢原子核外只有一个电子,这个电子在某个时刻只能处在某个可能的定态上,在某段时间内,由某一定态跃迁到另一个定态时——可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。
例 1、 有一群处于量子数 n =4 的激发态中的氢原子,在它们发光的过程中,发出的光谱线共有几条?解析:即发出的光谱线共有 6 条,能级跃迁如图 1 所示。
点评:处于量子数为的激发态的大量氢原子,发生能级跃迁可能发射不同频率的光谱线条数,可用组合数计算。
根据玻尔的氢原子理论,当原子从低能级向高能级跃迁时,必须吸收光子(或吸收能量)才能实现。
相反,当原子从高能级向低能级跃迁时,必须辐射光子才能实现。
不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差,欲想把处于某一定态的原子的电子电离出去,就需要给原子一定的能量。
如使氢原子从 n =1 的基态跃迁到的状态,这个能量的大小至少为 13.6eV 。
例 2、 氢原子的能级图如图2所示,欲使一处于基态的氢原子释放出一个电子而变成氢离子,该氢原子需要吸收的能量至少是( )A. 13.6eVB. 10.20eVC. 0.54eVD. 27.20eV解析:氢原子释放出一个电子而变成氢离子即电离过程,相当于原子从 n =1 的能级踵迁到的能级,电子所需的能量至少为。
考生误选 B 是因为只注意到跃迁而忽略了电离的要求。
所以本题的正确选项为 A 。
3 、注意是“直接跃迁”还是“间接跃迁”原子从一种定态跃迁到另一种定态时,有的可能是直接跃迁,有的可能是间接跃迁。
两种情况下辐射(或吸收)光子的可能性及其频率可能不同。
例 3、氢原子在某三个相邻能级之间跃迁时,可发出三种不同波长的辐射光。
已知其中的两个波长分别为,且 ,则另一个波长可能是( )A.B.C.D.解析:假定该相邻三个能级的量子数为 K 、 L 、 M ,则其中一种可能是如图3 甲所示,,则另一种光子的波长关系式应为故,选项 D 正确;另一种可能是如图 3 乙所示,则另一种光子的波长关系式应为故,选项 C 正确;不难证明,若情况如图 3 丙所示,,选项D 正确。
原子能级跃迁
原子能级跃迁问题的探讨常杰摘要本文章主要通过文献分析的方法,对原子能级跃迁问题知识进行了分析与讨论,分别从物理概念、物理定律和物理计算等方面对原子能级跃迁问题进行了讨论分析,从而更好的促进相关教学。
关键词大学物理中学物理原子能级能级跃迁原子能级跃迁氢原子能级一、引言1、问题的提出原子能级跃迁是物理学的重要内容。
无论是在中学物理学习中还是在大学物理学习中原子能级跃迁都有着重要的地位。
原子能级跃迁是物理知识的重要组成部分,无论是必修还选修教材中都是教学中的重点。
而且对学生知识考核中原子能级跃迁也是必考内容,在物理考试中有着重要的地位。
同样原子能级跃迁还是大学物理的必修内容,是大学生必备的物理知识之一,也是大学生进一步深造重要阶梯。
总结出大学物理中原子能级跃迁对中学物理原子能级跃迁的提高,不仅有利于大学生对大学物理原子能级跃迁知识有一个整体把握,而且更有利于教师对中学物理原子能级跃迁教学有更好的把握,更好的指导物理教学,对中学物理原子能级跃迁部分教学的提高有深刻的指导意义。
2、研究现状及分析关于原子能级跃迁问题已有过相关研究,但是,主要注重如何完成知识的衔接,让学生能够完成知识上的过渡,进入下一阶段的学习过程,没有系统总结分析其中物理内容上的拓展与提高,因此有必要对其进行分析,完成对原子能级知识上的全面的总结。
二、光子使原子能级跃迁的条件玻尔的原子模型是以三条基本假设为墓础,其中频率假设认为,原子从一个定态 (设能量数值为E n1)跃迁到另一定态 (设能量数值为E n2)时,它辐射或吸收一定频率的光子,辐射或吸收光子的能量数值不是任意的,而是由这两个定态的能级之差决定.即光子的频率v满足hv=E n1-E n2值得指出:光子是一份一份的,光子的能量hv也是一份一份的.每一份光子能量都是不“分割”的,原子所吸收的光子频率只有满足hv=E n1-E n2时,才能使原子吸收光子从基态或较低能级的激发态跃迁到较高能级的激发态,这就是说,要用光子使原子受激发而发生跃迁,就必须使光子具有的能量hv等于发生跃迁的两个能级的能量差值;光子的能最大于或小于这个能量差值均不能使原子跃迁.三、电子是原子能级跃迁的条件夫克兰一赫兹实验结果指出:当电子速度增大到一定数值时,与原子的碰撞是非弹性的.电子把一部分能量传递给原子,使原子发生能级跃迁.当然,原子从电子所具有的能量中获取能量不是任意的,所能获取的能量值就等于发生跃迁的原子两个能级的能盆之差值.从力学角度分析,粒子间(如电子与原子、原子与原子等)的碰撞是要满足力学上的能量守恒和动量守恒原理的.因此二粒子间的碰撞一般不能把它们的全部动能转变为内部能量的,碰后仍会保留一部分动能以满足动盘守恒关系.但当电子与静止的原子碰撞时,由于电子质量很小,有可能差不多使电子的全部动能转变为原子的内能.所以从动能的利用来考虑,用电子碰撞来激发原子比用原子或分子来碰撞更有利.需要指出:电子与光子不同,光子的能量是一份一份的,而电子的能量不是一份一份的.只要人射电子的能量大于或等于原子两个能级的能量之差值(即E=E n1-E n2)均可使原子发生能级跃迁。
原子结构知识:原子结构中的跃迁选择定则
原子结构知识:原子结构中的跃迁选择定则原子结构是物质存在的最基本单位,其内部结构的研究一直是物理学、化学等学科领域中的重要研究内容。
不同的原子结构之间存在着能量差异,原子内部能级跃迁是物质中能量转移的基本过程之一。
跃迁选择定则是描述原子内部能级跃迁的规律性以及其对物质的光谱、激光等应用具有指导作用的基本规则。
本文将从跃迁选择定则的背景、基本概念、提出者和应用等方面进行详细介绍。
一、背景原子内部能级跃迁是物质中分子、原子、离子等基本粒子之间实现能量传递的基本方式之一。
人们对原子中的能级跃迁有很早的认识,在19世纪中叶,光谱学成为了物理学和化学研究领域中的热门课题,研究人员通过对光谱的观察和分析,得出了有关原子的很多性质和规律。
在20世纪初期,玻尔、赫兹和朗道等人的工作奠定了原子结构研究的基础,他们的研究成果揭示了原子内部的电子分布情况和能级结构。
但是,对于原子内部能级跃迁的机制和规律性还知之甚少。
直到20世纪中叶,海森堡、泡利、范德华尔和斯特克等人的研究,才从不同的角度阐述了原子内部能级跃迁中的选择规律,提出了跃迁选择定则。
二、概念跃迁选择定则是描述原子内部能级跃迁所遵循的规律和选择性的定律,是研究原子光谱和激光等物理现象的基础理论规律。
通俗地说,跃迁选择定则是描述电子在一个能级跃迁到另一个能级时所需要遵循的规则。
跃迁选择定则涉及到原子内部随机电子分布的量子力学概念,体现在光谱和激光的发射和吸收中。
跃迁选择定则根据电子在能级之间跃迁时改变的角动量、自旋、电偶极矩、偶极矩等量的多少作为判断标准。
在选择定则中,根据电子跃迁时角动量守恒、自旋守恒、电偶极矩守恒、偶极矩守恒原则,来判断电子跃迁是否会发生、跃迁后的光谱线强度大小和波长位置等变化。
三、提出者跃迁选择定则是由德国物理学家海森堡等人在1925年提出的。
由于该理论的提出者中海森堡是一个独立思考者,不惯常规思维,所以在当时这个定则被认为是非常奇特的。
原子结构知识:原子能级上的跃迁
原子结构知识:原子能级上的跃迁原子结构是物理学中非常重要的一个概念,同时也是化学、材料科学等诸多学科的基础。
原子的能级结构是原子结构的重要组成部分,对于研究原子的性质和行为非常关键。
本文将围绕原子能级上的跃迁展开讨论,探究其中的原理、特性和应用。
一、能级之间的跃迁在原子结构中,由于能量的离散性,原子的电子在特定的能级上运动。
能级越高,电子的能量也就越大。
当一个原子吸收能量,其电子会从一个低能级跃迁到一个高能级,反之,当一个原子发出能量,其电子会从一个高能级跃迁到一个低能级。
这种能级之间的跃迁是原子结构中最基本的过程,它不仅反映了电子的能量状态,也反映了原子的内部结构。
为了更好地理解能级之间的跃迁,我们可以考虑一个简单的例子:氢原子。
氢原子的电子在基态时处于最低能级,也就是1s能级。
当氢原子吸收足够的能量时,电子就会从1s能级跃迁到更高的能级,比如2s能级或2p能级。
这个过程是可逆的,也就是说,当电子回到1s能级时,会放出与吸收时相等的能量。
这种能级之间的跃迁是原子吸收或发出光子的基础。
二、激发态和基态当原子吸收能量,其电子跃迁到更高的能级时,原子处于激发态。
相反,当电子从高能级跃迁回低能级时,原子处于基态。
激发态和基态分别对应着原子内部的不同能量状态,它们之间的状态转换是原子运动过程中最基本的一种形式。
基态是原子内部最稳定的状态。
在氢原子中,1s能级上的电子处于其基态,这是氢原子能量最低的状态。
这个状态是非常稳定的,因为任何形式的激发都要消耗一定的能量,只有当电子吸收足够的能量才能够跃迁到更高的能级上。
因此,如果没有外界的干扰,氢原子会一直保持在基态上。
激发态则不同,它是由原子吸收外界能量引起的。
当电子跃迁到更高的能级上时,它就处于激发态。
激发态是一种比基态更高能量的状态,因此它是不稳定的。
当原子处于激发态时,它总是趋向于返回其最低能量的基态。
三、跃迁的能量与频率在能级之间跃迁时,电子所吸收或释放的能量是有限的,这个能量差取决于它从哪一个能级跃迁到哪一个能级。
原子跃迁知识点总结
原子跃迁知识点总结1. 原子结构与能级原子是由原子核和绕核运动的电子组成的,电子围绕原子核运动时,会处在不同的能级上。
这些能级是量子化的,即只有特定的能量值才是允许的,而其他能量值是被禁止的。
能级之间的跃迁对应着电子的能量变化,因而原子跃迁也就是指电子在不同能级之间的能量变化过程。
2. 能级跃迁的基本概念能级跃迁是通过吸收或释放光子的方式完成的。
当电子从一个能级跃迁到另一个能级时,会放出或吸收一个光子,其能量正好等于两个能级之间的能量差。
这种辐射或吸收过程是原子光谱现象的基础,也是原子光谱分析的重要依据。
3. 原子光谱的产生当原子受到能量激发时,其中的电子就会跃迁到更高的能级。
当电子再次返回到低能级时,会释放出一个与跃迁前后能级差相对应的光子,这个光子的频率与波长就与原子的能级结构有关,也就是产生了原子光谱。
原子光谱是一种特征性的光谱,其频带和强度分布都与原子的能级结构和跃迁过程相关。
4. 电子跃迁的类型电子的能级跃迁有两种基本类型,一种是辐射跃迁,即电子由高能级跃迁到低能级,并释放出一个光子;另一种是激发跃迁,即电子由低能级跃迁到高能级,并吸收一个光子。
这两种跃迁类型在原子光谱现象中均有着重要作用。
5. 原子光谱的分析方法原子光谱是一种独特的光谱,由于其频带和强度分布与原子的能级结构、跃迁过程等因素密切相关,因此可以通过分析光谱的波长和强度特征来获取原子的能级信息和其他相关信息。
原子光谱的分析方法主要包括光谱线的观测、光谱线的强度分析、光谱线的频率分析等。
6. 原子光谱在物理、化学和天文学中的应用原子光谱在物理、化学和天文学等领域具有广泛的应用价值。
比如在化学分析中,可以利用原子光谱来识别和测定样品中的元素成分;在物理实验中,可以通过观测原子光谱来研究原子的能级结构和电子跃迁过程;在天文学中,可以通过分析星体的光谱来获取其成分和运动状态等信息。
7. 结语原子跃迁是一种重要的物理现象,它是原子光谱产生的基础,也是原子的能级结构和电子跃迁过程的直接体现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子跃迁时需注意的四个问题
湖北枣阳二中王胜441200
一注意一群原子和一个原子
氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上。
在某段时间内,由某一轨道跃迁到另一个轨道时可能的情况只有一种。
但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现。
例1有一群处于量子数n=4的激发态的氢原子,在它们辐射光子的过程中,发出的光谱线共有几条?答案:6条。
例2 有一个处于量子数n=4的激发态的氢原子,在它向低能级跃迁时,最多可能发出几种频率的光子?答案:3种。
二注意跃迁与电离
根据玻尔理论,当原子从低能态跃迁到高能态时,必须吸收能量才能实现。
相反,当原子从高能态跃迁到低能态时,必须以光子的形式辐射能量才能实现。
不论吸收还是辐射能量,必须等于两能级差。
若想把处于某一定态原子的电子电离出去,就需要给原子一定的能量。
比如使处于n=1能级的氢原子电离,必须吸收至少13.6ev的能量。
例3 用电磁波照射氢原子,使它从E
1的基态跃迁到E
2
的激发态,该电磁波的频率为
多少?答案:ν=(E
2-E
1
)/h
例4 一个氢原子处于基态,用光子能量为15ev的电磁波去照射该原子,问能否使氢原子电离?若能使之电离,则电子被电离后的动能是多大?
答案:氢原子能被电离;
电离后电子具有的动能为1.4ev (15ev-13.6ev=1.4ev)。
三注意间接跃迁与直接跃迁
原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁。
两种情况下辐射或吸收光子的频率可能不同。
例5一个氢原子中的电子从一半径为r
1的轨道直接跃迁到另一半径为r
2
的轨道,已知
r 1>r
2
,则在此过程中
A 原子要发出一系列频率的光子B原子要吸收一系列频率的光子C原子要吸收某一频率的光子D原子要辐射某一频率的光子
答案:D
四注意入射光子和入射电子
若是在光子的激发下,引起的原子跃迁,则必须要求光子的能量等于原子的两个能级差。
若是在电子的碰撞下引起原子的跃迁,则要求电子的能量必须大于或等于原子的两个能级差,这两种情况不同。
例6用12.6ev的光子去轰击处于基态的氢原子样品时,能否引起氢原子的跃迁?
答案:该光子不能引起氢原子的跃迁。
例7用12.6ev的电子去轰击处于基态的氢原子样品时,能否引起氢原子的跃迁?若能跃迁,则可以使氢原子跃迁到哪些能级上?
答案:可以;n=2,n=3。