向量空间的基与维数
7.4 向量空间的基和维数

p.151 习题7.4 (向量空间的基和维数)1, 2 ,3, 4 四题为同类型题. 要做两件事:① 证明是向量空间;② 求基和维数. ① 证明是向量空间,有两种方法:第一是定义法,验证运算,并验证八条性质;第二是子空间法,证明V 是某个已知的向量空间的子空间.② 求基和维数:找出V 中一个向量集,证明线性无关,且V 中每个向量都可由该向量集线性表示,从而该向量集是基,再写出维数.以第4题为例,给出解答. 其余题类似方法解决.4. 设F 是数域, {|Tr()0}n n V A F A ⨯=∈=是F 上向量空间. 证明V 是F 上的向量空间,并求V 的一个基和维数.解:(1) 首先证明V 是F 上的向量空间. 显然,V 是n n F ⨯的非空子集(因为零矩阵的迹为零,故零矩阵0V ∈),我们已经知道,n n F ⨯是F 上的向量空间. 因此,要证明V 是F 上的向量空间,只需证明V 是n n F ⨯的子空间. 对任意,A B V ∈,任意k F ∈,有Tr()Tr()Tr()000A B A B +=+=+=,Tr()Tr()00kA k A k =⋅=⋅=故,A B V kA V +∈ ∈. 因此,V 是n n F ⨯的子空间,当然V 是F 上的向量空间.(2) 求V 的一个基和维数.记1122113311{,,,,|,1,2,,,}nn ij S E E E E E E E i j n i j =- - - = ≠,其中kl E (,1,2,,k l n =)为n 阶基本矩阵,即(,)k l 元为1,其余元素均为0的n 阶方阵. 易知S 中有21n -个n 阶方阵,且这些矩阵的迹都是0,故S V ⊂. 下证向量组S 是V 的一个基:① 设 22112233113311,1,2,,()()(nn nn ij ij i j n i jk E E k E E k E E k E = ≠-+ -+ +-)+=0∑. 注意到等式左边为221212122212nnn n n n nn k k k k k k k k k k ++⎛⎫⎪- ⎪⎪⎪-⎝⎭,故22330,nn k k k = = == 0,,1,2,,,ij k i j n i j = = ≠,所以向量组S 线性无关.② 设()ij A a =是V 中任意给定的向量,则由Tr()0A =知,1122nn a a a =---,这样,22121212221222112233113311,1,2,,()()(nn n n n n nn nn nn ij ij i j n i ja a a a a a a A a a a a E E a E E a E E a E = ≠---⎛⎫⎪ ⎪= ⎪⎪-⎝⎭=-------)+∑表明A 可由向量组S 线性表出.因此,向量组S 是一个基,2dim 1V n =-.6. 设123123(1,0,1,0),(2,1,3,7),(3,1,0,3),(4,3,1,3),(1,0,1,3),αααβββ= =-- =- =-- =- =4(0,1,1,0)F ∈. 令1123,,W ααα=<>, 2123,,W βββ=<>. 求12W W +和12W W 的基与维数.这种题型上学期在第四章中已经做过.解:由1123,,W ααα=<>, 2123,,W βββ=<>,可知,12123123,,,,,W W αααβββ= +<>.()T T T T T T 123123123410100802011301010300,,,,,130111001601073330000011αααβββ--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭(#)由此看出,1232,,,αααβ是123123,,,,,αααβββ的一个极大无关组,且1123368,βααα=-++31322βααβ =-+. 因此,1232,,,αααβ是12W W +的一个基,12dim()4W W +=. 又由(#)看出,12dim 3,dim 3W W = =,所以由维数公式,12dim()3342W W =+-=. 注意到,11231231123836,2W W W W βαααββαα=-∈ -=-∈++从(#)可看出,1β与23ββ-线性无关,因此,132,βββ -为12W W 的一个基.所以,12dim()4W W +=,1232,,,αααβ是12W W +的一个基;12dim()2W W =,132,βββ -是12W W 的一个基.第7题中的S <>表示向量集S 生成的子空间. 如果12,,{},n S ααα=为有限集,则12,,,n S ααα<> = <>;如果S 为无限集,则S <> 表示由S 中任意有限个向量的任意线性组合的全体构成的子空间(本题要求证明这是一个子空间,请自行完成).8. 设F 是数域,m s A F ⨯∈. 证明: 在s n F ⨯中所有满足0AB =的矩阵B 构成s n F ⨯的子空间, 并求该子空间的基与维数.解:(1) 证明{}|0s n F AB W B ⨯=∈ =是s n F ⨯的子空间. (略) (2) 记B 的列向量组为12,,},{n βββ, 当然0AB =⇔0,1,2,,i A i n β= =.考虑齐次线性方程组0AX =. 若rank()A s =,即A 列满秩,则0AX =只有零解,那么满足0AB =的矩阵B 只能是零矩阵,故此时dim 0.W = 若rank()A r s =<,则0AX =有非零解,根据齐次线性方程组解的结构定理,设1,,s r ηη- 是0AX =的一个基础解系. 令()()()11112111,0,,0,0,,,0,,0,,n s n s n s n B B B ηηη⨯⨯⨯= = 0, = ,0,()()()21222222,0,,0,0,,,0,,0,,n s n s n s n B B B ηηη⨯⨯⨯= = 0, = ,0,()()(),1,2,,0,,0,0,,,0,,0,s r s r s r s r s r n s r s n s n s n B B B ηηη------⨯⨯⨯= = 0,= ,0,则以上()s r n -个矩阵构成W 的一个基(请大家自行证明),(dim )W s r n -=.9. 设12,,,s W W W 是数域F (或无限域)上的向量空间V 的s 个非平凡子空间, 证明:存在向量V α∈使得1.si i W α=∈ /进一步证明:如果dim V n =, 则存在V 的基12,,,n ααα使得每一个1.sj i i W α=∈ /证明: (1) 先证明第一个结论.(对s 作数学归纳法)1° 当1s =时,1W 为非平凡子空间,当然向量V α∈使得1W α∉,结论成立.2° 假设结论对1s -个非平凡子空间成立. 现考虑s 个非平凡子空间情形,设12,,,s W W W 是V 的s 个非平凡子空间,由归纳假设,存在向量V β∈,但是11.s i i W β-=∈ /接下来对β分两种情形讨论:如果s W β∉,则1si i W β=∈/,结论得证;如果s W β∈,由于s W 是非平凡子空间,必存在V γ∈,但s W γ∉,现考虑以下s 个不同的向量,,,s βγβγβγ+ 2+ +这s 个向量一定都不在s W 中(因为s W β∈,s W γ∉),另一方面,这s 个向量至少有一个不在11s i i W -= 中,因为如果这s 个向量都在11s i i W -= 中,则必有某两个向量(不妨设,k l βγβγ+ +)会同属于某个子空间j W (11j s ≤≤-),这样()()()j k l k l W ββγβγ-=+- +∈,而0k l -≠,故得到j W β∈,则11s i i W β-=∈,矛盾,因此,至少有某个,比如11s i i m W βγ-=+∈/,这样,向量1si i W m βγ=∈/+,结论得证.综上,本题第一个结论成立.(2) 现证明第二个结论. 由第一个结论,存在1V α∈,但11.si i W α=∈ /又由第一个结论,存在2V α∈,但211s i i W αα=⎛⎫∈>/ ⎪⎭<⎝,这样,12,αα 线性无关. 再由第一个结论,存在3V α∈,但3121,s i i W ααα=⎛⎫∈ >/ <⎪⎝⎭,这样,123,,ααα 线性无关. 如此进行下去,,最后得到n V α∈,但1211,,,s n i n i W αααα-=⎛⎫∈ >/ ⎪⎭<⎝,这样,12,,,n ααα 线性无关,由于dim V n =,所以12,,,n ααα 是V 的一个基,且每个1.sj i i W α=∈ /。
线性代数53向量空间的基和维

例 设A a1(2 2 1)T a2(2 1 2)T a3(1 2 2)T B b1(1 0 4)T b2(4 3 2)T 验证a1 a2 a3是R3的一 个基 并求b1 b2在这个基中的坐标
解 要说明a1, a2, a3是R3的一个基,只要证a1, a2, a3线性无关, 即A E
设b1 x11a1 x21a2 x31a3, b2 x12a1x22a2 x32a3, 则
r1 r2
由基的定义知两组向量组都线性无关,即
r1 s, r2 t 从而 s t
定义 向量空间V 的任一基向量的个数, 称为空间V 的维 (dimension), 记这个数为 dimV
由于Rn有一组明显的自然基,
1 0
0
e1
0,
e2
1,
en
0
0
0
1
故有 dim Rn = n , 即Rn是n维向量空间.
Ax O
的解集 N(A) 是向量空间,现在进一步指出:它的通解中 元素的一般式中所含有任意常数的个数 n- r(A) 就是 N(A) 的维数 dimN(A), 即
dim N( A) n r( A)
dim N( A) dim R( A) n
基础解系就是N(A)的一组基,它们线性无关,并生成N(A).
即
A
y1 y2 y3
B
z1 z2 z3
于是
z1 z2 z3
B1A
y1 y2 y3
这就是从旧坐标到新坐标的坐标变换公式
定理 设b1、…、bs 及 f1、…、ft 是向量空间的任两 组基,则必有 s=t. 证 利用等价向量组 根据向量空间基的定义可知两组基等价的,从而其秩相等:
注 (1)只有零向量的向量空间没有基 规定其维数为0 (2)若把向量空间V看作向量组 则向量空间V的基就是
向量空间的基与维数

向量空间的基与维数结论1 设,当下述三个条件有两条满足时,{}就是V的一个基.(i)零向量可由唯一地线性表示;(ii)V中每个向量都可由唯一地线性表示;(iii).结论 2 设,都是F上向量空间V的子空间. 若,,则,且.例 1 设和都是数域,且,则是上的向量空间.域F是F上向量空间,基是{1},.C是R向量空间,{ 1 , i} 是基,.R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里.令,则F是一个数域,F是Q上的向量空间.1)1,线性无关:设,. 则(否则,,矛盾),因此.2) 1,,线性无关:设,,i=1,2,3 . ( 1 ),两端平方得,由于1,线性无关,故假如,则,且,即. 矛盾.因而故假如,则得,这与是无理数相矛盾. 因而将代入(1),便得这说明1,,线性无关.3) 1,,,线性无关:设,,i=1,2,3,4 . 则有. ( 2 )假如不全为零,则得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得又由1,线性无关得. 这样,我们证得了1,,,线性无关.故{1,,,}是F的一个基..例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间.对任意的正整数n,可证得线性无关:设,使( 3 )取n+1个实数,使a b.由(3)知.即其中而. 用左乘(4)两端,得这说明线性无关.故C[a,b]是R上无限维向量空间.引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明证对s作数学归纳.当s=1 时,结论显然成立.设,且对个V的不等于V的子空间结论成立.下考虑V的子空间,,. 由归纳假设知故存在1) 当时,,故;2) 当时,由于,因此显然,,…,.且存在,使(否则,如果,,…,,, ,,使,,所以,即有,这与矛盾).这样,故例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基.证取V的一个基,令. 对任意从中删去后剩下的个向量生成的V的子空间记为,则由引理知, 故存在令, 中任n个不同的向量线性无关,是V的基.设,有,且中任意n个不同的向量构成V的一个基.对任意,有.这样的子空间共有个. 由引理知存在令. 则||=k+1,且中任意n个不同的向量是V的基.这个过程进行下去,满足条件的无限集S即可找到.另证:设是V的一个基,令令让,,…,F互不相同,则由于其行列式是Vandermonde行列式,即故线性无关,是V的一个基. S中含无穷多个向量.例4设是F上n(>0)维向量空间V的子空间,且i=1,2,3,…,s. 则存在V的一个基,使得该基中每一个向量都不在中.证:对s作数学归纳.当时,取的一个基,,将其扩充为V的一个基. 可证明出线性无关,是V的基,且, i=1,2,…,r,设,且对个V的子空间结论成立. 现考虑V的s个子空间,由归纳假设知存在V的一个基,使1)如果,那么即满足要求;2)如果. 不妨设∈, , 由最多有一个F中的数,使, (否则,如果有两个不同的数, , 使,则,故,矛盾),所以除可能的之外,F 中有非零数,使同理有 F 中非零数,使显然易证线性无关,是V的基,且满足要求.例 5 设W是的由全体形如的向量所生成的子空间, 证明证令(j)是第i行第j列位置元素是1,而其余的个元素全是零的n阶方阵.对, i≠t,对, (j) ∈W.(j)容易验证}是线性无关的(共个向量)故而W中每个矩阵其迹为0. 因此,故引理 设是向量空间V 的子空间,则(i)(ii)例 6 设是F 上向量空间V 的子空间.(i) 证明:(ii)举一个例子,使上述严格不等式成立. 证(i)===(ii) 在中,令1w +2w +3w=(1,0,0),(-1,0,1)),而1w ⋂2w =2w ⋂3w =1w ⋂3w ={0}, 1w ⋂2w ⋂3w =={0},此时∑=31dim i i w =2<3=∑=31dim i i w -()∑≤≤≤⋂nj i jiw w 1dim +dim(1w⋂2w ⋂3w ).例7 设A )(F M m s ⨯∈,B )(F M n m ⨯∈.令0w ={α∈n F ∣AB α=10⨯s },1w = {B α∣α∈0w }, 求证1w 是m F 的子空间,且dim 1w =秩B-秩(AB).证 显然10⨯n ∈0w ,故B 10⨯n =10⨯m ∈1w ,即1w ≠∅, ∀1α,2α∈ 0w ,B 1α,B 2α是1w 的任意向量,∀1α,2α∈F,AB(2211ααa a +)= 2211AB AB ααa a +=0,∴2211ααa a +∈ 0w ,∴B(2211ααa a +)∈1w ⇒2211B B ααa a +∈1w ,因而1w 是m F 的子空间 .01当秩B=秩(AB)时,齐次线性方程组AB 1⨯n X =10⨯s 与B 1⨯n X =10⨯m 同解.因此1w ={0},故dim 1w =0=秩B -秩(AB).02以下我们假设秩B>秩(AB).ABX=0与BX=0不是同解的. 0w ≠{0},1w ≠{0}.)1秩B=n.此时0w ≠{0},设{1β,2β,…t β}为0w 的一个基,其中 t=n- 秩(AB) .则有1w =(B 1β,B 2β,…B t β). 设1b B 1β+2b B 2β+…+t b B t β=0,i b ∈F,i=1,2,…t. 则B(1b 1β+2b 2β+…+t b t β)=0,而BY=0只有零解,故1b 1β+2b 2β+…+t b t β=0, 又1β,2β,…t β线性无关.所以i b =0,i=1,2,…n. 这说明{B 1β,B 2β,…B t β}是1w 的一个基.dim 1w =t=n-秩(AB)=秩B-秩(AB).)2秩B<n.令'0w ={γ∈n F B γ=10⨯m },'0w 是B 1⨯n Y =10⨯m 的解空间,dim '0w =n- 秩B>0.显然'0w ⊆0w .由于我们事先假设了秩B ≠秩(AB),所以'0w ≠0w .设{1β,2β,…P β}是'0w 的一个基. P=n-秩B>0.扩充成0w 的一个基,1β,2β,…P β,1+p β,…,t β, t=n-秩(AB). 而1w =(B 1β,B 2β,…B P β,B 1+p β,…,B t β)= (B 1+p β,…,B t β). 设j j tp j B b β∑+=1=0, j b ∈F, j=p+1,…,t.则B(j j tp j b β∑+=1)=0.即j j tp j b β∑+=1∈'w 故存在1b ,p b b ,...,2∈F ,使j j tp j b β∑+=1=i i pi b β∑=1.i i pi b β∑=1+jjtp j b β)(1∑+=-=0.而1β,2β,…P β,1+p β,…,t β线性无关,所以k b =0,k=1,2,,…,t; 这说明B 1+p β,B 2+p β,…,B t β线性无关,是1w 的一个基. 因此 dim 1w =t-p=[n-秩(AB)]-【n-秩B]= 秩B-秩(AB).例8 设1w ,2w 是向量空间v 的子空间,且dim(1w +2w )=dim(1w ⋂2w )+1 证明,下述两条必有一条成立: (ⅰ) 1w +2w =1w ,1w ⋂2w =2w ; (ⅱ) 1w +2w =2w ,1w ⋂2w =1w .。
4.4向量空间的基和维数

一、向量空间的基与维数 定义4.1 设V为向量空间,若存在1, 2, …, r V.
且满足: (1) 1, 2, …, r 线性无关;
(2) V 中任一向量都可以由1, 2, …, r 线性表示;
则称1, 2, …, r 为V的一组基底,简称基, r 为V的维数,并称 V 为 r 维向量空间。
1
注1: 若将向量空间V看成无穷个向量组成的向
量组,其基就是其极大线性无关组,其规定其维数为0。
2
例如:对于Rn
(1) 基本单位向量组 1 , 2 ,, n 是一组基,称为标 准基。 (2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …,
n = (1, 1,…, 1) 也是基。
3
二、向量在给定基下的坐标
定义4.2 设1, 2, …, n 是向量空间 V 的一组基,
任取 V, 都有
= x11 + x22 + … + xnn
且组合系数 x1, x2, …, xn 唯一,称为向量 在
基 1, 2, …, n 下的坐标,记为 (x1, x2, …, xn)
4
例如:在 R3 中,
= (2, -3, 1)T = 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
5
例
求向量 ( x1 , x2 ,, xm ) 在基
1 (1,0,..., 0), 2 (1,1,..., 0), , m (1,1,...,1)
下的坐标.
6
线性代数—3.3 向量空间

一、向量空间的概念 二、向量空间的基和维数 三、基变换与过渡矩阵
一、向量空间的概念
例1 设 V 为平面上所有起点在定点 O 的向量的集合.
集合 V 具有如下性质: (1) 若 aV, bV, 则 a + bV;
B
a2 a
(2) 若 aV, kR, 则 kaV, 称 V 为平面向量空间.
a 可唯一地表示为 a k1a1 + L + krar
称 (k1, , kr) 为向量 a 在基 a1, , ar 下的坐标.
例4 验证 a1 (1,-1,0)T, a2 (0,1,3)T, a3 (2,1,8)T 为R3 的 一个基, 并求 b1 (5,0,12)T, b2 (9,-7,8)T, b3 (3,1,11)T 在这
O a1 A
uuur uuur a OA + OB k1a1 + k2a2
设 V 中两向量 a1, a2 线性无关, 即 a1, a2 不共线, 则
V {k1a1 + k2a2 | k1,k2 R} 称 V 为由向量组 a1, a2 生成的向量空间.
例2 设 n 元方程组 Ax 0 的解集为 S, 秩 R(A) r < n.
• L(A) 为向量空间V 的子空间的充要条件是 A V . • L(B) 为 L(A) 的子空间的充要条件是向量组 B 可由组 A 线性表示. • L(A) L(B) 的充要条件是向量组 A 与组 B 等价.
例3 由 a1 (1,1,0,0)T, a2 (1,0,1,1)T 所生成的空间记为V1, 而由 b1 (2,-1,3,3)T, b2 (0,1,-1,-1)T 所生成的空间记为V2.
(-1,-4,3), (13,8,-2), (1,1,1)
线性代数N维向量空间基与维数

§ 4.4 向量空间
12 解: 0 1
1 0
1 1 1
1 1 1
初等 行变换
1 0 0
2 1 0
1 1 0
1 1 0
可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基.
注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1Biblioteka 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
向量空间的基和维数

向量空间的基和维数 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2)V 中的每个向量都可由 1,2 ,K ,r 线性表示;
则向量组 1,2 ,K ,r 就称为向量空间V 的一个基,基中 所含向量的个数 r 称为向量空间的维数.
等价并且线性无关的向量组所含向量个数相同.
0 0
0 0
0 0 0
1
0 0
1,2,4 线性无关;
k11 k2 2 k33 k44 V, V中的每个向量都可由1,2,4 线性表示.
1,2,4 为V的一个基, V的维数是3.
线 性 代 数 11
总结 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2)V 中的每个向量都可由 1,2 ,K ,r 线性表示;
线性代数
向量空间的基和维数 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2) V 中的每个向量都可由 1,2 ,K ,r 线性表示;
则向量组 1,2 ,K ,r 就称为向量空间V 的一个基,基中 所含向量的个数 r 称为向量空间的维数.
等价并且线性无关的向量组所含向量个数相同.
V {0}维数为0.
线性代数
向量空间的基和维数
例 下述向量组是Rn 的一组基.
1
0
0
0
0
1
0
0
1
=
0
,
2
=
0
,
3
=
1
,L
,
n
=
0
M
M
M
向量空间的基与维数

例6
向 量
解析几何
线性代数
既有大小又有方向的量
有次序的实数组成的数组
几何形象: 可随意 平行移动的有向线段
代数形象: 向量的 坐 标 表 示 式
坐标系
四、向量与向量空间
空 间
解析几何
线性代数
点空间:点的集合
向量空间:向量的集合
坐标系
代数形象: 向量空 间 中 的 平 面
说明
2. 维向量的集合是一个向量空间,记作 .
1.集合 对于加法及乘数两种运算封闭指
一、向量空间的概念
定义1 设 为 维向量的集合,如果集合 非空, 且集合 对于加法及乘数两种运算封闭,那么就称 集合 为向量空间.
.
,
3
3
是一个向量空间
维向量的全体
R
例1
例2 判别下列集合是否为向量空间.
几何形象: 空间 直线、曲线、空间 平面或曲面
一 一 对 应
叫做 维向量空间.
时, 维向量没有直观的几何形象.
叫做 维向量空间 中的 维超平面.
确定飞机的状态,需 要以下6个参数:
飞机重心在空间的位置参数P(x,y,z)
机身的水平转角
机身的仰角
机翼的转角
所以,确定飞机的状态,需用6维向量
m
m
m
m
m
m
l
l
l
l
l
l
L
L
L
L
L
L
例5
定义2 设有向量空间 及 ,若向量空间 , 就说 是 的子空间.
实例
设 是由 维向量所组成的向量空间,
二、子空间
那末,向量组 就称为向量 的一个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量空间的基与维数
结论1 设,当下述三个条件有两条满足时,{}就是V的一个基.
(i)零向量可由唯一地线性表示;
(ii)V中每个向量都可由唯一地线性表示;
(iii).
结论 2 设,都是F上向量空间V的子空间. 若,,则
,且.
例 1 设和都是数域,且,则是上的向量空间.
域F是F上向量空间,基是{1},.
C是R向量空间,{ 1 , i} 是基,.
R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里.
令,则F是一个数域,F是Q上的向量空间.
1)1,线性无关:
设,. 则(否则,,矛盾),因此.
2) 1,,线性无关:
设,,i=1,2,3 . ( 1 )
,
两端平方得
,
由于1,线性无关,故
假如,则,且,即. 矛盾.
因而故假如,则得,这与是无理数相矛盾. 因而
将代入(1),便得这说明1,,线性无关.
3) 1,,,线性无关:
设,,i=1,2,3,4 . 则有
. ( 2 )
假如不全为零,则
得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得
又由1,线性无关得. 这样,我们证得了1,,,线性无关.
故{1,,,}是F的一个基..
例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间.
对任意的正整数n,可证得线性无关:
设,使( 3 )
取n+1个实数,使
a b.
由(3)知
.
即
其中
而
. 用左乘(4)两端,得
这说明线性无关.
故C[a,b]是R上无限维向量空间.
引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明
证对s作数学归纳.
当s=1 时,结论显然成立.
设,且对个V的不等于V的子空间结论成立.
下考虑V的子空间,,. 由归纳假设知故存在
1) 当时,,故;
2) 当时,由于,因此显然,,…,.且存在,
使(否则,如果,,…,,, ,
,使,,所以,即有,这与矛盾).这样
,故
例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基.
证取V的一个基,令. 对任意从中删
去后剩下的个向量生成的V的子空间记为,则
由引理知, 故存在
令, 中任n个不同的向量线性无关,是V的基.
设,有,且中任意n个不同的向量构成V的一个基.
对任意,有
.
这样的子空间共有个. 由引理知
存在
令. 则||=k+1,且中任意n个不同的向量是V的基.
这个过程进行下去,满足条件的无限集S即可找到.
另证:设是V的一个基,令
令
让,,…,F互不相同,则
由于
其行列式是Vandermonde行列式,即
故线性无关,是V的一个基. S中含无穷多个向量.
例4设是F上n(>0)维向量空间V的子空间,且i=1,2,3,…,s. 则存在V的一个基,使得该基中每一个向量都不在中.
证:对s作数学归纳.
当时,取的一个基,,将其扩充为V的一个基. 可证明出线性无关,是V的基,且, i=1,2,…,r,
设,且对个V的子空间结论成立. 现考虑V的s个子空间,
由归纳假设知存在V的一个基,使
1)如果,那么即满足要求;
2)如果. 不妨设∈, , 由
最多有一个F中的数,使, (否则,如果有两个不同的数, , 使,则,故,矛盾),所以除可能的
之外,F 中有非零数,使同理有 F 中非零数,使
显然易证线
性无关,是V的基,且满足要求.
例 5 设W是的由全体形如的向量所生成的子空间, 证明
证
令
(j)
是第i行第j列位置元素是1,而其余的个元素全是零的n阶方阵.
对, i≠t,
对, (j) ∈W.
(j)
容易验证}是线性无关的(共个向量)
故而W中每个矩阵其迹为0. 因此,故
引理 设是向量空间V 的子空间,则
(i)
(ii)
例 6 设是F 上向量空间V 的子空间.
(i) 证明:
(ii)举一个例子,使上述严格不等式成立. 证
(i)
=
=
=
(ii) 在
中,令
1w +2w +3w
=(1,0,0),(-1,0,1)),而1w ⋂2w =2w ⋂3w =1w ⋂3w ={0}, 1w ⋂2w ⋂3w =={0},此时
∑=31
dim i i w =2<3=∑=3
1
dim i i w -()∑≤≤≤⋂n
j i j
i
w w 1dim +dim(1
w ⋂2
w
⋂3w ).
例7 设A )(F M m s ⨯∈,B )(F M n m ⨯∈.令0w ={α∈n F ∣AB α=10⨯s },1w = {B α∣α∈0w }, 求证1w 是m F 的子空间,且dim 1w =秩B-秩(AB).
证 显然10⨯n ∈0w ,故B 10⨯n =10⨯m ∈1w ,即1w ≠∅, ∀1α,2α∈ 0w ,B 1α,B 2α是1w 的任意向量,
∀1α,2α∈F,
AB(2211ααa a +)= 2211AB AB ααa a +=0,
∴2211ααa a +∈ 0w ,
∴B(2211ααa a +)∈1w ⇒2211B B ααa a +∈1w , 因而1w 是m F 的子空间 .
01当秩B=秩(AB)时,齐次线性方程组AB 1⨯n X =10⨯s 与B 1⨯n X =10⨯m 同解.因此1w ={0},故dim 1w =0=秩
B -秩(AB).
02以下我们假设秩B>秩(AB).ABX=0与BX=0不是同解的. 0w ≠{0},1w ≠{0}.
)1秩B=n.
此时0w ≠{0},设{1β,2β,…t β}为0w 的一个基,
其中 t=n- 秩(AB) .则有
1w =(B 1β,B 2β,…B t β). 设1b B 1β+2b B 2β+…+t b B t β=0,i b ∈F,i=1,2,…t. 则B(1b 1β+2b 2β+…+t b t β)=0,而BY=0只有零解,
故1b 1β+2b 2β+…+t b t β=0, 又1β,2β,…t β线性无关.所以i b =0,i=1,2,…n. 这说明{B 1β,B 2β,…B t β}是1w 的一个基.
dim 1w =t=n-秩(AB)=秩B-秩(AB).
)2秩B<n.
令'
0w ={γ∈n F B γ=10⨯m },'0w 是B 1⨯n Y =10⨯m 的解空间,dim '
0w =n- 秩B>0.
显然'0w ⊆0w .
由于我们事先假设了秩B ≠秩(AB),所以'0w ≠0w .设{1β,2β,…P β}是'0
w 的一个基. P=n-秩B>0. 扩充成0w 的一个基,1β,2β,…P β,1+p β,…,t β, t=n-秩(AB). 而
1w =(B 1β,B 2β,…B P β,B 1+p β,…,B t β)= (B 1+p β,…,B t β). 设
j j t
p j B b β∑
+=1
=0, j b ∈F, j=p+1,…,t.
则B(
j
j
t
p j b β
∑+=1
)=0.
即
j
j t
p j b β
∑+=1
∈'0
w 故存在1b ,p b b ,...,2∈F ,使
j
j
t
p j b β∑+=1
=i
i
p
i b β
∑=1
.
i
i p
i b β∑=1
+j
j
t
p j b β
)(1
∑+=-=0.
而1β,2β,…P β,1+p β,…,t β线性无关,所以k b =0,k=1,2,,…,t; 这说明B 1+p β,B 2+p β,…,B t β线性无关,是1w 的一个基. 因此 dim 1w =t-p=[n-秩(AB)]-【n-秩B]= 秩B-秩(AB).
例8 设1w ,2w 是向量空间v 的子空间,且dim(1w +2w )=dim(1w ⋂2w )+1 证明,下述两条必有一条成立: (ⅰ) 1w +2w =1w ,1w ⋂2w =2w ; (ⅱ) 1w +2w =2w ,1w ⋂2w =1w .。