贵州省毕节市2020年数学中考模拟试卷(4月)及参考答案

合集下载

2020年贵州省毕节市中考数学试卷含答案解析送九年级数学重要定理公式复习讲义

2020年贵州省毕节市中考数学试卷含答案解析送九年级数学重要定理公式复习讲义

2020年贵州省毕节市中考数学试卷一、选择题(本题共15小题,每题3分,共45分)1.3的倒数是()A.﹣3 B.C.﹣D.32.中国的陆地面积约为9600000平方公里,9600000用科学记数法表示为()A.0.96×107B.9.6×107C.9.6×106D.96.0×1053.下列各图是由5个大小相同的小立方体搭成的几何体,其中主视图和左视图相同的是()A.B.C.D.4.下列图形中是中心对称图形的是()A.平行四边形B.等边三角形C.直角三角形D.正五边形5.已知=,则的值为()A.B.C.D.6.已知a≠0,下列运算中正确的是()A.3a+2a2=5a3B.6a3÷2a2=3aC.(3a3)2=6a6D.3a3÷2a2=5a57.将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°8.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数356789人数132211则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,59.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或1010.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)11.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm12.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元13.如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为()A.πB.πC.πD.π+14.已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是()A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>015.如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c二、填空题(本题5小题,每题5分,共25分)16.(5分)不等式x﹣3<6﹣2x的解集是.17.(5分)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD 上的动点,则AP+PE的最小值是.18.(5分)关于x的一元二次方程(k+2)x2+6x+k2+k﹣2=0有一个根是0,则k的值是.19.(5分)一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象的两个交点分别是A(﹣1,﹣4),B(2,m),则a+2b=.20.(5分)如图,Rt△ABC中,∠BAC=90°,AB=6,sin C=,以点A为圆心,AB长为半径作弧交AC于点M,分别以点B,M为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN与BC相交于点D,则AD的长为.三、解答题(本题7小题,共80分)21.(8分)计算:|﹣2|+(π+3)0+2cos30°﹣()﹣1﹣.22.(8分)先化简,再求值:(﹣)÷,其中x=1+.23.(10分)我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体有运动的情况进行抽样调查,在校园内随机抽取男女生各25人,调查情况如下表:是否参加体育运动男生女生总数是2119m否46n对男女生是否参加体育运动的人数绘制了条形统计图如图(1),在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).根据以上信息解答下列问题:(1)m=,n=,a=;(2)将图(1)所示的条形统计图补全;(3)这次调查中,参加体育运动,且主要运动项目是球类的共有人;(4)在这次调查中,共有4名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)24.(12分)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?25.(12分)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:26.(14分)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.(16分)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.2020年贵州省毕节市中考数学试卷参考答案与试题解析一、选择题(本题共15小题,每题3分,共45分)1.3的倒数是()A.﹣3 B.C.﹣D.3解:∵3×=1,∴3的倒数是.故选:B.2.中国的陆地面积约为9600000平方公里,9600000用科学记数法表示为()A.0.96×107B.9.6×107C.9.6×106D.96.0×105解:将9600000用科学记数法表示为:9.6×106.故选:C.3.下列各图是由5个大小相同的小立方体搭成的几何体,其中主视图和左视图相同的是()A.B.C.D.解:依次画出题设选项的主视图和左视图如下:故选:D.4.下列图形中是中心对称图形的是()A.平行四边形B.等边三角形C.直角三角形D.正五边形解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:A.5.已知=,则的值为()A.B.C.D.解:∵=,∴设a=2x,b=5x,∴==.故选:C.6.已知a≠0,下列运算中正确的是()A.3a+2a2=5a3B.6a3÷2a2=3aC.(3a3)2=6a6D.3a3÷2a2=5a5解:由于a和a2不是同类项,不能合并,故选项A错误;6a3÷2a2=3a,计算正确,故选项B正确;(3a3)2=9a6≠6a6,故选项C错误;3a3÷2a2=1.5a≠5a5,故选项D错误.故选:B.7.将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°解:如图所示,∵EF∥BC,∴∠F=∠BGD=45°,又∵∠ADG是△BDG的外角,∠B=30°,∴∠ADG=∠B+∠BGD=30°+45°=75°,故选:B.8.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数356789人数132211则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,5解:由表可知,这10个数据中数据5出现次数最多,所以众数为5,∵中位数为第5、6个数据的平均数,且第5、6个数据均为6,∴这组数据的平均数为=6,故选:A.9.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或10解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.10.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故选:C.11.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:AC===10(cm),∴BD=10cm,DO=5cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=OD=2.5cm,故选:D.12.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.13.如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为()A.πB.πC.πD.π+解:连接CD、OC、OD.∵C,D是以AB为直径的半圆周的三等分点,∴∠AOC=∠COD=∠DOB=60°,AC=CD,∵弧CD的长为,∴=,解得:r=1,又∵OA=OC=OD,∴△OAC、△OCD是等边三角形,在△OAC和△OCD中,,∴△OAC≌△OCD(SSS),∴S阴影=S扇形OCD==.故选:A.14.已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是()A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>0解:∵x1,x2是一元二次方程ax2+bx+c=0的两个根,∴x1、x2是抛物线与x轴交点的横坐标,∵抛物线的对称轴为x=2,∴=2,即x1+x2=4>0,故选项A错误;∵x1<x2,﹣1<x1<0,∴﹣1<,解得:4<x2<5,故选项B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故选项C错误;∵抛物线开口向下,∴a<0,∵抛物线的对称轴为x=2,∴﹣=2,∴b=﹣4a>0,∴ab<0,故选项D错误;故选:B.15.如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.二、填空题(本题5小题,每题5分,共25分)16.(5分)不等式x﹣3<6﹣2x的解集是x<3.解:不等式x﹣3<6﹣2x,移项得:x+2x<6+3,合并得:3x<9,解得:x<3.故答案为:x<3.17.(5分)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD 上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE最小,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.18.(5分)关于x的一元二次方程(k+2)x2+6x+k2+k﹣2=0有一个根是0,则k的值是1.解:把x=0代入方程得:k2+k﹣2=0,分解因式得:(k﹣1)(k+2)=0,可得k﹣1=0或k+2=0,解得:k=1或k=﹣2,当k=﹣2时,k+2=0,此时方程不是一元二次方程,舍去;则k的值为1.故答案为:1.19.(5分)一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象的两个交点分别是A(﹣1,﹣4),B(2,m),则a+2b=﹣2.解:把A(﹣1,﹣4)代入反比例函数y=(k≠0)的关系式得,k=﹣1×(﹣4)=4,∴反比例函数的关系式为y=,当x=2时,y=m==2,∴B(2,2),把A(﹣1,﹣4),B(2,2)代入一次函数y=ax+b得,,∴a+2b=﹣2,故答案为:﹣2.20.(5分)如图,Rt△ABC中,∠BAC=90°,AB=6,sin C=,以点A为圆心,AB长为半径作弧交AC于点M,分别以点B,M为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN与BC相交于点D,则AD的长为.解:如图,过D作DE⊥AB于E,DF⊥AC于F,由题可得,AD平分∠BAC,∠BAC=90°,∴四边形AEDF是正方形,∴DE=DF,∠BAD=45°=∠ADE,∴AE=DE=AF=DF,∵∠BAC=90°,AB=6,sin C=,∴BC=10,AC=8,设AE=DE=AF=DF=x,则BE=6﹣x,CF=8﹣x,∵∠B=∠FDC,∠BDE=∠C,∴△BDE∽△DCF,∴=,即=,解得x=,∴AE=,∴Rt△ADE中,AD=AE=,故答案为:.三、解答题(本题7小题,共80分)21.(8分)计算:|﹣2|+(π+3)0+2cos30°﹣()﹣1﹣.解:原式=2+1+2×﹣3﹣2=2+1+﹣3﹣2=﹣.22.(8分)先化简,再求值:(﹣)÷,其中x=1+.解:原式=[﹣]•=•=•=,当x=1+时,原式==+1.23.(10分)我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体有运动的情况进行抽样调查,在校园内随机抽取男女生各25人,调查情况如下表:是否参加体育运动男生女生总数是2119m否46n对男女生是否参加体育运动的人数绘制了条形统计图如图(1),在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).根据以上信息解答下列问题:(1)m=40,n=10,a=40;(2)将图(1)所示的条形统计图补全;(3)这次调查中,参加体育运动,且主要运动项目是球类的共有18人;(4)在这次调查中,共有4名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)解:(1)根据题意得:m=21+19=40,n=4+6=10,a=100﹣7.5﹣7.5﹣45=40;(2)补全条形统计图,如图所示:(3)根据题意得:40×45%=18(人),则这次调查中,参加体育运动,且主要运动项目是球类的共有18人;(4)列表如下:甲乙丙丁甲﹣﹣﹣(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)﹣﹣﹣(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)﹣﹣﹣(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)﹣﹣﹣根据表格得:所有等可能的情况数有12种,其中恰好选出甲和乙去参加讲座的情况有2种,则P(恰好选出甲和乙去参加讲座)==.故答案为:(1)40;10;40;(3)18.24.(12分)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?解:(1)设每个乙种书柜的进价为x元,∴每个甲种书柜的进价为1.2x元,∴=﹣6,解得:x=300,经检验,x=300是原分式方程的解,答:每个甲种书柜的进价为360元.(2)设甲书柜的数量为y个,∴乙书柜的数量为(60﹣y)个,由题意可知:60﹣y≤2y,∴20≤y<60,设购进书柜所需费用为z元,∴z=360y+300(60﹣y)∴z=60y+18000,∴当y=20时,z有最小值,最小值为19200元,答:甲、乙书柜进货数量分别为20和40时,所需费用最少.25.(12分)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:x2+5x+6=(x+3)(x+2)解:(1)如图(2),大正方形的面积为一个正方形的面积与三个小长方形面积之和,即x2+5x+6,同时大长方形的面积也可以为(x+3)(x+2),所以x2+5x+6=(x+3)(x+2);故答案为:x2+5x+6=(x+3)(x+2);(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,∴AB==5,∵S△ABC=AC•BC=AB•CH,∴CH===;答:CH的长为;(3)证明:如图(4),∵OM⊥AB,ON⊥AC,CH⊥AB,垂足分别为点M,N,H,∴S△ABC=S△ABO+S△AOC,∴AB•CH=AB•OM+AC•ON,∵AB=AC,∴CH=OM+ON.即OM+ON=CH.26.(14分)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.(1)证明:连结OF,BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线DF是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD∽△ACD,∴=,∵BD=2,OF=OB=4,∴OD=6,AD=10,∴AC===,∴CD===,∵AC∥OF,OA=4,∴=,即=,解得:CF=,∴tan∠AFC===.27.(16分)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为y=﹣x2+x+4,顶点坐标为(4,);(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于点C(﹣2,0),且经过点B(8,4),∴,解得:,∴抛物线解析式为:y=﹣x2+x+4,∵:y=﹣x2+x+4=﹣(x﹣4)2+,∴顶点坐标为(4,)故答案为:y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由如下:∵抛物线y=﹣x2+x+4与y轴交于点A,∴点A(0,4),即OA=4,∵点B(8,4),∴AB∥x轴,AB=8,∴AB⊥AO,∴∠OAB=90°,∴∠OAM+∠BAM=90°,∵AM⊥OB,∴∠BAM+∠B=90°,∴∠B=∠OAM,∴tan∠B=tan∠OAM===,∵将Rt△OMA沿y轴翻折,∴∠NAO=∠OAM,∴tan∠NAO=tan∠OAM=,∵OC=2,OA=4,∴tan∠CAO==,∴tan∠CAO=tan∠NAO,∴∠CAO=∠NAO,∴AN,AC共线,∴点N在直线AC上;(3)∵点B(8,4),点O(0,0),∴直线OB解析式为y=x,∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴AF∥OB,∴直线AF的解析式为:y=x+4,联立方程组:解得:或∴点F(,),∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴Rt△OMA≌Rt△DEF,OA=DF,OA∥DF∴S△OMA=S△DEF,四边形OAFD是平行四边形,∵四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,∴四边形AMEF的面积=S四边形OAFD=4×=22.九年级(上)重要的数学公式定理1.一元二次方程求根公式:一元二次方程ax2+bx+c=0(a≠0)的两根为2.一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2= ,x1·x2=一元二次方程x2+px+q=0(a≠0)的两根为x1,x2,则x1+x2= ,x1·x2=3.两点间距离公式:两点A(x1,y1),B(x2,y2)之间的距离AB=特别地,若x1=x2,则AB= ,若y1=y2,则AB= , 若O为坐标原点,则OA=4.中点坐标公式:两点A(x1,y1),B(x2,y2)的中点C的坐标为5.点到直线的距离公式:点P(x0,y0)到直线Ax+BY+C=0的距离为6.直线比例系数公式:若两点为A(x1,y1),B(x2,y2),则K AB=7.两直线平行,则K1,K2的关系是8.两直线垂直,则K1,K2的关系是9.二次函数顶点坐标公式:二次函数y=ax2+bx+c的顶点坐标为,对称轴为最大(小)值为10.二次函数y=ax2+bx+c与x轴两交点距离公式二次函数y=ax2+bx+c与x轴两交点A(X1,0),B(x2,0),则AB= ,对称轴为11.平面直角坐标系中三角形面积公式为12.弧长公式为13.扇形面积公式为①②如图,圆锥的侧面积为圆锥的全面积为为r R14.垂径定理15.垂径定理的推论①②③17.圆的两条平行弦18.圆心角定理19.圆心角定理的推论20.圆周角定理21.圆周角定理推论122.圆周角定理推论223.圆内接四边形定理24.切线的判定定理25.切线的性质定理26.切线长定理27.三角形内切圆半径公式,∠BOC=特别地,直角三角形内切圆半径公式28.正n变形中心角公式29.射影定理30.黄金分割比=31.特殊角锐角三角函数sinαcosαtanα30°45°60°36.两角和或差的正切公式。

2020年毕节市中考数学模拟试题与答案

2020年毕节市中考数学模拟试题与答案

2020年毕节市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+12. 论x、y为何有理数,的值均为( )A.正数B.零C.负数D.非负数3.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7 B.17 C.7或17 D.344. 在Rt△ABC中,∠C=900,sinA=0.6,BC=6,则 AB=()A.4B.6C.8D.105.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣86.从上面看如图中的几何体,得到的平面图形正确的是()A. B. C. D.7. 甲乙丙丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙 C.丙 D.丁8. 下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx+12与⊙O交于B.C两点,则弦BC长的最小值()A.24 B.10 C.8 D.2510.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1△内心为I,连接AI并延长交△ABC的外接圆于11.如图,ABCD,则线段DI与DB的关系是()A.DI=DB B.DI>DBC.DI<DB D.不确定12.如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6二、填空题(本题共6小题,满分18分。

2020年毕节市中考数学试卷带答案

2020年毕节市中考数学试卷带答案

2020年毕节市中考数学试卷带答案一、选择题1.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x52.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1063.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.4.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣165.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A .24B .16C .413D .237.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .548.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)9.下列计算错误的是( ) A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.510.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .311.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.16.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.18.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)19.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.20.计算:21(1)211x x x x ÷-+++=________.三、解答题21.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 22.(问题背景)如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由. (学以致用)如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .23.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.24.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.25.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了103a%:实木椅子的销售量比第一月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.3.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.4.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.5.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.C解析:C【解析】【分析】由菱形ABCD 的两条对角线相交于O ,AC=6,BD=4,即可得AC ⊥BD ,求得OA 与OB 的长,然后利用勾股定理,求得AB 的长,继而求得答案. 【详解】∵四边形ABCD 是菱形,AC=6,BD=4, ∴AC ⊥BD ,OA=12AC=3, OB=12BD=2,AB=BC=CD=AD ,∴在Rt △AOB 中,∴菱形的周长为故选C .7.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.8.D解析:D 【解析】 【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D9.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可. 详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0•a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意. 故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S =12.故选B.11.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【详解】试题分析:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BOE=1:2,又∵FM:BM=1:3,∴S△BCM =34S△BCF=34S△BOE∴S△AOE:S△BCM=2:3故④正确;所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质12.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△A OD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:417.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.19.2【解析】由D 是AC 的中点且S△ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =220.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根.22.【问题背景】:EF =BE +FD ;【探索延伸】:结论EF =BE +DF 仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;[探索延伸]延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;[学以致用]过点C 作CG ⊥AD 交AD 的延长线于点G ,利用勾股定理求得DE 的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.23.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.24.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=13-+M(1,1),或当t=333+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M的横坐标为m,则点M的纵坐标为-23m2-13m+2.当△MPQ为等边三角形时,MQ=MP,又∵OP=OQ,∴点M点必在PQ的垂直平分线上,∴∠POM=12∠POQ=45°,∴△MCO为等腰直角三角形,CM=CO,∴m=-23m2-13m+2,解得m1=1,m2=﹣3.∴M点可能为(1,1)或(﹣3,﹣3).①如图,当M的坐标为(1,1)时,则有PC=1﹣t,MP2=1+(1﹣t)2=t2﹣2t+2,PQ2=2t2,∵△MPQ为等边三角形,∴MP=PQ,∴t2﹣2t+2=2t2,解得t 1=1+3-,t 2=13--(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ , ∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.25.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a 的值为15.【解析】【分析】(1)设普通椅子销售了x 把,实木椅子销售了y 把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】(1)设普通椅子销售了x 把,实木椅子销售了y 把,依题意,得:900180400272000x y x y +=⎧⎨+=⎩, 解得:400500x y =⎧⎨=⎩. 答:普通椅子销售了400把,实木椅子销售了500把.(2)依题意,得:(180﹣30)×400(1+103a%)+400(1﹣2a%)×500(1+a%)=251000,整理,得:a2﹣225=0,解得:a1=15,a2=﹣15(不合题意,舍去).答:a的值为15.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键.。

贵州省毕节市2020年中考数学试题(解析版)

贵州省毕节市2020年中考数学试题(解析版)
【详解】解:如图,
∵ ,
∴∠1=∠F=45°,
又∵ ,
∴∠B=30°,
∴ ,
故选:B.
【点睛】此题主要考查了平行线的性质以及三角形外角性质的应用,关键是掌握两直线平行,同位角相等.
8.某校男子篮球队 名队员进行定点投篮练习,每人投篮 次,将他们投中的次数进行统计,制成下表:
投中次数
人数
则这 名队员投中次数组成的一组数据中,众数和中位数分别为()
∵点M到x轴的距离为5,到y轴的距离为4,
∴|y|=5,|x|=4.
又∵点M在第二象限内,
∴x=-4,y=5,
∴点M的坐标为(-4,5),
故选C.
【点睛】本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;第二象限点的坐标符号(-,+).
11.如图,在矩形 中,对角线 , 相交于点 ,点 , 分别是 , 的中点,连接 ,若 , ,则 的长是()
A. B. C. D.
【答案】D
【解析】
【分析】
由勾股定理求出BD的长,根据矩形的性质求出OD的长,最后根据三角形中位线定理得出EF的长即可.
10.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.
【详解】解:设点M的坐标是(x,y).
故选D.
【点睛】本题考查了比例的性质.
6.已知 ,下列运算中正确的是()

贵州省毕节市2020年中考数学四月模拟试卷(含答案)

贵州省毕节市2020年中考数学四月模拟试卷(含答案)

贵州省毕节市2020年中考数学四月模拟试卷一.选择题(满分75分,每小题5分)1.一个数的相反数是它本身,则这个数为()A.0 B.1 C.﹣1 D.±12.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④3.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1011B.49.95×1010C.0.4995×1011D.4.995×10104.下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6 5.如图,P是∠ABC内一点,点Q在BC上,过点P画直线a∥BC,过点Q画直线b∥AB,若∠ABC=115°,则直线a与b相交所成的锐角的度数为()A.25°B.45°C.65°D.85°6.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A.y1 =y2B.y1 <y2C.y1 >y2D.y1 ≥y27.已知AB=2,点P是线段AB上的黄金分割点,且AP>BP,则AP的长为()A.B.C.D.8.某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了折线统计图,下列说法正确的是()A.极差是47 B.中位数是58C.众数是42 D.极差大于平均数9.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE =BF;④AE=BG.其中正确的个数是()A.1个B.2个C.3个D.4个10.在平面直角坐标系xOy中,点A的坐标是(﹣2,0),点B的坐标是(0,6),将线段AB绕点B逆时针旋转90°后得到线段A′B.若反比例函数y=的图象恰好经过A′点,则k的值是()A.9 B.12 C.15 D.2411.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°12.如图,半径为5的⊙O中,CD是⊙O的直径,弦AB⊥CD于E,AB=8,F是上一点,连接AF,DF,则tan∠F的值为()A.B.C.D.213.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t 的值是()A.2 B.2或2.25 C.2.5 D.2或2.514.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2 ﹣1 0 1 2 …y…0 4 6 6 4 …从上表可知,下列说法中,错误的是()A.抛物线与x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的15.如图,在平行四边形ABCD中,AB=4,AD=5,∠B=60°,以点B为圆心,BA为半径作圆,交BC边于点E,连接ED,则图中阴影部分的面积为()A.9﹣B.9﹣C.9D.9﹣二.填空题(满分25分,每小题5分)16.因式分解:ab2﹣2ab+a=.17.已知一元二次方程(x﹣1)(x﹣3)=5的两个实数根分别为x1,x2.则抛物线y=(x ﹣x1)(x﹣x2)+5与x轴的交点坐标为.18.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是.19.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F 两点,若AB=2EF,则k的值是.20.已知菱形ABCD在平面直角坐标系的位置如图所示,A(1,1),B(6,1),AC=4,点P是对角线AC上的一个动点,E(0,3),当△EPD周长最小时,点P的坐标为.三.解答题21.计算:()﹣1﹣|﹣|+3tan60°﹣(π﹣2020)0.22.先化简,再求值:(2﹣)÷,其中x=2.23.今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.24.如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,则当∠EBA=°时,四边形BFDE是正方形.25.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A 地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙(km)与所用时间x(min)的关系的大致图象;离A地的距离y乙(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?26.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC 交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.27.在平面直角坐标系xOy中(如图),已知经过点A(﹣3,0)的抛物线y=ax2+2ax﹣3与y轴交于点C,点B与点A关于该抛物线的对称轴对称,D为该抛物线的顶点.(1)直接写出该抛物线的对称轴以及点B的坐标、点C的坐标、点D的坐标;(2)联结AD、DC、CB,求四边形ABCD的面积;(3)联结AC.如果点E在该抛物线上,过点E作x轴的垂线,垂足为H,线段EH交线段AC于点F.当EF=2FH时,求点E的坐标.参考答案一.选择题1.解:一个数的相反数是它本身,则这个数为0.故选:A.2.解:正方体左视图为正方形,也属于长方形,球左视图为圆;圆锥左视图是等腰三角形;圆柱左视图是长方形,故选:B.3.解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.4.解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.5.解:∵b∥AB,∴∠1+∠B=180°,∵∠ABC=115°,∴∠1=65°,∵a∥BC,∴∠2=∠1=65°,故选:C.6.解:∵直线y=kx+b中k<0,∴函数y随x的增大而减小,∴当x1<x2时,y1>y2.故选:C.7.解:由于P为线段AB=2的黄金分割点,且AP>BP,则AP=×2=﹣1.故选:B.8.解:A、极差=83﹣28=55≠47,错误;B、中位数是(58+58)÷2=58,正确;C、众数是58,错误;D、平均数=,错误;故选:B.9.解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.10.解:如图,线段AB绕点B逆时针旋转90°后得到线段A′B.则A′点的坐标为(6,4),∵反比例函数y=的图象恰好经过A′点,∴k=6×4=24.故选:D.11.解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选:B.12.解:连接OB、BD,如图,∵CD是⊙O的直径,弦AB⊥CD,∴AE=BE=AB=4,在Rt△OBE中,OE==3,在Rt△BDE中,tan∠DBE===2,∵∠F=∠ABD,∴tan∠F=2.故选:D.13.解:设经过t小时两车相距50千米,根据题意,得120t+80t=450﹣50,或120t+80t=450+50,解得t =2,或t =2.5.答:经过2小时或2.5小时相距50千米.故选:D .14.解:当x =﹣2时,y =0,∴抛物线过(﹣2,0),∴抛物线与x 轴的一个交点坐标为(﹣2,0),故A 正确;当x =0时,y =6,∴抛物线与y 轴的交点坐标为(0,6),故B 正确;当x =0和x =1时,y =6,∴对称轴为x =,故C 错误;当x <时,y 随x 的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D 正确;故选:C .15.解:过A 作AF ⊥BC 于F ,则∠AFB =90°,∵AB =4,∠B =60°,∴AF =AB ×sin ∠B =2,∵四边形ABCD 是平行四边形,AB =4,AD =5,∴BC =AD =5,∵AB =BE ,∴CE =5﹣4=1,∴阴影部分的面积S =S 平行四边形ABCD ﹣S 扇形ABE ﹣S △CDE=5×﹣﹣=9﹣π,故选:A.二.填空题16.解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.17.解:∵一元二次方程(x﹣1)(x﹣3)=5的两个实数根分别为x1、x2,∴抛物线y=(x﹣1)(x﹣3)﹣5与x轴交于点(x1,0)、(x2,0),∴y=(x﹣1)(x﹣3)﹣5=(x﹣x1)(x﹣x2),∴y=(x﹣x1)(x﹣x2)+5=(x﹣1)(x﹣3),∴抛物线y=(x﹣x1)(x﹣x2)+5与x轴的交点坐标为(1,0)、(3,0).故答案为:(1,0)、(3,0).18.解:∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:.故答案为:19.解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,由直线y=﹣x+2可知A点坐标为(2,0),B点坐标为(0,2),OA=OB=2,∴△AOB为等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E 点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故答案为.20.解:连接ED,如图,∵点D关于AC的对称点是点B,∴DP=BP,∴EB即为EP+DP最短,即此时△EPD周长最小,连接BD交AC于M,过M作MF⊥AB于F,∵四边形ABCD是菱形,∴AM=AC=,AC⊥BD,∴BM==,∴MF=,∴AF=,∵A(1,1),B(6,1),∴AB∥x轴,∴直线AB与x轴间的距离是1,∴M点的纵坐标为2+1=3,∴M(5,3),∴直线AC的解析式为:,∵E(0,3),B(6,1),∴直线BE的解析式为:y=,解得,所以点P的坐标为(3,2).故答案为:(3,2)三.解答题21.解:原式==22.解:(2﹣)÷====,当x=2时,原式=.23.解:(1)21÷35%=60户,60﹣9﹣21﹣9=21户,故答案为:60,补全条形统计图如图所示:(2)1500×=750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,==,∴P(选中e)24.(1)证明:∵四边形ABCD是菱形,∴AB=CB,∴∠BAC=∠BCA,∴180°﹣∠BAC=180°﹣∠BCA,即∠BAE=∠BCF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS);(2)解:若∠ABC=40°,则当∠EBA=25°时,四边形BFDE是正方形.理由如下:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∠ABO=∠ABC=20°,∵AE=CF,∴OE=OF,∴四边形BFDE是平行四边形,又∵AC⊥BD,∴四边形BFDE是菱形,∵∠EBA=25°,∴∠OBE=25°+20°=45°,∴△OBE是等腰直角三角形,∴OB=OE,∴BD=EF,∴四边形BFDE是矩形,∴四边形BFDE是正方形;故答案为:25.25.解:(1)根据图象可知,甲走2.4km 用了6min ,从而速度为2.4÷6=0.4km /min ;(2)如图:(3)设甲的函数的表达式为y 甲=kx ,把x =6,y =2.4代入求得k =0.4,故函数表达式为y 甲=0.4x ,把x =3代入y =0.4x ,求得y =1.2,设乙的函数表达式为y 乙=kx +b ,把x =0,y =0.6;x =3,y =1.代入求得k =0.2,b =0.6,故函数表达式为y 乙=0.2x +0.6,把y =2.4代入y 乙=0.2x +0.6得x =9,所以乙在第9分钟到达B 地.(4)①相遇前是y 乙﹣y 甲=0.2即0.2x +0.6﹣0.4x =0.2,解得x =2,所以在第2分钟两人相距0.2km ;②相遇后是y 甲﹣y 乙=0.2即0.4x ﹣(0.2x +0.6)=0.2,解得x =4,所以在第4分钟两人相距0.2km ,③把y =2.2代入y 乙=0.2x +0.6得x =8,所以第8分钟时两人相距0.2km .综上,相距0.2km 时,时间为2分钟、4分钟或8分钟.26.解:(1)如图,连接OE ,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.27.解:(1)∵该抛物线的对称轴为直线x==﹣1,而点A(﹣3,0),∴点B的坐标为(1,0),∵c=﹣3,故点C的坐标为(0,﹣3),∵函数的对称轴为x=﹣1,故点D的坐标为(﹣1,﹣4);(2)过点D作DM⊥AB,垂足为M,则OM=1,DM=4,AM=2,OB=1,∴,∴,∴,∴;(3)设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,将点A的坐标代入抛物线表达式得:9a﹣6a﹣3=0,解得:a=1,故抛物线的表达式为:y=x2+2x﹣3,设点E(x,x2+2x﹣3),则点F(x,﹣x﹣1),则EF=(﹣x﹣1)﹣(x2+2x﹣3)=﹣x2﹣3x,FH=x+3,∵EF=2FH,∴﹣x2﹣3x=2(x+3),解得:x=﹣2或﹣3(舍去﹣3),故m=﹣2,故点E的坐标为:(﹣2,﹣3).。

2020年贵州省毕节市中考数学模拟试卷

2020年贵州省毕节市中考数学模拟试卷

2020年贵州省毕节市中考数学模拟试卷一、选择题(共15小题;共45分)1. 8的倒数是( )A. −8B. 8C. −18D. 182. 截至2020年3月28日,全世界新冠肺炎确诊病例已超过51万例,将510000用科学记数法表示为( )A. 0.51×106B. 5.1×106C. 5.1×105D. 51×1043. 与如图所示的三视图对应的几何体是( )A. B.C. D.4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5. 如果3x=2y(x,y均不为零),那么(x\y)的值是( )A. 32B. 23C. 25D. 356. 计算(2x)3÷x的结果正确的是( )A. 8x2B. 6x2C. 8x3D. 6x37. 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87∘,∠DCE=121∘,则∠E的度数是( )A. 28∘B. 34∘C. 46∘D. 56∘8. 在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是( )A. 22个、20个B. 22个、21个C. 20个、21个D. 20个、22个9. 若一个等腰三角形的两边长分别是2和5,则它的周长为( )A. 12B. 9C. 12或9D. 9或710. 在直角坐标平面内,如果点A向右平移1个单位,再向下平移2个单位后正好与原点O重合,则点A的坐标是( )A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)11. 如图所示,在矩形ABCD中,点E是对角线AC,BD的交点,点F是边AD的中点且AB=8,BC=6,则△DEF的周长是( )A. 10B. 12C. 14D. 2412. 元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A. 1600元B. 1800元C. 2000元D. 2100元13. 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内.这张圆形纸片“不能接触到的部分”的面积是( )A. a2−πB. (4−π)a2C. πD. 4−π14. 在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3( )A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=015. 如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD的面积的( )A. 15B. 14C. 13D. 310二、填空题(共5小题;共20分)16. 不等式x−3<6−2x的解集是.17. 如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.18. 关于x的一元二次方程(k+2)x2+6x+k2+k−2=0有一个根是0,则k的值是.19. 一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象的两个交点分别是A(−1,−4),B(2,m),则a+2b=.20. 如图,在△ABC中,AD,BE分别是BC,AC边上的高,AD,BE相交于点H,则图中相似的三角形共有对.三、解答题(共7小题;共85分) 21. 计算:(π−3)0+6cos30∘−√12−(−12)−1.22. 计算下列各题:(1)(x 2−4x+4x 2−4−x x+2)÷x−1x+2;(2)(3xx−1−xx+1)⋅x 2−1x.23. 为迎接 2020 年第 35 届全国青少年科技创新大赛,某学校举办了 A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题.(1)本次参加比赛的学生人数是 名; (2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角 α 的度数;(4)在 C 组最优秀的 3 名同学(1 名男生 2 名女生)和 E 组最优秀的 3 名同学(2 名男生 1 名女生)中,各选 1 名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是 1名男生 1 名女生的概率.24. 某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的 1.5倍,并且乙厂单独完成 60 万只口罩的生产比甲厂单独完成多用 5 天. (1)求甲、乙厂每天分别可以生产多少万只口罩?(2)该地委托甲、乙两厂尽快完成 100 万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?25. 如图,△ABC中,∠ABC=90∘,AC=25cm,BC=15cm.(1)设点P在AB上,若∠PAC=∠PCA.求AP的长;(2)设点M在AC上.若△MBC为等腰三角形,求AM的长.26. 如图,点A,B,C在⊙O上,D是弦AB的中点,点E在AB的延长线上,连接OC,OD,CE,∠CED+∠COD=180∘.(1)求证:CE是⊙O切线;(2)连接OB,若OB∥CE,tan∠CEB=2,OD=4,求CE的长.27. 如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(−2,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式及其顶点D的坐标;(2)求△BCD的面积;(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).答案第一部分1. D2. C 【解析】将510000用科学记数法表示为5.1×105.3. B 【解析】从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.4. B 【解析】A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:B.5. B【解析】两边都除以3y,得到xy =23,故选:B.6. A7. B 【解析】如图,延长DC交AE于F.∵AB∥CD,∠BAE=87∘,∴∠CFE=87∘,又∵∠DCE=121∘,∴∠E=∠DCE−∠CFE=121∘−87∘=34∘.8. C 【解析】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数是20和22,那么由中位数的定义可知,这组数据的中位数是21.9. A10. B11. B 【解析】∵矩形ABCD,AB=8,BC=6,∴DB=10,∵点E是对角线AC,BD的交点,点F是边AD的中点,∴EF=12AB=4,∴△DEF的周长=4+5+3=12.12. A 【解析】设它的成本是x元,由题意得:2200×80%−x=160,解得:x=1600.13. D14. B 【解析】选项B正确.理由:∵M1=1,M2=0,∴a2−4=0,b2−8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=12b2,对于y3=x2+cx+4,则有Δ=c2−16=14b4−16=14(b4−64)=14(b2+8)(b2−8)<0,∴M3=0,∴选项B正确.15. B第二部分16. x<3【解析】不等式x−3<6−2x,移项得:x+2x<6+3,合并得:3x<9,解得:x<3.故答案为:x<3.17. 2√5【解析】如图,连接CE交BD于点P,连接AP.∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE最小,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90∘,∴CE=√BE2+BC2=2√5,∴AP +PE 的最小值是 2√5. 18. 1【解析】把 x =0 代入方程得:k 2+k −2=0, 分解因式得:(k −1)(k +2)=0, 可得 k −1=0 或 k +2=0, 解得:k =1 或 k =−2,当 k =−2 时,k +2=0,此时方程不是一元二次方程,舍去; 则 k 的值为 1. 19. −2【解析】把 A (−1,−4) 代入反比例函数 y =kx (k ≠0) 的关系式得,k =−1×(−4)=4,∴ 反比例函数的关系式为 y =4x,当 x =2 时,y =m =42=2, ∴B (2,2),把 A (−1,−4),B (2,2) 代入一次函数 y =ax +b 得,{−a +b =−4,2a +b =2,∴a +2b =−2. 20. 4 第三部分21.原式=1+6×√32−2√3+2=√3+3.22. (1) −2x−1. (2) 2x +4. 23. (1) 80(2)(3) α=1680×360∘=72∘. (4) 列表如下:得到所有等可能的情况有 9 种,其中满足条件的有 5 种:(C 女1,E 男1),(C 女2,E 男1),(C 女1,E 男2),(C 女2,E 男2),(C 男,E 女). ∴ 所选两名同学中恰好是 1 名男生 1 名女生的概率是 59.24. (1)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只.依题意,得:60 x −601.5x=5.解得:x=4.经检验,x=4是原方程的解,且符合题意,∴甲厂每天可以生产口罩:1.5×4=6(万只).答:甲、乙厂每天分别可以生产6万和4万只口罩.(2)设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100.解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.25. (1)∵△ABC中,∠ABC=90∘,AC=25cm,BC=15cm,∴AB=2−BC2=√252−152=20,∵∠PAC=∠PCA,∴PA=PC,设PA=PC=x,则PB=20−x,在Rt△PBC中,PB2+BC2=PC2,即(20−x)2+152=x2,解得x=1258,即PA=1258.(2)∵△MBC为等腰三角形,∴①当BC=CM时,此时有,∴AM=AC−CM=25−15=10;②当BC=BM时,此时如图过B作BN⊥AC,∴S△ABC=12AC⋅BN=12⋅AB⋅BC,∴BN=12,∴BN2+CN2=BC2,即122+CN2=152,∴CN=9,∴CM=2CN=18,∴AM=25−18=7;③当BM=CM时,∴∠MBC=∠MCB,又∠MBC+∠ABM=90∘,∠MCB+∠BAC=90∘,∴∠BAC=∠ABM,∴AM=BM,∴AM=CM=12AC=252.26. (1)如图1,∵D是弦AB的中点,OD过圆心,∴OD⊥AB,即∠ODB=90∘,∵在四边形ODEC中,∠CED+∠COD=180∘,∴∠OCE=90∘,又∵OC是⊙O的半径,∴CE是⊙O切线.(2)延长CO,EA交于点F,如图2,∵OB∥CE,∴∠BOF=∠ECO=90∘,∠1=∠E,在Rt△ODB中,tan∠1=ODBD=2,OD=4,∴BD=2,OB=2√5,在Rt△BOF中,tan∠1=OFOB=2,第11页(共11 页) ∴OF =2OB =4√5,∵OB ∥CE ,∴△BOF ∽△ECF ,∴OB CE =OF CF ,即 2√5CE =√54√5+2√5,∴CE =3√5.27. (1) 将 A ,B 的坐标代入抛物线的解析式中,得:{4a −2b +8=0,16a +4b +8=0, 解得 {a =−1,b =2.∴ 抛物线的解析式为:y =−x 2+2x +8=−(x −1)2+9,顶点 D (1,9).(2) 如图 1,画出图象的对称轴直线 x =1,连接 CD ,BD ,BC ,对称轴与 BC 交于点 H .∵ 抛物线的解析式为 y =−x 2+2x +8,当 x =0 时,y =8,∴C (0,8),设直线 BC 的解析式为 y =mx +n .将 B (4,0),C (0,8) 代入解析式得:{4m +n =0,n =8, 解得 {m =−2,n =8.∴ 直线 BC 的解析式为 y =−2x +8,∴ 直线和抛物线对称轴的交点 H 的坐标为 (1,6),∴S △BDC =S △BDH +S △DHC =12×3×1+12×3×3=6.(3) 抛物线最多向上平移 72 个单位长度.。

2020届贵州省毕节市中考数学模拟试卷有答案(Word版)(加精)

2020届贵州省毕节市中考数学模拟试卷有答案(Word版)(加精)

机密★启用前毕节市初中毕业生学业(升学)统一考试试卷数 学注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。

2.答题时,卷Ⅰ必须使用2B 铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚。

3.所有题目必须在答题卡上作答,在试卷上答题无效。

4.本试题共6页,满分150分,考试用时120分钟。

5.考试结束后,将试卷和答题卡一并交回。

卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.下列各数中,无理数为( ) A. 0.2 B. C. D. 22.2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为( )A.61015.1⨯B. 610115.0⨯ B.4105.11⨯ D. 51015.1⨯3. 下列计算正确的是( )A. 933a a a =⋅B. 222)(b a b a +=+C. 022=÷a aD.632)(a a =4.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A. 3个B. 4个C. 5个D. 6个(第4题图)5.对一组数据:-2,1,2,1,下列说法不正确的是( )A. 平均数是1B. 众数是1C. 中位数是1D. 极差是46.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A. 55°B. 125°C. 135°D. 140°7.关于x 的一元一次不等式的解集为想4,则m 的值为( )A. 14B. 7C. -2D. 28.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的的数量约为( )A. 1250条B. 1750条C. 2500条D.5000条9.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为( ) A. 1 B. 3 C. 4 D. 510.选手 甲 乙 丙 丁方差 0.023 0.018 0.020 0.021则这10A. 甲 B. 乙 C. 丙 D. 丁11.把直线向左平移1个单位,平移后直线的关系式为( )A.y=2x-2B.y=2x+1C.y=-2xD. y=2x+212.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠CAB=30°,则∠BAD 为( )A. 30°B. 50°C. 60°D. 70°13.如图,Rt △ABC 中,∠ACB=90°,斜边AB=9,D 为AB 的中点,F 为CD 上一点,且CF=CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A. 6B. 4C. 7D. 1214.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠EAF=45°将△ABE 绕点A 顺时针旋转90°,使点E 落在点E '处,则下列判断不正确的是( )A. △AEE '等腰直角三角形B. AF 垂直平分EE 'C. △E 'EC ∽△ AFDD. △AE 'F 是等腰三角形15.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( )A.340B.415 C. 524D.6(第15题图)卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式:=+-22882y xy x .17.正六边形的边长为8cm,则它的面积为2cm .18.如图,已知一次函数)0(3≠-=k kx y 的图象与x 轴,y 轴分别交于A,B 两点,与反比例函数)0(12>=x xy 交于C 点,且AB=AC,则k 的值为. 19.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整) 如下:根据图中信息,该足球队全年比赛胜了场.20.观察下列运算过程:计算:1022221+⋅⋅⋅+++.解:设,2221102+⋅⋅⋅+++=S ①①⨯2得 ,222221132+⋅⋅⋅+++=s ②② - ① 得.1211-=s所以,.12222111102-=+⋅⋅⋅+++ 运用上面的计算方法计算:=+⋅⋅⋅+++201723331. 三、解答题(本大题共7小题,各题分值见题号后,共80分.请解答在答题卡相应题号后,应写出必要的文字说明、证明过程或演算步骤)21.(本题8分)计算:.)1(60tan 32)2()33(201702-+︒+---+--π22.(本题8分)先化简,再求值:,1)2412(2222xx x x x x x x ÷+-+-+-且x 为满足23<<-x 的整数.23.(本题10分)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.ABCD 中 过点A 作AE ⊥DC ,垂足为E ,连接BE ,F 为BE 上一点,且∠AFE=∠D.(1)求证:△ABF ∽△BEC ;(2)若AD =5,AB =8,54sin =D ,求AF 的长。

2020年贵州省毕节市中考数学试卷和答案解析

2020年贵州省毕节市中考数学试卷和答案解析

2020年贵州省毕节市中考数学试卷和答案解析一、选择题(本题共15小题,每题3分,共45分)1.(3分)3的倒数是()A.﹣3B.C.﹣D.3解析:根据乘积是1的两个数互为倒数计算即可得解.参考答案解:∵3×=1,∴3的倒数是.故选:B.点拨:本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)中国的陆地面积约为9600000平方公里,9600000用科学记数法表示为()A.0.96×107B.9.6×107C.9.6×106D.96.0×105解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.【解答】解:将9600000用科学记数法表示为:9.6×106.故选:C.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各图是由5个大小相同的小立方体搭成的几何体,其中主视图和左视图相同的是()A.B.C.D.解析:此题为简单组合体的三视图,只需依次分析并判断各选项的主视图及左视图即可求出正确答案.【解答】解:依次画出题设选项的主视图和左视图如下:故选:D.点拨:此题主要考查了组合体三视图,注意分析基本体之间上下、左右、前后位置关系与形成三视图后的位置关系之间的联系.4.(3分)下列图形中是中心对称图形的是()A.平行四边形B.等边三角形C.直角三角形D.正五边形解析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:A.点拨:此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.5.(3分)已知=,则的值为()A.B.C.D.解析:直接利用已知用同一未知数表示出a,b的值,进而代入化简即可.【解答】解:∵=,∴设a=2x,b=5x,∴==.故选:C.点拨:此题主要考查了比例的性质,正确用同一未知数表示出各数是解题关键.6.(3分)已知a≠0,下列运算中正确的是()A.3a+2a2=5a3B.6a3÷2a2=3aC.(3a3)2=6a6D.3a3÷2a2=5a5解析:利用整式的加法、除法、积和幂的乘方法则,直接计算得结果.【解答】解:由于a和a2不是同类项,不能合并,故选项A错误;6a3÷2a2=3a,计算正确,故选项B正确;(3a3)2=9a6≠6a6,故选项C错误;3a3÷2a2=1.5a≠5a5,故选项D错误.故选:B.点拨:本题考查了整式的除法、合并同类项、幂的乘方和积的乘方.题目难度不大,掌握整式的运算法则是解决本题的关键.7.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°解析:依据平行线的性质,即可得到∠BGD的度数,再根据三角形外角的性质,即可得到∠ADG的度数.【解答】解:如图所示,∵EF∥BC,∴∠F=∠BGD=45°,又∵∠ADG是△BDG的外角,∠B=30°,∴∠ADG=∠B+∠BGD=30°+45°=75°,故选:B.点拨:本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.8.(3分)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数356789人数132211则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6B.2,6C.5,5D.6,5解析:根据众数和中位数的定义求解可得.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5,∵中位数为第5、6个数据的平均数,且第5、6个数据均为6,∴这组数据的中位数为=6,故选:A.点拨:本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13B.17C.13或17D.13或10解析:等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.点拨:本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.10.(3分)在平面直角坐标系中,第二象限内有一点M,点M到x 轴的距离为5,到y轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)解析:根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.【解答】解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故选:C.点拨:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;第二象限(﹣,+).11.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm解析:根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,根据勾股定理求出AC,进而求出BD、OD,最后根据三角形中位线求出EF的长即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:AC===10(cm),∴BD=10cm,DO=5cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=OD=2.5cm,故选:D.点拨:本题考查了勾股定理,矩形性质,三角形中位线的应用,三角形的中位线平行于第三边,并且等于第三边的一半.12.(3分)由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元解析:设该商品的原售价为x元,根据成本不变列出方程,求出方程的解即可得到结果.【解答】解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.点拨:此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.13.(3分)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为()A.πB.πC.πD.π+解析:连接OC、OD,根据C,D是以AB为直径的半圆周的三等分点,可得∠COD=60°,△OCD是等边三角形,将阴影部分的面积转化为扇形OCD的面积求解即可.【解答】解:连接CD、OC、OD.∵C,D是以AB为直径的半圆周的三等分点,∴∠AOC=∠COD=∠DOB=60°,AC=CD,∵弧CD的长为,∴=,解得:r=1,又∵OA=OC=OD,∴△OAC、△OCD是等边三角形,在△OAC和△OCD中,,∴△OAC≌△OCD(SSS),∴S阴影=S扇形OCD==.故选:A.点拨:本题考查了扇形面积的计算,解答本题的关键是将阴影部分的面积转化为扇形OCD的面积,难度一般.14.(3分)已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是()A.x1+x2<0B.4<x2<5C.b2﹣4ac<0D.ab>0解析:利用函数图象分别得出抛物线与x轴交点的横坐标的关系,进而判断四个结论得出答案.【解答】解:∵x1,x2是一元二次方程ax2+bx+c=0的两个根,∴x1、x2是抛物线与x轴交点的横坐标,∵抛物线的对称轴为x=2,∴=2,即x1+x2=4>0,故选项A错误;∵x1<x2,﹣1<x1<0,∴﹣1<,解得:4<x2<5,故选项B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故选项C错误;∵抛物线开口向下,∴a<0,∵抛物线的对称轴为x=2,∴﹣=2,∴b=﹣4a>0,∴ab<0,故选项D错误;故选:B.点拨:主要考查二次函数与一元二次方程之间的关系,会利用对称轴的值求抛物线与x轴交点的横坐标间的数量关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.15.(3分)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c解析:过点C作CE⊥AD于E,则四边形ABCE是矩形,得出AB=CE,易证△CPD是等边三角形,得CD=DP,∠PDC=60°,由AAS证得△EDC≌△APD,得出CE=AD,即可得出结果.【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.点拨:本题考查了矩形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握矩形的判定与性质和全等三角形的判定与性质是解题的关键.二、填空题(本题5小题,每题5分,共25分)16.(5分)不等式x﹣3<6﹣2x的解集是x<3.解析:不等式移项,合并同类项,把x系数化为1,即可求出解.【解答】解:不等式x﹣3<6﹣2x,移项得:x+2x<6+3,合并得:3x<9,解得:x<3.故答案为:x<3.点拨:此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.17.(5分)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解析:连接CE交BD于点P,连接AP,根据正方形的对称性得到AP=CP,此时AP+PE最小值等于CE的长,利用勾股定理求出CE的长即可得到答案.【解答】解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE最小,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.点拨:此题考查正方形的性质:四条边都相等,四个角都是直角以及正方形的对称性质,还考查了勾股定理的计算.依据正方形的对称性,连接CE交BD于点P时AP+PE有最小值,这是解题的关键.18.(5分)关于x的一元二次方程(k+2)x2+6x+k2+k﹣2=0有一个根是0,则k的值是1.解析:把x=0代入方程计算,检验即可求出k的值.【解答】解:把x=0代入方程得:k2+k﹣2=0,分解因式得:(k﹣1)(k+2)=0,可得k﹣1=0或k+2=0,解得:k=1或k=﹣2,当k=﹣2时,k+2=0,此时方程不是一元二次方程,舍去;则k的值为1.故答案为:1.点拨:此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.19.(5分)一次函数y=ax+b(a≠0)的图象与反比例函数y=(k ≠0)的图象的两个交点分别是A(﹣1,﹣4),B(2,m),则a+2b =﹣2.解析:将点A坐标代入可确定反比例函数的关系式,进而求出点B 坐标,把点A、点B坐标代入一次函数的关系式,即可求出结果.【解答】解:把A(﹣1,﹣4)代入反比例函数y=(k≠0)的关系式得,k=﹣1×(﹣4)=4,∴反比例函数的关系式为y=,当x=2时,y=m==2,∴B(2,2),把A(﹣1,﹣4),B(2,2)代入一次函数y=ax+b得,,∴a+2b=﹣2,故答案为:﹣2.点拨:本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用的方法.20.(5分)如图,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以点A为圆心,AB长为半径作弧交AC于点M,分别以点B,M 为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN 与BC相交于点D,则AD的长为.解析:过D作DE⊥AB于E,DF⊥AC于F,设AE=DE=AF=DF=x,则BE=6﹣x,CF=8﹣x,依据∠B=∠FDC,∠BDE=∠C,可得△BDE∽△DCF,依据相似三角形对应边成比例,即可得到AE的长,进而得出AD的长.【解答】解:如图,过D作DE⊥AB于E,DF⊥AC于F,由题可得,AD平分∠BAC,∠BAC=90°,∴四边形AEDF是正方形,∴DE=DF,∠BAD=45°=∠ADE,∴AE=DE=AF=DF,∵∠BAC=90°,AB=6,sinC=,∴BC=10,AC=8,设AE=DE=AF=DF=x,则BE=6﹣x,CF=8﹣x,∵∠B=∠FDC,∠BDE=∠C,∴△BDE∽△DCF,∴=,即=,解得x=,∴AE=,∴Rt△ADE中,AD=AE=,故答案为:.点拨:此题主要考查了基本作图以及相似三角形的性质,正确运用相似三角形的性质列出比例式是解题关键.三、解答题(本题7小题,共80分)21.(8分)计算:|﹣2|+(π+3)0+2cos30°﹣()﹣1﹣.解析:直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.【解答】解:原式=2+1+2×﹣3﹣2=2+1+﹣3﹣2=﹣.点拨:此题主要考查了实数运算,正确化简各数是解题关键.22.(8分)先化简,再求值:(﹣)÷,其中x=1+.解析:直接利用分式的混合运算法则将分式分别化简得出答案.【解答】解:原式=[﹣]•=•=•=,当x=1+时,原式==+1.点拨:此题主要考查了分式的化简求值,正确化简分式是解题关键.23.(10分)我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体有运动的情况进行抽样调查,在校园内随机抽取男女生各25人,调查情况如下表:男生女生总数是否参加体育运动是2119m否46n对男女生是否参加体育运动的人数绘制了条形统计图如图(1),在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).根据以上信息解答下列问题:(1)m=40,n=10,a=40;(2)将图(1)所示的条形统计图补全;(3)这次调查中,参加体育运动,且主要运动项目是球类的共有18人;(4)在这次调查中,共有4名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)解析:(1)结合表格中的数据确定出所求即可;(2)补全条形统计图即可;(3)根据题意列出算式,计算即可求出值;(4)列表确定出所有等可能的情况数,找出恰好选出甲和乙去参加讲座的情况数,即可求出所求概率.【解答】解:(1)根据题意得:m=21+19=40,n=4+6=10,a =100﹣7.5﹣7.5﹣45=40;(2)补全条形统计图,如图所示:(3)根据题意得:40×45%=18(人),则这次调查中,参加体育运动,且主要运动项目是球类的共有18人;(4)列表如下:甲乙丙丁甲﹣﹣﹣(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)﹣﹣﹣(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)﹣﹣﹣(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)﹣﹣﹣根据表格得:所有等可能的情况数有12种,其中恰好选出甲和乙去参加讲座的情况有2种,则P(恰好选出甲和乙去参加讲座)==.故答案为:(1)40;10;40;(3)18.点拨:此题考查了列表法与树状图法,用样本估计总体,频数(率)分布表,弄清题中的数据是解本题的关键.24.(12分)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?解析:(1)设每个乙种书柜的进价为x元,根据题意列出方程即可求出答案.(2)设甲书柜的数量为y个,根据题意列出求出y的范围,再设购进书柜所需费用为z元,求出y与z的数量关系即可求出答案.【解答】解:(1)设每个乙种书柜的进价为x元,∴每个甲种书柜的进价为1.2x元,∴=﹣6,解得:x=300,经检验,x=300是原分式方程的解,答:每个甲种书柜的进价为360元.(2)设甲书柜的数量为y个,∴乙书柜的数量为(60﹣y)个,由题意可知:60﹣y≤2y,∴20≤y<60,设购进书柜所需费用为z元,∴z=360y+300(60﹣y)∴z=60y+18000,∴当y=20时,z有最小值,最小值为19200元,答:甲、乙书柜进货数量分别为20和40时,所需费用最少.点拨:本题考查一次函数的应用,解题的关键是正确求出甲与乙的单件进货价,以及列出书柜总费用与甲书柜数量之间的函数关系,本题属于中等题型.25.(12分)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:x2+5x+6=(x+3)(x+2).(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON=CH.解析:(1)大正方形的面积为一个正方形的面积与三个小长方形面积之和,即x2+5x+6,同时大长方形的面积也可以为(x+3)(x+2),列出等量关系即可;(2)由勾股定理求出AB,然后根据S△ABC=AC•BC=AB•CH,代入数值解之即可;(3)由S△ABC=S△ABO+S△AOC和三角形面积公式即可得证.【解答】解:(1)如图(2),大正方形的面积为一个正方形的面积与三个小长方形面积之和,即x2+5x+6,同时大长方形的面积也可以为(x+3)(x+2),所以x2+5x+6=(x+3)(x+2);故答案为:x2+5x+6=(x+3)(x+2);(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,∴AB==5,∵S△ABC=AC•BC=AB•CH,∴CH===;答:CH的长为;(3)证明:如图(4),∵OM⊥AB,ON⊥AC,CH⊥AB,垂足分别为点M,N,H,∴S△ABC=S△ABO+S△AOC,∴AB•CH=AB•OM+AC•ON,∵AB=AC,∴CH=OM+ON.即OM+ON=CH.点拨:本题考查了因式分解的几何背景、图形的拆拼前后的面积相等、类比法等,解答的关键是根据已知条件和图形特点,利用拆拼前后的面积相等分析、推理和计算.26.(14分)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.解析:(1)连结OF,BE,得到BE∥CD,根据平行线的性质得到CD⊥OF,即可得出结论;(2)由相似三角形的性质求出AC长,再由勾股定理可求得DC 长,则能求出CF长,即可得出结果.【解答】(1)证明:连结OF,BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线DF是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD∽△ACD,∴=,∵BD=2,OF=OB=4,∴OD=6,AD=10,∴AC===,∴CD===,∵AC∥OF,OA=4,∴=,即=,解得:CF=,∴tan∠AFC===.点拨:本题考查的是切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质、勾股定理以及三角函数定义等知识;掌握切线的判定定理和圆周角定理是解题的关键.27.(16分)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为y=﹣x2+x+4,顶点坐标为(4,);(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt △DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.解析:(1)将点B,点C坐标代入解析式可求a,b的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO=∠B,利用三角函数可求tan∠MAO =tan∠NAO=tan∠CAO=,可得∠CAO=∠NAO,可得AC与AN共线,即可求解;(3)先求出OB解析式,AF解析式,联立方程组可求点F坐标,由四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,可求解.【解答】解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于点C (﹣2,0),且经过点B(8,4),∴,解得:,∴抛物线解析式为:y=﹣x2+x+4,∵:y=﹣x2+x+4=﹣(x﹣4)2+,∴顶点坐标为(4,)故答案为:y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由如下:∵抛物线y=﹣x2+x+4与y轴交于点A,∴点A(0,4),即OA=4,∵点B(8,4),∴AB∥x轴,AB=8,∴AB⊥AO,∴∠OAB=90°,∴∠OAM+∠BAM=90°,∵AM⊥OB,∴∠BAM+∠B=90°,∴∠B=∠OAM,∴tan∠B=tan∠OAM===,∵将Rt△OMA沿y轴翻折,∴∠NAO=∠OAM,∴tan∠NAO=tan∠OAM=,∵OC=2,OA=4,∴tan∠CAO==,∴tan∠CAO=tan∠NAO,∴∠CAO=∠NAO,∴AN,AC共线,∴点N在直线AC上;(3)∵点B(8,4),点O(0,0),∴直线OB解析式为y=x,∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴AF∥OB,∴直线AF的解析式为:y=x+4,联立方程组:解得:或∴点F(,),∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴Rt△OMA≌Rt△DEF,OA=DF,OA∥DF∴S△OMA=S△DEF,四边形OAFD是平行四边形,∵四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,∴四边形AMEF的面积=S四边形OAFD=4×=22.点拨:本题是二次函数综合题,考查了待定系数法求解析式,锐角三角函数,直角三角形的性质,折叠的性质,平移的性质,平行四边形的性质等知识,求出点F的坐标是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省毕节市2020年数学中考模拟试卷(4月)
一、选择题
1. 一个数的相反数是它本身,则这个数为( )
A . 0
B . 1
C . ﹣1
D . ±1
2. 下列四个立体图形中,左视图为矩形的是( )
A . ①③
B . ①④
C . ②③
D . ③④
3. 舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A . 4.995×10
B . 49.95×10
C . 0.4995×10
D . 4.995×104. 下列计算正确的是( )
A . a +2a =3a
B . a ÷a =a
C . a ·a =a
D . (a )=a 5. 如图,P 是∠ABC 内一点,点Q 在BC 上,过点P 画直线a ∥BC ,过点Q 画直线b ∥AB
,若∠ABC=115°,则直线a 与b 相交所成的锐角的度数为( )
A . 25°
B . 45°
C . 65°
D . 85°
6. 点A (x , y )、B (x , y )都在直线y =kx+2(k <0)上,且x <x 则y 、y 的大小关系是( )
A . y =y
B . y <y
C . y >y
D . y ≥y 7. 已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )
A .
B .
C .
D .
8. 某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了右边的折线统计图,下列说法正确的是( )
A . 极差是47
B . 中位数是58
C . 众数是42
D . 极差大于平均数
9. 如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE
平分∠ABC ,且BE ⊥AC 于E
,与CD 相交于点F ,DH ⊥BC 于H 交BE 于G.下列结论:①BD =CD ;②AD+CF =BD ;③CE = BF ;④AE =BG.其中正确的个数是( )
A . 1个
B . 2个
C . 3
个 D . 4个
10. 在平面直角坐标系xOy 中,点A 的坐标是(-2,0),点B 的坐标是(0,6),将线段AB 绕点B 逆时针旋转90°后得到线段A'B.若反比例函数y = 的图象恰好经过A'点,则k 的值是( )
A . 9
B . 12
C . 15
D . 2411101110
22824326326
112212121 2 1 2 1 2 1 2
11. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC=90°,∠BCD=60°,DC 中点为E ,AD 与BE 的延长线交于点
F ,则∠AFB 的度数为( )
A . 30°
B . 15°
C . 45°
D . 25°
12. 如图,半径为5的⊙O 中,CD 是⊙O 的直径,弦AB ⊥CD 于E ,
AB =8,F 是
上一点,连接AF ,DF
,则tan ∠F 的值为( ) A . B . C . D . 2
13. A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )
A . 2
B . 2或2.25
C . 2.5
D . 2或2.5
14. 抛物线y=–x +bx+c 上部分点的横坐标x 、纵坐标y 的对应值如下表所示:
x
…–2–1012…y …04664…
从上表可知,下列说法错误的是
A . 抛物线与x 轴的一个交点坐标为(–2,0)
B . 抛物线与y 轴的交点坐标为(0,6)
C . 抛物线的对称轴是直线x=0
D . 抛物线在对称轴左侧部分是上升的
15. 如图,在平行四边形ABCD 中,AB =4,AD =5,∠B =60°,以点B 为圆心,BA 为半径作圆,交
BC 边于点E ,连接ED ,则图中阴影部分的面积为( )
A . 9 ﹣
B . 9﹣
C . 9
D . 9﹣
二、填空题
16. 因式分解:ab ﹣
2ab+a =________.
17.
已知一元二次方程 的两个实数根分别为 ,
.则抛物线 与x 轴的交点坐标为________.
18. 二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是________.
22
=交于
________.
已知菱形在平面直角坐标系的位置如图所示,,,,点是对角线上的一个动点,,当周长最小时,点的坐标为
计算:
先化简,再求值:,其中.
今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图
(1)本次抽样调查的养殖户的总户数是 ▲ ;把图2条形统计图补充完整
(1)
求证:△BAE ≌△BCF
(2)
若∠ABC=50°,则当∠EBA=°时,四边形BFDE 是正方形.
25. 已知A 、B 两地相距2.4km ,甲骑车匀速从A 地前往B 地,如图表示甲骑车过程中离A 地的路程y (km )与他行驶所用
的时间x (min )之间的关系.根据图像解答下列问题:
(1) 甲骑车的速度是________km/min ;
(2) 若在甲出发时,乙在甲前方0.6km 处,两人均沿同一路线同时出发匀速前往B 地,在第3分钟甲追上了乙,两人到达B 地后停止.请在下面同一平面直角坐标系中画出乙离A 地的距离y (km )与所用时间x (min )的关系的大致图像;
(3) 乙在第几分钟到达B 地?
(4) 两人在整个行驶过程中,何时相距0.2km ?
26. 如图,AB 是⊙O 的直径,弦CD ⊥AB
,垂足为H ,连接AC ,过
上一点E 作EG ∥AC 交CD 的延长线于点G ,连接AE
交CD 于点F ,且EG =FG ,连接CE .(1) 求证:EG 是⊙O 的切线;
(2) 延长AB 交GE 的延长线于点M ,若AH =3,CH =4,求EM 的值.
27. 在平面直角坐标系xOy 中(如图),已知经过点A (﹣3,0)的抛物线y =ax +2ax ﹣3与
y 轴交于点C ,点B 与点A 关于该抛物线的对称轴对称,D 为该抛物线的顶点.
(1) 直接写出该抛物线的对称轴以及点B 的坐标、点C 的坐标、点D 的坐标;
(2) 联结AD 、DC 、CB ,求四边形ABCD 的面积;
(3) 联结AC .如果点E 在该抛物线上,过点E 作x 轴的垂线,垂足为H ,线段EH 交线段AC 于点F .当EF =2FH 时,求点E 的坐标.
参考答案
乙2
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.。

相关文档
最新文档