高一数学-指数函数-函数的值域与最值

合集下载

【高中数学】高中数学知识点:指数函数的解析式及定义(定义域值域)

【高中数学】高中数学知识点:指数函数的解析式及定义(定义域值域)

【高中数学】高中数学知识点:指数函数的解析式及定义(定义域、值域)指数函数的定义:一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞)。

指数函数的解析式:y=ax(a>0,且a≠1)理解指数函数定义,需注意的几个问题:①因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R.②规定底数a大于零且不等于1的理由:如果a<0,比如y=(-4)x,这时对于在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.③像等函数都不是指数函数,要注意区分。

相关高中数学知识点:指数与指数幂的运算(整数、有理、无理)n次方根的定义:一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。

分数指数幂的意义:(1);(2);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。

n次方根的性质:(1)0的n次方根是0,即=0(n>1,n∈N*);(2)=a(n∈N*);(3)当n为奇数时,=a;当n为偶数时,=|a|。

幂的运算性质:(1);(2);(3);注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。

感谢您的阅读,祝您生活愉快。

高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1

高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1

2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。

高中数学必修一《指数函数及其性质》PPT课件

高中数学必修一《指数函数及其性质》PPT课件
由题可得m2—m+1=1,解得m=0或1满足题意。
②若函数f(x)=(2a-1)x是指数函数,则实数a 的取值范围是什么?
1
由题可得2a-1>0且2a-1≠1, 解得a> 2 且a≠1满足题意。
③已知指数函数f(x)的图象经过点(2,9), 则f(0)、 f(1)、 f(-2)的值分别为多少?
设这f种(x)求=a解x(析a式>0方且法a≠叫1)做,由待f(定2)=系9得数a法2=。9,解得a=3
例2.在同一直角坐标系中,观察函数 y 2 x , y 3x ,
y
(1)x 2
,
y
(1)x 3
y
的图象。
y
1
x
yy
3
3x
y
1 2
x
4
3
y 2x
2
1
-3 -2 -1
01
23
x
-1
指数函数图象的性质
y=ax 图象
a >1
y
0<a<1
y
定义域 值域 定点
o
x
ox
(--∞,+∞) (左右无限延伸)
-1 2 2、若函数 y (k 2)a x 2 b(a 0,且a 1) 是指数函数,则 k
,b

3、若指数函数的图象经过点 (4, 1 ), 则 f (3)
8
16
(3,4) 4、函数 y a x3 3(a 0,且a 1) 的图象恒经过定点

课堂小结
1.说说指数函数的概念。 2.记住指数函数图象和性质。
特别提醒:
(1) 有些函数貌似指数函数,实际上却不是, 如 y 3x 1

与指数函数、对数函数有关的最值(值域)问题

与指数函数、对数函数有关的最值(值域)问题

求与指数函数㊁对数函数有关的最值(值域)问题的关键是转化与化归思想的应用,下面归类举例说明此类问题的求解方法㊂一㊁求函数的最值例1 设函数f (x )=l o g ax (a >0且a ʂ1)的图像经过点(2,1),当2ɤx ɤ4时,求函数h (x )=f (2x )fx8的最值㊂解:由函数f (x )=l o g ax (a >0且a ʂ1)的图像经过点(2,1),可得l o g a2=1,解得a =2,所以函数f (x )=l o g 2x ,且定义域为{x |x >0}㊂所以函数h (x )=f (2x )fx8=l o g 2(2x )㊃l o g 2x 8=(l o g 2x +1)(l o g 2x -3),且x ɪ[2,4]㊂令t =l o g 2x ,t ɪ12,2,则函数h (x )等价于g (t )=(t +1)㊃(t -3)=t 2-2t -3,其对称轴为t =1㊂因为函数g (t )在t ɪ12,1上单调递减,在t ɪ[1,2]上单调递增,所以h (x )m i n =g (t )m i n =g (1)=-4㊂又因为g 12=-154,g (2)=-3,所以h (x )m a x =g (t )m a x =g (2)=-3㊂故函数h (x )的最大值为-3,最小值为-4㊂评注:解答本题的关键是通过换元变形,将原问题转化为熟悉的一元二次函数在区间上的最值问题,再借助 配方 变形即可得到最值㊂二㊁求函数的值域例2 已知函数f (x )=l o g 3x +1,x ɪ[1,9],求函数h (x )=[f (x )]2+f (x 2)的值域㊂解:因为函数f (x )的定义域为[1,9],所以1ɤx ɤ9,1ɤx 2ɤ9,解得1ɤx ɤ3,即x ɪ[1,3],所以函数h (x )=[f (x )]2+f (x 2)的定义域为[1,3]㊂h (x )=[f (x )]2+f (x 2)=(l o g 3x +1)2+l o g 3x 2+1=(l o g 3x )2+4l o g 3x +2㊂设t =l o g 3x ,因为x ɪ[1,3],所以t ɪ[0,1],所以函数h (x )等价于函数φ(t )=t 2+4t +2=(t +2)2-2,且φ(t )在t ɪ[0,1]上单调递增㊂当t =0,即x =1时,h (x )取得最小值,可得h (x )m i n =φ(0)=2;当t =1,即x =3时,h (x )取得最大值,可得h (x )m a x =φ(1)=7㊂故函数h (x )的值域是[2,7]㊂评注:求函数y =[f (x )]2+f (x 2)的定义域时,容易忽视1ɤx 2ɤ9的情况㊂在复合函数中,外层函数的定义域是内层函数的值域,若已知f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域可由不等式a ɤg (x )ɤb 解出;若已知f [g (x )]的定义域为[a ,b ],求g (x )的定义域,相当于x ɪ[a ,b ],求g (x )的值域(即f (x )的定义域)㊂三㊁由给定的最值,求参数的值例3 设函数f (x )=a x -a -x(a >0且a ʂ1)㊂已知f (1)=83,函数g (x )=a 2x+a-2x-2m f (x )在区间[1,+ɕ)上的最小值为-2,求实数m 的值㊂解:依题意得f (1)=a -1a =83㊂因为a >0且a ʂ1,所以a =3,所以函数f (x )=3x -3-x ,所以函数g (x )=32x +3-2x -2m (3x-3-x )=(3x -3-x )2-2m (3x -3-x)+2,且x ɪ[1,+ɕ)㊂令t =3x -3-x ,由函数t =3x -3-x在[1,+ɕ)上单调递增,可得t ȡ83,即t ɪ83,+ɕ㊂83 创新题追根溯源 高一数学 2023年11月函数g (x )等价于函数h (t ),且h (t )=t 2-2m t +2在83,+ɕ上的最小值为-2㊂函数h (t )=t 2-2m t +2的图像的对称轴为t =m ,当m >83时,h (t )m i n =h (m )=-m 2+2,由-m 2+2=-2,解得m =ʃ2,不符合题意;当m ɤ83时,函数h (t )=t 2-2m t +2在83,+ɕ上单调递增,h (t )m i n =h 83=829-163m ,由829-163m =-2,解得m =2512㊂因为2512<83,所以实数m =2512,符合题意㊂故实数m =2512㊂评注:利用恒等式(a x -a -x )2=a 2x+a-2x-2进行转化是解题的关键㊂四㊁由给定的值域,求参数的取值范围例4已知函数f (x )=2x-a ,x <4,l o g 2x ,x ȡ4,若f (x )存在最小值,则实数a 的取值范围是( )㊂A.(-ɕ,4] B .[-2,+ɕ)C .(-ɕ,-2)D .(-ɕ,-2]解:已知函数f (x )=2x-a ,x <4,l o g 2x ,x ȡ4,当x <4时,f (x )=2x-a 的值域是(-a ,16-a );当x ȡ4时,由f (x )=l o g 2x ,可得f (x )m i n =2㊂由题意知,f (x )存在最小值,所以-a ȡ2,解得a ɤ-2,即实数a ɪ(-ɕ,-2]㊂应选D ㊂评注:准确理解指数函数和对数函数的图像与性质,有助于顺利破解与指数函数和对数函数有关的最值(值域)问题㊂已知函数f (x )=9x+m ㊃3x+19x +3x+1㊂(1)若对任意的x ɪR ,f (x )>0恒成立,求实数m 的取值范围㊂(2)若函数f (x )的最大值为2,求实数m 的值㊂(3)若对任意的x 1,x 2,x 3ɪR ,均存在以f (x 1),f (x 2),f (x 3)为三边长的三角形,求实数m 的取值范围㊂提示:(1)因为对任意的x ɪR ,f (x )>0恒成立,所以9x+m ㊃3x+19x +3x+1>0,可得9x+m ㊃3x +1>0,即-m <3x+13x 恒成立㊂因为3x >0,所以3x+13x ȡ2,当且仅当x =0时取等号,所以-m <2,可得m >-2,即实数m ɪ(-2,+ɕ)㊂(2)函数f (x )=9x +m ㊃3x+19x +3x+1=1+(m -1)㊃3x9x +3x +1=1+m -13x +3-x+1㊂因为3x +3-x ȡ2,所以3x +3-x+1ȡ3㊂当m -1<0,即m <1时,1>f (x )ȡ1+m -13,不符合题意;当m =1时,f (x )=1,不符合题意;当m -1>0,即m >1时,1<f (x )ɤ1+m -13,可得1+m -13=2,所以m =4㊂综上可得,实数m =4㊂(3)由题意知,f (x 1)+f (x 2)>f (x 3)对任意的x 1,x 2,x 3ɪR 恒成立㊂当m >1时,2<f (x 1)+f (x 2)ɤ2m +43,且1<f (x 3)ɤm +23,所以m +23ɤ2,可得1<m ɤ4;当m =1时,f (x 1)=f (x 2)=f (x 3)=1,符合题意;当m <1时,2m +43ɤf (x 1)+f (x 2)<2,且m +23ɤf (x 3)<1,所以2m +43ȡ1,可得-12ɤm <1㊂综上所述,实数m ɪ-12,4㊂作者单位:1.江苏省无锡市第六高级中学2.江苏省无锡市青山高级中学(责任编辑 郭正华)93创新题追根溯源高一数学 2023年11月。

高一数学必修一函数知识点

高一数学必修一函数知识点

高一数学必修一函数知识点分析1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵ 伸缩变换:在x前加上系数。

⑶ 对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

高一指数幂函数知识点

高一指数幂函数知识点

高一指数幂函数知识点一、基本概念指数幂函数是由指数函数与幂函数相结合而成的一类函数。

其中,指数函数是以指数为变量的函数,幂函数是以幂为变量的函数。

二、指数函数指数函数的一般形式为f(x) = a^x,其中a是常数且大于0且不等于1。

1. 指数函数的定义域是全体实数,值域是正数集合,且在x轴上的图像与y轴正半轴交于点(0,1)。

2. 指数函数的性质:- 当a>1时,函数递增且无上界;- 当0<a<1时,函数递减且无下界;- 当a=1时,函数恒为1;- 指数函数f(x) = a^x与x轴交于点(0,1);- 指数函数f(x) = a^x在x>0时单调递增,在x<0时单调递减。

三、幂函数幂函数的一般形式为f(x) = x^a,其中a是常数。

1. 幂函数的定义域为x>0时全体实数,值域与定义域都为正数。

2. 幂函数的性质:- 当a>0时,函数递增;- 当a<0时,函数递减;- 幂函数f(x) = x^a在x大于0时单调递增,在x小于0时单调递减,若定义域包括0,则在x=0时取得极小值或极大值。

四、指数幂函数指数幂函数是指数函数与幂函数相结合而成的一类函数,其一般形式为f(x) = a^x^b,其中a和b均为常数,且a大于0且不等于1。

1. 指数幂函数的定义域为全体实数,值域取决于具体的a和b 值。

2. 指数幂函数的性质:- 当b>0时,函数递增;- 当b<0时,函数递减;- 若指数幂函数的底数大于1且指数大于0,则函数在定义域内单调递增;- 若指数幂函数的底数大于0且小于1且指数小于0,则函数在定义域内单调递增。

五、指数幂函数的图像及特殊情况1. 当指数幂函数的底数a大于1时,其图像呈现增长趋势,且趋近于正无穷大;当a等于1时,函数恒为1;当a介于0和1之间时,其图像呈现递减趋势,且趋近于0。

2. 当指数幂函数的指数b为正整数时,图像表现为正幂函数的形态;当b为负整数时,图像表现为倒数幂函数的形态。

高一数学-指数函数-函数的值域与最值 (教案)教材

高一数学-指数函数-函数的值域与最值 (教案)教材

授课类型T-指数函数C-函数的值域与最值T-指数函数教学目的1、掌握指数函数的概念和指数运算的性质2、掌握指数函数的图像和性质,并能够根据指数函数的性质解决一些变形的指数函数的问题;利用指数函数建议数学模型解决实际问题。

3、掌握函数值域与最值的解法教学内容1.一张白纸对折一次得两层,对折两次得4层,对折3次得8层,问若对折x 次所得层数为y ,则y 与x 的函数表达式是:2xy =.2.一根1米长的绳子从中间剪一次剩下12米,再从中间剪一次剩下14米,若这条绳子剪x 次剩下y 米,则y 与x 的函数表达式是:12xy ⎛⎫= ⎪⎝⎭.问题:这两个函数有何特点?同步讲解一、指数函数的概念你知道么?一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>1 0<a<1 图象性质①定义域:R②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R上是增函数,当x<0时,0<y<1;当x>0时,y>1④在R上是减函数,当x<0时,y>1;当x>0时,0<y<1利用指数函数的性质,比较下列各组中两个数的大小.(1)32和 1.72;(2)230.6-和340.6-.【分析与解答】(1)因为指数2xy=函数在(),-∞+∞上是增函数,又3 1.7>,所以3 1.722>.(2)因为指数函数0.6xy=在(),-∞+∞上是减函数,又2334->-,所以23340.60.6-->.求下列函数的定义域与值域。

(1)142xy-=(2)23xy-⎛⎫= ⎪⎝⎭(3)1421x xy+=++【分析与解答】根据指数函数的定义域为R,逐个分析。

【解】(1)由404x x-≠⇒≠所以定义域为}{,4x x R x∈≠且1410214xx-≠∴≠-Q所以值域为{}0,1y y y>≠(2)定义域为R。

2331322x xxy--≥⎛⎫⎛⎫⎛⎫∴==≥=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q故值域为{}1y y≥(3)定义域为R,令2xt=,则()220,2111t y t t t>=++=+>所以值域为{}1y y>函数()(),x xf x ag x b==的图像如图,试确定,a b的大小;若()()3127f g==,求()(),f xg x的解析式。

人教版高中数学知识点解析指数与对数函数的性质与运算法则

人教版高中数学知识点解析指数与对数函数的性质与运算法则

人教版高中数学知识点解析指数与对数函数的性质与运算法则指数与对数函数是高中数学中的重要概念,对于学生来说,掌握其性质与运算法则是非常关键的。

本文将对人教版高中数学教材中关于指数与对数函数的性质与运算法则进行解析。

希望通过本文的讲解,能够帮助学生更好地理解并掌握这部分内容,提高数学学习的效果。

一、指数函数的性质与运算法则指数函数是以一个固定的正常数作为底数,自变量为指数的函数。

在人教版高中数学教材中,指数函数的性质与运算法则如下:1. 指数函数的定义域与值域对于指数函数 y=a^x 而言,其定义域为全体实数,即 x∈R。

对于指数函数的值域与底数 a 相关,当 a>0 且a≠1 时,值域为 (0,+∞);当0<a<1 时,值域为 (0,+∞);当 a<0 时,值域为无解。

2. 指数函数的性质a) 当 a>1 时,指数函数 y=a^x 在 x 趋于正无穷和负无穷时,分别趋于正无穷和零。

b) 当 0<a<1 时,指数函数 y=a^x 在 x 趋于正无穷和负无穷时,分别趋于零和正无穷。

c) 无论 a 的值为何,指数函数 y=a^x 的图像必过点 (0,1)。

3. 指数函数的运算法则a) a^m * a^n = a^(m+n)b) (a^m)^n = a^(m*n)c) (a*b)^n = a^n * b^nd) a^-n = 1/(a^n)e) (a/b)^n = (a^n)/(b^n)二、对数函数的性质与运算法则对数函数是指数函数的逆运算,即 y=log(a, x),其中底数 a 为正常数且a≠1,x 为正常数。

在人教版高中数学教材中,对数函数的性质与运算法则如下:1. 对数函数的定义域与值域对于对数函数 y=log(a, x) 而言,其定义域为 x>0 且x≠1;值域为全体实数。

2. 对数函数的性质a) log(a, 1) = 0b) log(a, a) = 1c) log(a^m, a^n) = (m/n),其中 a>0 且a≠1,m、n 为任意实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--------函数的值域和最值
一、相关概念 1、值域:函数A x x f y ∈=
,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。

2、最值:求函数最值常用方法和函数值域的方法基本相同。

事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。

因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。

二、基本函数的值域
1、 一次函数)(0≠+=a b kx y 的值域为R ;
2、 二次函数)(02
≠++=a c bx ax y ;]44(0);44[022a
b a
c ,,a ,a b ac ,a --∞<∞+->值域是时值域是时
教师:你还有哪些收获和感悟
调性。

例6 求函数y=1
1+-x x
e e ,2sin 11sin y θθ-=+,的值域
8、数形结合法。

例7求函数的值域|4||1|++-=x x y (方法一可用到图象法) 方法二:(单调性)
为减函数时32,4--=-≤x y x ;53)4(2=--⨯-≥∴y 为增函数时当32,1
+=≥x y x ;5312=+⨯≥∴y ;514=<<-,y x 时当所以此函数的值域为[)∞+
,5
题型Ⅰ求一元二次函数为背景的函数的值域
求函数2
2
()4422f x x ax a a =-+-+在[0, 2]上的最值 【分析与解答】: 2
2
()4()222
a f x x a =--+
(1)当a 2≤0,即a ≤0时,f (x )在上递增.∴ f (x )max =f (2)=a 2-10a +(x )min =f (0)=a 2
-2a +2.
(2)当a
2
≥2,即a ≥4时,f (x )在上递减.∴ f (x )max =f (0)=a 2-2a +(x )min =f (2)=a 2
-10a +18.
(3)当0≤a
2≤2时,即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫
a 2=-2a +2.①当0≤a
2≤1时,即0≤a ≤2时,f (x )max =f (2)=a 2
-10a
+18;②当1≤a
2
≤2时,即2≤a ≤4时,f (x )max =a 2
-2a +2.
题型Ⅱ求以分式为背景的函数的值域
求函数2222
1
x x y x x -+=++ 的值域若是求(2,3)x ∈ 的值域呢
【分析与解答】
(1)方法一:222
2(1)33211
x x x x
y x x x x ++-==-++++ 转化成分子为一次,分母为二次的函数的值域,得[1,5]y ∈ ;
(2012四川文)函数的图象可能是( )
【解析】采用特殊值验证法. 函数恒过(1,0),只有C 选项符合.
【点评】函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.
(2012北京文)已知,.若或,
则的取值范围是________ .
【解析】首先看没有参数,从入手,显然时,,
时,,而对或成立即可,故只要时,(*)恒成立即可.当时,,不符合(*),所以舍去;当时,由得,并不对成立,舍去;当时,由,注意,故,所以,即,又,故,所以,又,故,综上,的取值范围是.
【点评】 本题考查学生函数的综合能力,涉及到二次函数的图像的开口,根的大小,涉及到指数函数,还涉及到简易逻辑中的“或”,还考查了分类讨论的思想,对进行讨论.
一、选择题:
1.下列各式中成立的一项
( ) A .7177)(m n m
n = B .31243)3(-=- C .43433)(y x y x +=+
D . 3339= 2.化简)3
1()3)((656131212132
b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2
9a 3.设指数函数)1,0()(≠>=a a a x f x
,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .)
()(y f x f y x f =-)(
建议时间:2-3分钟
“数学是思维的体操”,通过这节课的学习,你在数学能力方面有什么感悟和收获呢请记录在下面吧!
每一天都是全新的一天,每一天都是进步的一天。

从今天起步,在明天收获!。

相关文档
最新文档