一元一次方程应用题行程问题专项训练一(含答案)

合集下载

一元一次方程应用题之行程问题练习题(配答案)

一元一次方程应用题之行程问题练习题(配答案)

行程问题(讲义)➢ 课前预习1. 小学我们已经学过行程问题,那么行程问题中的基本关系是_________=________×________.2. 已知小明家离学校2千米,一天小明在下午5:00放学之后开始步行回家,同时爸爸骑自行车从家出发去接小明,已知小明步行的速度是60米/分钟,爸爸骑自行车的速度是140米/分钟,请问小明爸爸从家出发几分钟后接到小明?设小明爸爸从家出发x 分钟后接到小明,分别用含x 的代数式表达小明和爸爸所走的路程.3. 上题中的等量关系是:_______________+_____________=从家到学校的距离. 可列方程为:_________________________.学校家爸爸➢知识点睛行程问题:①理解题意,找关键词,即________、________、________;②分析运动过程,通常采用____________或____________的方法来进行;③梳理信息,列表,提取数据,列表时要按照运动状态或者运动过程进行分类;④根据等量关系列方程.➢精讲精练1.一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?启明中学举行了一次路程为60千米的远足活动,八年级学生步行,七年级学生乘一辆汽车,两个年级的学生同地出发,这辆汽车开到目的地后,再回头接八年级的学生.若八年级学生的速度为5千米/时,比汽车提前一小时出发,汽车的速度为60千米/时,问八年级学生出发后经过多长时间与回头接他们的汽车相遇?2.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km,到中午12时,两人又相距36 km.求A,B两地间的路程.3.汽车上坡时每小时走28千米,下坡时每小时走35千米,去时下坡路程比上坡路程的2倍少14千米,原路返回比去时多用12分钟,则去时上、下坡路程各多少千米?4.某人在上午8时从甲地出发到乙地,按计划在中午12时到达.在上午10时汽车发生故障而停车修理15分钟,修好后司机为了能及时赶到,把每小时的车速又提高了8千米前进,结果在11时55分提前到达乙地,求汽车原来的速度.5.一列火车匀速行驶,经过一条长300 m的隧道需要20 s的时间;隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.根据以上数据,你能否求出火车的长度?6.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,火车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒.已知两人的步行速度都是3.6千米/时,请计算这列火车的长度.7.铁路旁的一条平行小路上有一行人和一骑车人同时向东行进,行人速度为3.6 km/h,骑车人速度为10.8 km/h,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒,问这列火车的车长和火车的速度.【参考答案】➢课前预习1.路程速度时间2.140x60x3.爸爸所走路程小明所走路程➢知识点睛①路程速度时间140602000 x x+=② 示意图 线段图➢ 精讲精练1.解:设经过了t 小时,根据题意得 45t +35t =10×2解得答:1号队员从离队开始到与队员重新会合,经过了小时. 2.根据题意得 5x +60(x -1)=2×60解得答:八年级学生出发后经过小时与回头接他们的汽车 相遇. 3.= 解得答:A ,B 两地间的路程为108 km .4. 上坡42千米,下坡70千米5. 40 km/h6. 火车长为300米.7. 火车长为255米.14t =143613x =361336108x --36128x +-108x =8.火车长为286米,车速为14 m/s.行程问题(随堂测试)1.暑假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发直奔目的地,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米/时,小李车速为15千米/时,经过多少小时小张能够追上小李?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【参考答案】1.(1)经过2小时小张能够追上小李;(2)小张的车速应为18千米/时.行程问题(习题)➢巩固练习1.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.请问小明家距学校有多远的距离?2.一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟;如果每小时行12千米,就会迟到10分钟,则规定的时间是多少小时?他行驶的路程是多少千米?3.家住郑州的李明和家住开封的好友张华分别沿郑开大道匀速赶往对方家中.已知两人在上午8:00时同时出发,到上午8:40时,两人还相距12 km,到上午9:00时,两人正好相遇.求两家之间的距离.4.小明和小刚从两地同时相向而行,两地相距2 km,小明每小时走7 km,小刚每小时走6 km,如果小明带一只狗和他同时出发,狗以每小时10 km的速度向小刚方向跑去,遇到小刚后又立即回头跑向小明,遇到小明后又立即回头跑向小刚,这样往返直到二人相遇.(1)两个人经过多少小时相遇?(2)这只狗共跑了多少千米?5.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,则通讯员追上学生队伍时行进了多少千米?通讯员用了多长时间?(用两种不同的方法)6.一列火车匀速行驶经过一条隧道、从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度7.甲、乙两人在与铁路平行的马路上背向而行,甲骑车每小时行驶36千米,乙步行每小时走3.6千米,一列火车匀速向甲驶来,列车在甲旁开过用了10秒钟,而在乙旁开过用了21秒钟,则这列火车的长是多少米?8.只活到父亲寿数的一半,就匆匆离去.这对他是一个沉重的打击,后来4年,丢番图因为失去爱子而伤悲,终于告别数学,离开了人世.请你根据以上文字记载,算一算丢番图的寿命.【参考答案】➢ 巩固练习 1. 1 260米 2. 规定时间是小时,行驶的路程为20千米 3. 36 km4. (1)213小时 (2)2013千米5. 通讯员追上学生队伍时行进了千米,通讯员用了小时6. 隧道的长度为1170米,火车的速度是30m/s.7. 这列火车的长是210米.8. 丢番图的寿命是84岁327316。

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程应用题集锦一(行程问题)

一元一次方程应用题集锦一(行程问题)

一元一次方程应用题集锦一(行程问题)1.张勇家到县城共100千米,他从家到县城用了3小时,回来用了5小时,则他的平均速度为--------------千米/时。

2.父子两人赛跑,父亲每秒跑6米,儿子每秒跑5米,如果父亲让儿子先跑1秒,父亲经过几秒后可以追上儿子?3.好马每天走240里,劣马每天走150里,劣马先走12天,好马需多少天才能追上劣马?4.李明和王刚两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知李明比王刚每小时多走2.5千米,问王刚每小时走多少千米?5.某人步行每小时走5千米,骑自行车的速度是步行的4倍,他从甲地到乙地,骑自行车比步行快3小时。

问:(1)步行与骑自行车各需多少时间?(2)甲乙两地的距离是多少?6.小红上学时从家到学校,每小时行5千米,放学后按原路返回家,结果返回的时间比去学校的时间多花9分钟,求学校离小红家的距离。

7.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问(1)小刚在冲刺阶段花了多少时间?(2)小刚在离终点多远时开始冲刺?8.一架飞机,最多能在空中连续飞行4小时,飞出去时的速度是950千米/小时,返回时的速度是850千米/小时,这架飞机最远能飞出多少千米就应返回?(答案保留整数)9.某沿海城镇举行环城自行车赛,骑得最快的人在出发后35分钟遇到骑得最慢的人,已知骑得最慢的人的速度是骑得最快的人的速度的5/7,环城一周是6千米,两人每分钟各走多少千米?10.小莉和同学在五一假期去森林公园玩,在溪流边的A码头租了一艘小艇逆流而上,划行速度约4千米/时,到B地后沿原路返回,速度增加了50%,回到A码头比去时少花了20分钟。

求A、B两地之间的路程。

11.从甲地到乙地的长途汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4小时即可到达,求甲乙两地之间高速公路的路程。

一元一次方程应用题(行程问题一)(人教版)(含答案).docx

一元一次方程应用题(行程问题一)(人教版)(含答案).docx

一元一次方程应用题(行程问题一)(人教版)一、单选题(共5道,每道20分)l.A, B两站间的距离为670km, 一列慢车从A站开往B站,每小时行驶55km,慢车行驶1 小时后,另一列快车从B站开往A站,每小时行驶85km,设快车行驶了x小时后与慢车相遇,为梳理题意列表如下,补全表中的信息,则可列方程为()S V t慢车(A-B)55快车(B-A)85 XA. 55x + 85x = 670 B< 55(x-l) + 85x = 670C 55X +85(X-1)=670D 55(x + l) + 85x = 670答案:D解题思路:根据题意,慢车行驶的时间为(x+1)小时,由尸诃知,快车行驶的路程为85xkni,慢车行驶的路程为55(x+l)km, 把表格补充完整为S V t慢车(A—B)55(x+l) 55 (x+1)快车(B-A)85x 85 X由题意知,两站之间的距离Ml车行驶的路程廿夬车行驶的路程, 所以可列方程为550+1) + 85*670・故选D.试题难度:三颗星知识点:一元一次方程应用题一一行程问题2.某人从甲地到乙地,水路比公路近40千米,但乘船比乘车要多用3小时,已知轮船速度为24千米/时,汽车速度为40千米/时,设水路长为x千米,为梳理题意列表如下,补全表屮的s V t乘船24乘车40x - x-40 x - x-40———3 = ——+ 3 = A. 2440 B. 2440— -3 = x+40— 4-3 =x + 40C. 24 40D. 24 40答案:C解题思路:根据题意,公路的长为(x+40)km,由r = ±可表达从甲地到乙地,乘船和乘车的时间.把表格补充完整为s V t乘船X24X 24乘车(x+40) 40 x+40 40根据题意,乘船比乘车要多用3小时,所以可列方程为召-3=呼・24 40故选C.试题难度:三颗星知识点:一元一次方程的应用一一行程问题3.小明家离学校1200米,其中有一段上坡路,另一段为下坡路.他去学校共用了16分钟,假设小明上坡路的平均速度为3千米/时,下坡路的平均速度为5千米/时.若设小明上坡用了xs V t上坡 3下坡 5A 3X +5(16-X)=1200B 3x4-5(16-x) = 1.23.上+ )4 = 1 200 3•兰+ 5・J = 1.2 C 60 60 D.60 60答案:D解题思路:根据题意,下坡用了(16-x)分钟,由尸诃知,上坡的路程为3--km,下坡的路程为5-l^km,60 60把表格补充完整为S V t上坡3上60 3X60下坡 5 16-兀60 516—x60根据总路程为「2千米,所以可列方程为垢+ 5.罟“2. 故选D.试题难度:三颗星知识点:一元一次方程的应用一一行程问题4.甲、乙两人从A地到B地,同时出发,甲比乙每小时多走1千米,若甲每小时走10千米, 结果甲比乙早到半小时,求A, B之间的距离.设A, B:H千米)y(千米小时)讣时)甲X10 乙XX X1X+ — =2B. 10 X 1A.io _10-1 10 + 1 2X X 1 X X,1 C.W_ 10-1 2『0一104-1 ~r —2 答案:C 解题思路:因为甲比乙每小时多走1千米,甲的速度为10千米小时, 所以乙的速度为(10-1)千米小时.再根据r = 2表达甲和乙的时间.V把表格补充完整为H千米)诃千米小时)X小时)甲X10X 10乙X10-1X 10-1画线段图如下:三A乙根据甲比乙早到半小时,说明甲的时间比乙的时间少半小时, 即甲的时间等于乙的时间减去半小时,因此可列方程为2 =亠-2・10 10-1 2故选C.试题难度:三颗星知识点:一元一次方程应用题5.A, B两地相距64千米,甲从B地出发,每小吋行14千米,乙从A地出发,每小吋行18 千米.若甲在前、乙在后,两人同时同向而行,则经过多长时间乙超过甲10千米?设经过xH千米)M千米外时)K小时)甲14乙18A 18x-14x = 64B 18x-14x = 10 c 14X + 64_18X = 1O D 18x-64-14x = 10答案:D解题思路: 因为两人同时出发,到相遇时时间相同,均为X小时. 再根据尸讥表达甲和乙的路程.把表格补充完整为3(千米}V(千米小时)氏小吋)甲14.Y 14 X乙18.v 1S X画线段图如下,14x1S.Y根据题意画图分析,乙超过甲10千米时,乙的路程比甲的路程多(64亠10)千米, 所以可列方程为18x-14x = 64+10,即18x-64-14x=10. 注意:甲是从B地岀发,乙是从月地岀发的.故选D.试题难度:三颗星知识点:一元一次方程应用题64。

七年级一元一次方程解应用题

七年级一元一次方程解应用题

七年级一元一次方程解应用题一、行程问题。

1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。

- 甲先走12米,然后甲、乙共同走的路程为(285 - 12)米。

- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度×时间,可列方程:8x+6(x - (12)/(8))=285(这里x-(12)/(8)表示乙走的时间,因为甲先走了12米这段时间乙没走)。

- 化简方程得8x + 6x-9 = 285。

- 移项合并得14x=294。

- 解得x = 21。

- 所以甲出发21秒与乙相遇。

2. 一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

- 设船在静水中的速度为x千米/小时。

- 顺水速度 = 船在静水中的速度+水流速度,即(x + 3)千米/小时;逆水速度=船在静水中的速度 - 水流速度,即(x-3)千米/小时。

- 根据路程相等,可列方程2(x + 3)=3(x - 3)。

- 展开括号得2x+6 = 3x - 9。

- 移项得3x-2x=6 + 9。

- 两码头之间的距离为2×(15 + 3)=36千米。

3. 甲、乙两人在400米的环形跑道上练习跑步,甲每秒跑6米,乙每秒跑4米。

若两人同时同地同向出发,几秒后两人首次相遇?- 设x秒后两人首次相遇。

- 同向出发首次相遇时,甲比乙多跑一圈,即400米。

- 根据路程差 = 速度差×时间,可列方程(6 - 4)x=400。

- 化简得2x = 400。

- 解得x = 200。

- 所以200秒后两人首次相遇。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。

- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

一元一次方程行程问题应用题及答案 [一元一次方程应用题专题讲解行程问题]

一元一次方程行程问题应用题及答案 [一元一次方程应用题专题讲解行程问题]

一元一次方程行程问题应用题及答案 [一元一次方程应用题专题讲解行程问题]行程问题【课前预习】(1)行程问题中的三个基本量及其关系:路程=速度时间时间=路程速度速度=路程时间(2)基本类型①相遇问题:+=原距②追及问题:-=原距③航行问题:顺水速度=速度+速度逆水速度=速度-速度注意:抓住两码头间距离不变,水流速度和船速(静水速)不变的特点考虑相等关系。

例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(1)分析:相遇问题,画图表示为:等量关系是:的路程+ 的路程=480公里。

解:设快车开出x小时后两车相遇,则快车的行程公里慢车的行程公里,由题意得方程(2)分析:相背而行,画图表示为:等量关系是:路程和+ =600公里。

解:设x小时后两车相距600公里,则快车的行程公里慢车的行程公里,由题意得方程(3)分析:等量关系为:路程-路程+480公里=600公里。

解:设x小时后两车相距600公里,则快车的行程公里慢车的行程公里,由题意得方程(4)分析:追及问题,画图表示为:等量关系为:的路程= 的路程+480公里。

解:设x小时后快车追上慢车。

则快车的行程公里慢车的行程公里,由题意得方程解:练习一 1、甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

2、甲、乙两人从同地出发前往某地。

甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?例2 一船在两码头之间航行,顺水需4小时,逆水4个半小时后还差8公里,水流每小时2公里,求两码头之间的距离?分析:这属于行船问题,这类问题中要弄清:(1)顺水速度= 的速度+ 速度;(2)逆水速度= 的速度-速度。

一元一次方程应用行程问题含答案

一元一次方程应用行程问题含答案
13.如图,A、B两地相距90千米,从A到B的地形依次为:60千米平直公路,10千米上坡公路,20千米平直公路.甲从A地开汽车以120千米/小时的速度前往B地,乙从B地骑摩托车以60千米/小时的速度前往A地,汽车上坡的速度为100千米/小时,摩托车下坡的速度为80千米/小时,甲、乙两人同时出发.
(1)求甲从A到B地所需要的时间.
10.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,火车的长度为180 m,求隧道的长度和火车的速度.
11.东南中学租用两辆小轿车(设速度相同)同时送二名带队老师及 名七年级的学生到育才中学参加数学竞赛,每辆车限坐 人(不包括司机).其中一辆小轿车在距离育才中学 的地方出现故障,此时距离竞赛开始还有 分钟,唯一可利用的交通工具是另一辆小轿车,且这辆车的平均速度是 ,人步行的速度是 (上、下车时间忽略不计).
8.双“11”期间,某快递公司的甲、乙两辆货车分别从相距335km的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2h时,甲车先到达配货站C地,此时两车相距35km,甲车在C地用1h配货,然后按原速度开往B地;乙车继续行驶0.5h时,乙车也到C地,但未停留直达A地.
(1)乙车的速度是_____km/h,B、C两地的距离是____km.
5.小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人)。小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为___________.

一元一次方程应用——行程问题含答案

一元一次方程应用——行程问题含答案

一元一次方程应用——行程问题1.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?2.一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.3.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?4.小明从家里骑自行车到学校,每小时骑20km,可早到15分钟,每小时骑15km就会迟到10分钟.问他家到学校的路程是多少km?5.汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?6.某中学学生步行到郊外旅行.七年级(1)班学生组成前对,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距2千米?7.小亮和哥哥在离家2千米的同一所学校上学,哥哥以4千米/时的速度步行去学校,小亮因找不到书籍耽误了15分钟,而后骑自行车以12千米/时的速度去追哥哥.(1)到校前小亮能追上哥哥吗?(2)如果小亮追上哥哥,此时离学校有多远?8.老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带乘一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.9.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?10.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?11.一条环形公路长42千米,甲、乙两人在公路上骑自行车,速度分别是21千米/时、14千米/时.(1)如果两人同时同地反方向出发,那么经过几小时两人首次相遇;(2)如果两人同时同地同向出发,那么经过几小时两人首次相遇;(3)如果从同一地点同向前进,乙出发1小时后甲出发,那么甲经过几小时后追上乙.12.李明和王强周末约好去宜春花博园游玩,李明家在王强家与花博园两地之间,距王强家2千米,距花博园3千米.当王强以140米/分的速度从家先走10分钟后才打电话给李明,李明立即以100米/分的速度往花博园走,两人同向而行:(1)王强从家出发后多久追上李明?(2)王强能在李明到达花博园前追上李明吗?说明理由.13.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?14.为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机场的时间仅剩90分钟,7点30分小颖发现爸爸忘了带身份证,急忙通知爸爸返回,同时她乘坐出租车以40千米/小时的平均速度直奔机场,与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上小颖(打电话,拿身份证及上出租车的时间忽略不计),并立即按原速赶往机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示);(2)求小颖从7点30分出发经过多少时间与爸爸相遇;(3)小颖的爸爸能否在规定的时间内赶到机场?15.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析1.【分析】应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.【解答】解:设第一次相距50千米时,经过了x小时.(120+80)x=450﹣50x=2.设第二次相距50千米时,经过了y小时.(120+80)y=450+50y=2.5经过2小时或2.5小时相距50千米.【点评】本题考查理解题意能力,关键知道相距50千米时有两次以及知道路程=速度×时间,以路程做为等量关系可列方程求解.2.【分析】设这列火车的长度是x米,根据火车行驶的速度不变由行程问题的数量关系路程÷时间=速度建立方程求出其解是关键.【解答】解:设这列火车的长度是x米,由题意,得,解得:x=300.答:火车长300米.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,行程问题的数量关系的运用,解答时根据火车行驶的速度不变建立方程是关键.3.【分析】若设王强以6米/秒的速度跑了x米,则根据总时间=以6米/秒的速度跑的时间+以4米/秒的速度跑的时间列出方程即可.【解答】解:解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000﹣x)米.根据题意列方程:去分母得:2x+3(3000﹣x)=10×60×12.去括号得:2x+9000﹣3x=7200.移项得:2x﹣3x=7200﹣9000.合并同类项得:﹣x=﹣1800.化系数为1得:x=1800.解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60﹣x)秒.根据题意列方程6x+4(10×60﹣x)=3000,去括号得:6x+2400﹣4x=3000.移项得:6x﹣4x=3000﹣2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.【点评】找出题中的等量关系列出方程是解题的关键.注意时间单位要统一.4.【分析】10分钟=小时,15分钟=小时.方法一:设他家到学校的路程为xkm.根据“每小时骑20km所用的时间+15分钟=每小时骑15km所用的时间﹣10分钟”列出方程;方法二:设小明到学校的时间为x小时.根据路程不变列出方程,并解答.【解答】解:10分钟=小时,15分钟=小时.方法一:设他家到学校的路程为xkm,依题意得:,解得x=25.答:他家到学校的路程是25km;方法二:设小明到学校的时间为x小时,,解得x=1.5.他家到学校的路程为(千米).答:他家到学校的路程是25km.【点评】本题考查了由实际问题列一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.5.【分析】方法1:可设原计划行驶的时间是x小时,根据路程是一定的,列出方程求解即可;方法2:如果在准时的时间内,用每小时50千米的速度汽车多行50×0.5=25千米,用每小时45千米的速度汽车少行45×0.5=22.5千米,两次相差25+22.5=47.5千米;速度差为:50﹣45=5千米;那么原计划开的时间为:47.5÷5=9.5小时;甲、乙两地的距离:50×(9.5﹣5)=450(千米);据此解答.【解答】解:30分钟=0.5小时,方法1:设原计划行驶的时间是x小时,依题意有45(x+0.5)=50(x﹣0.5),解得x=9.5;方法2:(50×0.5+45×0.5)÷(50﹣45)=47.5÷5=9.5(小时);50×(9.5﹣0.5)=450(千米).答:甲、乙两地的距离是450千米,原计划行使9.5小时.【点评】本题的解答思路是:通过比较已知条件,找出两个相关的差数,一是路程差,二是速度差,将这两个差相除,就可求出原计划行使的时间,然后再根据基本关系式:总差额÷每份的差额=总份数解答.6.【分析】(1)设后队追上前队需要x小时,根据后队比前队快的速度×时间=前队比后队先走的路程可列出方程,解出即可得出时间;(2)先计算出联络员所走的时间,再由路程=速度×时间即可得出联络员走的路程.(3)要分两种情况讨论:①当(2)班还没有超过(1)班时,相距2千米;②当(2)班超过(1)班后,(1)班与(2)班再次相距2千米,分别列出方程,求解即可.【解答】解:(1)设后队追上前队需要x小时,由题意得:(6﹣4)x=4×1,解得:x=2.故后队追上前队需要2小时;(2)后队追上前队时间内,联络员走的路程就是在这2小时内所走的路,所以10×2=20(千米).答:后队追上前队时间内,联络员走的路程是20千米;(3)要分三种情况讨论:①当(1)班出发半小时后,两队相距4×=2(千米)②当(2)班还没有超过(1)班时,相距2千米,设(2)班需y小时与(1)相距2千米,由题意得:(6﹣4)y=2,解得:y=1;所以当(2)班出发1小时后两队相距2千米;③当(2)班超过(1)班后,(1)班与(2)班再次相距2千米时(6﹣4)y=4+2,解得:y=3.答当0.5小时或1小时后或3小时后,两队相距2千米.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.【分析】(1)先设小亮走了x时追上哥哥,求出追上需要的时间,再求出小亮走的路程与全程比较,大于全程不能追上,小于全程就可以追上.从而得出答案.(2)由(1)的时间就可以求出小亮走的路程,总路程﹣小亮走的路程就是小亮追上哥哥时离学校的距离.【解答】解:(1)设小亮走了x时追上哥哥根据题意得:4×+4x=12x解得x=×12=1.5∵2千米>1.5千米∴小亮能追上哥哥(2)∵2﹣1.5=0.5(千米),∴小亮追上哥哥时离学校的距离为0.5千米.【点评】本题考查了列一元一次方程解生活中的实际问题中的追击问题的运用,列一元一次方程的方法的运用.解答时求出追上的时间是关键.8.【分析】由于让学生甲先步行,老师带乘学生乙,到达距博物馆一定地方,放下乙,让其步行,而老师再去接甲,最后三人同时到达,所以甲乙步行的路程相等,都设为x千米,根据乙步行的时间等于老师返回接甲并到达的时间列出方程,求出x的值即可.【解答】解:由于让学生甲先步行,老师带乘学生乙,到达距博物馆一定地方,放下乙,让其步行,而老师再去接甲,最后三人同时到达,所以甲乙步行的路程相等,都设为x千米根据乙步行的时间等于老师返回接甲并到达的时间得:=+,去分母得20x=4(33﹣2x)+5(33﹣x),解得x=9,所以共用时间+=3小时.【点评】本题考查的是一元一次方程的应用,解答此题的关键是熟知甲乙步行的路程相等列出方程.9.【分析】等量关系为:哥哥所走的路程=弟弟和妈妈所走的路程.【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.【点评】难点是得到弟弟和妈妈所用的时间,关键是找到相应的等量关系.10.【分析】(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.根据“总共行驶了198km”列方程;(2)AB段的路程为3×36=108(km),BC段的路程为.则往返时间=两段时间之和.【解答】解:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.据题意可得,.解得x=2.∴水流的速度为2km/h.(2)由(1)可知,顺流航行速度为40km/h,逆流航行的速度为36km/h.∴AB段的路程为3×36=108(km),BC段的路程为.故原路返回时间为:.答:游艇用同样的速度原路返回共需要5小时12分.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.【分析】(1)根据“行驶路程的和等于42千米”列出方程计算;(2)根据“行驶路程的差等于42千米”列出方程计算;(3)根据“两人行驶的路程相等”列出方程计算;【解答】解:(1)设x小时相遇,根据题意得:(21+14)x=42解得:x=答:经过小时两车相遇;(2)设经过y小时两车相遇,根据题意得:(21﹣14)y=42,解得:y=6小时;答:经过6小时两人首次相遇;(3)设经过z小时甲追上乙,根据题意得:21z=14(z+1),解得:z=2,答:甲经过2小时后追上乙.【点评】本题考查了一元一次方程的应用,解题的关键是了解路程、速度和时间之间的关系.12.【分析】(1)设王强从家出发后x分钟追上李明,则李明走的时间为(x﹣10)分钟,根据题意列出方程,求出方程的解即可得到结果;(2)王强能在李明到达花博园前追上李明,理由为:求出李明走的路程,比较即可得到结果.【解答】解:(1)设王强从家出发后x分钟追上李明,则李明走的时间为(x﹣10)分钟,根据题意得:140x=2000+100(x﹣10),解得:x=25,答:王强从家出发后25分钟追上李明;(2)王强能在李明到达花博园前追上李明,理由:从李明走(25﹣10)分钟的路程分析,(25﹣10)×100=1500(米),∵1500米<3000米,∴王强能在李明到达花博园前追上李明.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.13.【分析】由(1)得v下=(v上+1)千米/小时.由(2)得S=2v上+1由(3)、(4)得2v上+1=v下+2.根据S=vt求得计划上、下山的时间,然后可以得到共需的时间为:上、下上时间+山顶游览时间.【解答】解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.【点评】本题考查了应用题.该题的信息量很大,是不常见的应用题.需要进行相关的信息整理,只有理清了它们的关系,才能正确解题.14.【分析】(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了40 x千米,爸爸返回了(60x﹣5)千米.(2)设小颖从7点30分出发经过x小时与爸爸相遇,以路程和时间做为等量关系列出方程求解.(3)根据(2)中得到时间与90分钟作比较即可得到结论.【解答】解:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了40x千米,爸爸返回了(60x﹣5)千米(均用含x的代数式表示).故答案是:40x;(60x﹣5);(2)设小颖从7点30分出发经过x小时与爸爸相遇,根据题意得,40x+60(x﹣)=60×40x+60x﹣5=35x=,答:小颖从7点30分出发经过小时与爸爸相遇;(3)小颖的爸爸赶到机场共花时间:=(小时)=83分钟<90分钟.答:小颖的爸爸能在规定的时间内赶到机场.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.【分析】(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.【解答】解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.【点评】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:在求解应用题时,首先需要审题梳理信息,一般用什么方式梳理信息?
问题2:行程问题中会出现的关键词有哪些?
问题3:分析行程问题的运动过程通常采用什么样的方法进行?
一元一次方程应用题(行程问题)专项训练(一)
一、单选题(共7道,每道14分)
1.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为千米,则汽车下坡共用了( )小时.
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题
2.京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是20分钟,若设小王用自驾车方式上班的速度为千米/时,则小王家到上班地点的路程是( )千米.
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题
3.第七届中国郑开国际马拉松赛在郑开大道举行,为参加此次比赛,家住郑州的小李和家住开封的好友小王分别沿郑开大道匀速赶往对方家中.已知两人在上午9时同时出发,到上午9时40分,两人还相距km,到中午10时的时候,两人再次相距km,则两家之间的距离为( )km.
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题
4.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.设小明从家到学校用了分钟,则小明家到学校的路程可表示为( )米.
A.③④
B.④⑤
C.③⑤
D.①②
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题
5.哈尔滨到大连的哈大高铁在试运营时,预计高速列车在哈尔滨、大连间单程直达运行时间为3小时.某次试车时,试验列车由哈尔滨到大连的行驶时间比预计时间多用了6分钟,由大连返回哈尔滨的行驶时间与预计时间相同.如果这次试车时,由大连返回哈尔滨比去大连时平均每小时多行驶7千米.若从设哈尔滨到大连的哈大高铁轨道的长度是千米,则下列说法错误的是( )
A.
B.
C.
D.
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题
6.某人跑步的速度为每分钟150米,一辆货车从后面开来,越过他用了3秒钟.设货车的长为x米,则下列说法错误的是( )
A.
B.
C.
D.
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题
7.A,B两站间的距离为670km,一列慢车从A站开往B站,每小时行驶55km,慢车行驶1小时后,另一列快车从B站开往A站,每小时行驶85km,设快车行驶了小时后与慢车相遇,则依题意可列方程为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一元一次方程应用题——行程问题。

相关文档
最新文档