多晶硅太阳能电池制作工艺概述
多晶电池片生产工艺

多晶电池片生产工艺
多晶电池片生产工艺是制造太阳能电池的关键步骤之一。
多晶电池片以多晶硅为基材生产,经过一系列的工艺步骤来制造出高效、高质量的太阳能电池。
首先,原材料的准备是多晶电池片生产工艺的第一步。
多晶硅是制造多晶电池片的主要原料,它是通过石英砂经过高温冶炼、纯化、结晶等步骤得到的。
这些过程需要严格控制温度、压力和纯度,以确保多晶硅的质量。
接下来,多晶硅通过切割机械切割成薄片,厚度通常为0.2-
0.3毫米。
这些薄片将成为太阳能电池片的基材。
之后,薄片进入扩散炉,经过高温处理。
在扩散炉中,将磷源涂覆在薄片表面,然后通过高温使磷浸入薄片内部,形成p型硅区。
完成扩散后,薄片需要进行腐蚀处理。
腐蚀可以去除表面的氧化层,使薄片表面更加光滑。
这可以提高电池片的光电转换效率。
接下来是沉积反应层。
在沉积反应层内,利用高温和气体反应,将硅化物沉积在薄片表面,形成n型硅区。
沉积层的厚度要经过严格控制,以确保薄片的性能稳定。
完成沉积后,薄片需要进行打孔。
通过激光或机械打孔,使电池片的正负电极相连。
这可以提供电流传输的通道,以使电池
片能够输出电能。
最后,电池片经过清洗和检查等步骤,然后进行筛选和分级。
只有质量合格的电池片才能继续用于太阳能电池组件的生产。
多晶电池片生产工艺是复杂而精细的过程,需要严格控制各个环节的工艺参数,以确保产品的质量和效率。
随着技术的不断发展,多晶电池片生产工艺也在不断创新和改进,以提高太阳能电池的性能和降低成本。
多晶硅太阳能电池的制备及性能分析

多晶硅太阳能电池的制备及性能分析多晶硅太阳能电池是利用多晶硅材料制成的太阳能电池,其具有高效的光电转换效率和长期的使用寿命,因此在太阳能领域中得到了广泛的应用。
本文将介绍多晶硅太阳能电池的制备过程和性能分析。
一、多晶硅太阳能电池的制备过程1. 多晶硅的晶化多晶硅太阳能电池的制备需要使用多晶硅材料。
多晶硅材料是由多个单晶硅颗粒组成的,具有高晶界密度和低晶界带来的高电导率等性质。
因此,制备多晶硅太阳能电池的第一步是将硅原料进行晶化,得到多晶硅材料。
多晶硅的晶化方法主要有四种:氧化法、分解法、毒素氯化氢等化学气相沉积法和气-液界面沉积法。
其中,氧化法是最为常用的方法。
该方法的具体步骤为:将粉末状的硅原料加入制备装置,加热至其中心温度高于硅的熔点,保持一定时间使其成为液态,然后冷却,使其再次成为固态,形成多晶硅材料。
2. 多晶硅的切片制备多晶硅太阳能电池需要将多晶硅材料切成薄片,以便进行后续的加工。
多晶硅的切片方法主要有两种:线锯法和磨料法。
线锯法是先将多晶硅材料用钢丝锯切割成薄片,再用化学溶液进行酸蚀去边。
磨料法则是在多晶硅材料上撒上磨料,通过磨削将其切割成薄片。
3. 多晶硅薄片的清洗多晶硅薄片在切片过程中会留下微小的缺陷和杂质,这些对太阳能电池的制备会产生影响。
因此,需要对多晶硅薄片进行清洗。
多晶硅薄片的清洗方法主要有两种:化学法和物理法。
化学法是将多晶硅薄片浸泡在各种酸或碱溶液中,通过化学反应清除杂质和缺陷。
物理法是利用喷雾和超声波等物理手段清洗多晶硅薄片。
4. 制备太阳能电池将清洗后的多晶硅薄片进行切割,形成多晶硅太阳能电池的芯片。
将芯片进行表面处理,覆盖p型和n型材料,并在表面涂覆透明导电膜。
制备好后的多晶硅太阳能电池即可使用。
二、多晶硅太阳能电池性能分析1. 光电转换效率光电转换效率是太阳能电池的重要性能指标,也是判断多晶硅太阳能电池性能的重要指标。
光电转换效率越高,代表着太阳能电池将太阳能转化为电能的效率越高。
多晶硅太阳能电池制造加工

多晶硅太阳能电池制造加工太阳能电池是一种可以将太阳能直接转化为电能的设备。
其中多晶硅太阳能电池因其高效转化率和制造成本低廉而在太阳能电池市场中占有一定的份额。
本篇文章将探讨多晶硅太阳能电池的制造加工过程。
1、硅片制备多晶硅太阳能电池的制备过程中需要使用到硅片。
硅片制备一般分为两个阶段:单晶硅材料的生长和硅锭的制备。
单晶硅材料的生长常用的方法有:气相淀积法和液相区熔法。
硅锭的制备需要使用到单晶硅材料,一般使用Czochralski法或者费萨罗法进行制备。
2、硅片切割硅片切割是硅片制备的后续步骤,也是多晶硅太阳能电池制造加工的重要一步。
硅片切割常用的方法有:线锯切割法和研磨切割法。
线锯切割法适用于制备较厚的硅片,而研磨切割法适用于制备较薄的硅片。
3、表面处理硅片表面的处理对于太阳能电池的性能具有重要的影响。
在硅片表面涂覆一层氧化硅可以提高电池的转化率。
硅片表面涂覆的氧化硅可以通过湿法沉积或者干法沉积两种方式进行。
4、扩散/渗透扩散和渗透是多晶硅太阳能电池的核心步骤之一。
在这一步骤中,将掺杂剂(如硼、磷等)引入硅片中。
扩散和渗透的目的是形成PN结,PN结是太阳能电池中的核心结构,起到把太阳能转化为电能的作用。
5、制备背面电极成功形成PN结后需要制备背面电极和正面电极。
通常背面电极使用的材料是铝;正面电极使用的材料是银/铝。
对于多晶硅太阳能电池而言,背面电极的作用主要是提高电池的光吸收率,从而提高电池的效率。
6、烧结烧结是制造多晶硅太阳能电池的最后一步。
在烧结过程中,将电极烧结到硅片上,从而形成完整的太阳能电池。
烧结温度和时间对最终电池的性能具有极大的影响。
综上所述,多晶硅太阳能电池的制造加工过程是一个复杂的系统工程。
其中每一步骤都对电池的最终性能产生着重要的影响。
随着太阳能电池市场的持续扩大,多晶硅太阳能电池的制造技术也在不断提高,相信在不久的将来,太阳能电池将成为主流的清洁能源之一。
多晶硅太阳能电池的制备和性能优化

多晶硅太阳能电池的制备和性能优化多晶硅太阳能电池是一种常见而重要的太阳能电池类型。
该电池能够将太阳能转化为电能,并被广泛应用于太阳能发电领域。
然而,多晶硅太阳能电池的制备和性能优化是一个复杂而繁琐的过程。
本文将对多晶硅太阳能电池的制备和性能优化进行探讨。
一、多晶硅太阳能电池的制备多晶硅太阳能电池的制备过程包括硅材料准备、硅片切割、清洗、扩散、金属化等多个步骤。
以下是具体制备过程的描述。
首先,需要选择高质量的硅材料。
目前市场上常用的硅材料有单晶硅、多晶硅、非晶硅等。
多晶硅是一种价格相对较为合适的硅材料,常被用来制备太阳能电池。
在材料准备阶段,需要将原材料进行熔炼、焙烧等多个步骤,以获得高纯度的硅材料。
接下来,需要进行硅片的切割。
多晶硅太阳能电池制备过程中,需要将硅材料切割成较为薄的硅片,通常厚度在200-300um之间。
在切割过程中,需要保证硅片表面光滑,无明显划痕和破损。
然后,进行清洗和扩散处理。
在清洗阶段,需要将硅片进行去污、清洗等处理,以保证硅片表面洁净。
接着进行扩散处理,即在硅片表面上涂覆P型或N型硅材料,并在加热过程中使扩散剂与硅材料反应,形成P-N结,以提高硅片的导电性。
最后,进行金属化处理。
在该步骤中,需要将金属电极沉积在硅片上,以形成正负极。
常用的金属有铝、银、铜等。
金属化处理需要精确的工艺控制,以提高太阳能电池的效率和稳定性。
二、多晶硅太阳能电池的性能优化多晶硅太阳能电池的性能受多种因素影响,如硅片质量、扩散剂配比、金属电极厚度等。
以下是针对多晶硅太阳能电池制备过程中的性能优化措施。
1. 优化硅片的质量。
选用高纯度、低氧化物含量的硅材料制备硅片可以有效提高多晶硅太阳能电池的转换效率。
2. 优化扩散剂的配比。
采用合适的扩散剂配比,可以提高硅片表面的掺杂浓度,并增加P-N结的面积和深度,从而提高电池的效率。
3. 优化金属电极厚度。
在金属化处理过程中,适当增加负极厚度,可以显著提高太阳能电池的填充因子和光电流,从而提高电池的性能。
太阳能级多晶硅生产工艺介绍

流化床法是美国 Boeing 公司研发的多晶硅生产工艺,该方法主要采用硅籽作为 沉积体,再将其与卤硅烷进行反应,进而制造多晶硅。流化床法制造多晶硅需要 用到流化床反应器,具体反应过程如下:将 SiHCl3 和 H2 由底部注入到反应装 置中,在经过加热区和反应区后,可以和装置顶部的硅晶体进行反应,反应条件 需要处在高温环境,同时在气相沉积的作用下,硅晶体将会不断增多,最终可以 形成多晶硅产物。该方法与西门子法相比主要具有以下优势:第一,可以进行连
加的节能,能耗大约在 40kW·h/kg 左右。然而,该方法存在着一定的安全问题, 这是由硅烷的特性决定的,硅烷是一种易燃、易爆的气体,这极大地增加了硅烷 的保存难度,在日常生产过程中不易于管理。产品和晶种相对容易受到污染,存 在超细硅粉问题,工艺和设备成熟度较低。
3. 冶金法
冶金法制备多晶硅主要分为两个步骤:第一,需要采用真空蒸馏、定向凝固等方 式对工业硅进行提纯,去除工业硅中的杂质,使其纯度达到要求。第二,通过等 离子炉清除 C、B 等元素,得到更加纯净的硅元素。通过这种方式制备的多晶硅 具有 P-极性,并且电阻系数较小,因而具有较高的光电转化效果。日本 Kawasaki Steel 企业采用的就是这种制造方式,可以有效地对工业硅进行提纯。此外,上 述方法还可以进行优化,优化过程主要用到了湿法精炼极性处理。通过这种方式 可以对多晶硅进一步进行精炼,与未使用该方法相比,可以将太阳能电池的工作 效率提升到 15%左右。由此可见,多晶硅的纯度非常的重要,通过提高多晶硅 的纯度可以极大地改变多晶硅的物理特性,能够在很大程度上提高太阳能电池的 工作效率。
6. 电解法
电解法采用电解硅酸盐的方式得到纯度较高的硅,在电解装置中,以 C 作为阳 极,反应温度控制在 1000℃,在经过一段时间的电解反应后,Si 单质将会在阴 极上附着,阳极生成 CO2 气体。电解反应对电极材料的要求较高,这是因为在 电解反应中,尤其是温度较高的反应条件下,电极极易发生腐蚀,进而将新的杂 质引入反应体系中,如 B、P 等,对硅的纯度造成影响。以 CaCl2 作为熔盐电解 为例,使用石墨作为阳极,阴极采用特制材料。电解完成后,需要将阴极置于真
晶硅太阳能电池制造工艺流程及工序简介

ser刻蚀工序
❖ Laser刻蚀的目ห้องสมุดไป่ตู้、作用: 用激光切出绝缘沟道,可以使电池短路,减少电流泄漏。
硅片经Laser刻蚀后的示意图
18
7. 测试分选工序
❖ 主要是测量电池片的短路电流(JSC)、开路电压(VOC)、 填充因子(FF),经计算得出电池的光电转换效率(η) 。
❖ 根据电池的光电转换效率(η)对电池片进行分类。
2PO 5Si 5SiO 4P
25
2
这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。
去除磷硅玻璃的目的、作用:
1. 磷硅玻璃的厚度在扩散中工艺难控制,且其工艺窗口太小,不稳 定。
2. 磷硅玻璃的折射率在1.5左右,比氮化硅折射率(2.07左右)小, 若磷硅玻璃较厚会降低减反射效果。
3. 磷硅玻璃中含有高浓度的磷杂质,会增加少子表面复合,使电池 效率下降。
13
2. 扩散(POCl3液态扩散)
❖ 扩散的目的:制造太阳能电池的PN结。
❖ PN结是太阳能电池的“心脏” 。 ❖ 制造PN结,实质上就是想办法使受主杂质在半导体晶体内的一个
区域中占优势(P型),而使施主杂质在半导体内的另外一个区域 中占优势(N型),这样就在一块完整的半导体晶体中实现了P型 和N型半导体的接触。
2
单晶硅太阳电池
3
多晶硅太阳电池
4
非晶硅太阳电池
5
2. 硅太阳电池的制造工艺流程
❖ 下面我们就硅太阳电池的制造工艺流程以及各工序进行简 单的介绍。
❖ 晶体硅太阳能电池制造的常规工艺流程主要包括:硅片清 洗、绒面制备、扩散制结、(等离子周边刻蚀)、去 PSG(磷硅玻璃) 、PECVD 减反射膜制备、电极(背面电极、 铝背场和正电极) 印刷及烘干、烧结、Laser和分选测试等。 同时,在各工序之间还有检测项目,主要有抽样检测制绒效果、 抽样 测方块电阻、抽样测氮化硅减反射膜厚度和折射率等 项目。
简述多晶硅太阳能电池的制造流程

简述多晶硅太阳能电池的制造流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!多晶硅太阳能电池制造流程在太阳能产业中,多晶硅太阳能电池是最常见的一种类型。
多晶硅生产工艺和反应原理

多晶硅生产工艺和反应原理多晶硅是一种用于制造太阳能电池板的关键材料。
其制备工艺涉及多个步骤和反应原理。
多晶硅的生产工艺可以概括为以下几个主要步骤:1. 原料准备:多晶硅的主要原料是冶炼硅、矽酸钠和氢氯酸等。
这些原料在制备过程中需要进行精确的配比,以确保最终产品的质量和效能。
2. 冶炼硅的制备:首先,将原料中的冶炼硅与氢氧化钠进行反应,生成硅酸钠溶液。
然后,在高温下将溶液与电解质反应,从中析出粗硅。
这个过程主要是通过液相冶炼和电解两个步骤来完成的。
3. 精炼多晶硅:将粗硅放入电炉中,并在控制温度和环境的条件下进行加热。
通过向炉内加入能与杂质反应的物质(如氯化氢),可以将杂质从硅中去除。
这个过程被称为精炼,其目的是提高多晶硅的纯度。
4. 抽拉和切割:经过精炼的多晶硅会以一定的比例被抽拉成圆柱形的晶棒。
这个晶棒通常被切割成薄片,用于制造太阳能电池板。
切割过程需要高精确度的设备和操作,以确保最终产品的品质。
在多晶硅生产过程中,存在多个反应原理的作用:1. 溶液反应:冶炼硅与氢氧化钠反应形成硅酸钠溶液,这个反应产生了大量的热量。
同时,在高温下进行的电解质反应中,硅酸钠溶液被分解为纯硅和氢氧化钠,从而促使多晶硅的形成。
2. 杂质去除反应:在精炼多晶硅的过程中,通过向电炉中加入氯化氢等物质,可以与多晶硅中的杂质发生反应。
这些杂质会以气体或液体的形式被移出,从而提高多晶硅的纯度。
3. 抽拉和切割反应:在多晶硅被抽拉和切割的过程中,需要使用高精确度的设备和工艺控制,以确保晶棒和切片的质量。
这个过程主要是机械物理反应,通过切割工具对多晶硅进行切割和加工。
总而言之,多晶硅的生产工艺涉及多个步骤和反应原理。
从原料准备、冶炼、精炼到抽拉和切割,每一步骤都是为了提高多晶硅的纯度和形状,以满足太阳能电池板制造的要求。
通过控制反应条件和使用精确的设备,可以实现高质量的多晶硅生产。
多晶硅是一种非常重要的材料,广泛应用于太阳能电池板的制造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的
多
晶硅片上作出的电池转换效率超过14%。据报道,目前在50〜60微米多晶硅衬底上制作的电池
效
率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽
在同
样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到
对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表 面
光反射。但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方 法:
[1]刻槽
用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500〜900nm光谱范围内,反射率为4
〜6%,与表面制作双层减反射膜相当。而在(100)面单晶硅化学制作绒面的反射率为11%。
口(小于2微米),再淀积较宽的金属栅线 (通常为10微米),形成mushroom—like状电极, 用该
方法在4cm2 Mc-Si上电池的转换效率达到17.3%。目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。
2.3PN结的形成技术
[1]发射区形成和磷吸杂
对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而 在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝 化。扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺。目前采用选择扩散,15X
晶
硅电池,在非晶硅电池稳定性问题未取得较大进展时,多晶硅电池受到人们的关注,其世界产量
已
接近单晶硅,本文对目前多晶硅太阳电池的工艺发展分别从实验室工艺和规模化生产两个方面作 了
比较系统的描述。
1绪论
众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳
能
发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该
[4]制作减反射膜层
对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决 于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀
Ta2O5, PECVD沉积Si3N3等。ZnO导电膜也可作为减反材料。
2.2金属化技术
在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属
[2]化学刻槽
应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化 钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。据报道,该方法所 形
成的绒面对700〜1030微米光谱范围有明显的减反射作用。但掩膜层一般要在较高的温度下形 成,
引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。应用该工艺在225cm2的
表面复合提高,因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。另一个问题是金属 与 硅接触面较大时,必将导致少子复合速度提高。工艺中,采用了隧道结接触的方法,在硅和金属
成
间形成一个较薄的氧化层 (一般厚度为20微米左右) 应用功函数较低的金属(如钛等)可在硅表面 感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。另外一种方法是在钝化层上开出小 窗
的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,
晶粒
的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电
池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝 网
印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅
多晶硅太阳能电池制作工艺概述
多晶硅太阳能制作工艺概述
摘 要 大规模开发和利用光伏太阳能发电,提高电池的光电转换效率和降低生产成本是其核心
所
在,由于近十年人们对太阳电池理论认识的进一步深入、生产工艺的改进、IC技术的渗入和新电
池
结构的出现,电池的转换效率得到较大的提高,大规模生产上,多晶硅电池的转换效率已接近单
15.8%。
面从两个方面对多晶硅电池的工艺技术进行讨论。
2.实验室高效电池工艺
实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的 方法和途径,提供特定材料和工艺所能够达到的极限。
2.1关于光的吸收
对于光吸收主要是:
(1)降低表面反射;
(2)改变光在电池体内的路径;
(3)采用背面反射。
是
我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、
带
状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已
由
单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2]对太阳电池来
讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅
用 激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这
是长波光 (波长大于800nm)斜射进入电池的原因。激光制作绒面存在的问题是在刻蚀中,表面 造
成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。该方法所作的太阳电池通常短路电 流
较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。
材料相匹配。实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于1子镀。工业化大生产中也使用电镀工艺,但蒸发
和 光刻结合使用时,不属于低成本工艺技术。
[1]电子束蒸发和电镀
通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电 阻,往往需要金属层比较厚(8〜10微米)。缺点是电子束蒸发造成硅表面/钝化层介面损伤,使
多晶硅上所作电池的转换效率达到16.4%。掩膜层也可用丝网印刷的方法形成。
[3]反应离子腐蚀(RIE)
该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在450〜1000微米光谱范围的反
射率可小于2%。仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重, 电
池的开路电压和填充因子出现下降。