多晶硅太阳能电池工艺

合集下载

多晶硅太阳能电池制造加工

多晶硅太阳能电池制造加工

多晶硅太阳能电池制造加工太阳能电池是一种可以将太阳能直接转化为电能的设备。

其中多晶硅太阳能电池因其高效转化率和制造成本低廉而在太阳能电池市场中占有一定的份额。

本篇文章将探讨多晶硅太阳能电池的制造加工过程。

1、硅片制备多晶硅太阳能电池的制备过程中需要使用到硅片。

硅片制备一般分为两个阶段:单晶硅材料的生长和硅锭的制备。

单晶硅材料的生长常用的方法有:气相淀积法和液相区熔法。

硅锭的制备需要使用到单晶硅材料,一般使用Czochralski法或者费萨罗法进行制备。

2、硅片切割硅片切割是硅片制备的后续步骤,也是多晶硅太阳能电池制造加工的重要一步。

硅片切割常用的方法有:线锯切割法和研磨切割法。

线锯切割法适用于制备较厚的硅片,而研磨切割法适用于制备较薄的硅片。

3、表面处理硅片表面的处理对于太阳能电池的性能具有重要的影响。

在硅片表面涂覆一层氧化硅可以提高电池的转化率。

硅片表面涂覆的氧化硅可以通过湿法沉积或者干法沉积两种方式进行。

4、扩散/渗透扩散和渗透是多晶硅太阳能电池的核心步骤之一。

在这一步骤中,将掺杂剂(如硼、磷等)引入硅片中。

扩散和渗透的目的是形成PN结,PN结是太阳能电池中的核心结构,起到把太阳能转化为电能的作用。

5、制备背面电极成功形成PN结后需要制备背面电极和正面电极。

通常背面电极使用的材料是铝;正面电极使用的材料是银/铝。

对于多晶硅太阳能电池而言,背面电极的作用主要是提高电池的光吸收率,从而提高电池的效率。

6、烧结烧结是制造多晶硅太阳能电池的最后一步。

在烧结过程中,将电极烧结到硅片上,从而形成完整的太阳能电池。

烧结温度和时间对最终电池的性能具有极大的影响。

综上所述,多晶硅太阳能电池的制造加工过程是一个复杂的系统工程。

其中每一步骤都对电池的最终性能产生着重要的影响。

随着太阳能电池市场的持续扩大,多晶硅太阳能电池的制造技术也在不断提高,相信在不久的将来,太阳能电池将成为主流的清洁能源之一。

新能源技术知识:太阳能电池的产业化生产和制造工艺

新能源技术知识:太阳能电池的产业化生产和制造工艺

新能源技术知识:太阳能电池的产业化生产和制造工艺太阳能电池是将太阳辐射能转化为电能的一种装置,是太阳能利用的最基本的技术之一。

太阳能电池不仅具有无污染、可再生和背景良好等优点,而且其产业化生产对促进清洁能源产业的发展也具有重要的意义。

目前太阳能电池的制造主要分为单晶硅、多晶硅、非晶硅和柔性薄膜太阳能电池等几种不同的技术。

单晶硅太阳能电池:单晶硅太阳能电池是目前使用最广泛的太阳能电池类型之一。

其制造工艺需要从纯硅晶体中制成厚度约为0.3毫米的硅片,然后在硅片上切出200至300微米的薄片,再加上其他辅助生产设备制成太阳能电池。

单晶硅太阳能电池的效率高,稳定性好,长期使用后衰减很小,但其成本较高。

多晶硅太阳能电池:多晶硅太阳能电池制造工艺与单晶硅太阳能电池类似,其所使用的硅片是由多晶硅块晶体生长而成的,单晶硅太阳能电池成本较高。

多晶硅太阳能电池效率稍低,但其供给应用场景比单晶硅太阳能电池更广泛。

非晶硅太阳能电池:非晶硅太阳能电池以硅为基材,安放层叠的多层薄膜。

这种太阳能电池制造工艺简单,成本较低,但效率相对较低。

柔性薄膜太阳能电池:柔性薄膜太阳能电池以多种材料为基材,采用柔性工艺制造而成。

该电池型材较轻薄、柔韧、携带灵活,能适应各种曲面倾斜。

柔性太阳能电池制造工艺复杂,但成本较低,具有很大的市场发展空间。

在太阳能电池生产过程中,使用的核心技术为精确切割、配合材料、应用各种机械和化学技术等等。

太阳能电池产业化生产需要通过掌握各种专业技能和经验,以确保广泛使用时的安全、可靠和高效。

太阳能电池生产的辅助技术和设备包括:硅片生长炉设备、硅片切割机、清洗、涂层、刻蚀、衬底和加热设备等。

制造商也需要耗费大量的人力、财力和物力在质量管理、性能测试以及产品设计等方面的投入。

太阳能电池技术日益发展,新材料和新技术也不断出现,旧材料和旧技术也在不断更新。

建立太阳能电池产业链,发挥各个生产环节之间的优势,加快产业化发展步伐,将是推动太阳能电池产业发展,进一步推进可持续发展的关键所在。

多晶硅片生产工艺流程

多晶硅片生产工艺流程

多晶硅片生产工艺流程引言多晶硅片是太阳能电池等光电子器件的重要材料之一,其制备工艺具有关键性的影响。

本文将介绍多晶硅片的生产工艺流程,包括原料准备、硅熔炼、晶体生长、切割和清洗等环节。

一、原料准备多晶硅片的原料主要是硅石,经过粉碎、磁选等工艺,得到符合要求的硅石粉末。

硅石粉末中的杂质含量需要经过化学分析确定,以保证最终硅片的质量。

在原料准备阶段,还需要准备其他辅助材料,如硅片生长所需的石墨坩埚、保护板等。

二、硅熔炼硅熔炼是多晶硅片生产中的关键工艺环节。

首先,将准备好的硅石粉末放入炉中,加入适量的还原剂和助熔剂。

然后,将炉温逐渐升高到适宜的熔点。

在熔融过程中,还需要对炉膛中的气氛进行控制,以防止氧化和杂质的混入。

熔融后的硅液通过特定的铸锭装置冷却凝固,形成硅锭。

三、晶体生长晶体生长是将硅锭中的硅液形成单晶体的过程。

首先,将硅锭放入晶体生长炉中,在适宜的温度下进行升温。

随着温度升高,硅液从硅锭顶部逐渐下降,形成固态的硅单晶体。

在晶体生长过程中,需要控制炉温、拉速等参数,以获得理想的晶体结构和形状。

四、切割切割是将生长好的硅单晶体切成薄片的过程。

首先,在硅单晶体的表面进行纹理化处理,以提高光的吸收效率。

然后,将硅单晶体切割成薄片,通常采用金刚石线锯或者刀片进行切割。

切割后的硅片需要经过多次精密的平整和清洗工艺,以保证其表面的光洁度和纯净度。

五、清洗多晶硅片在生产过程中容易受到各种污染,因此清洗是不可或缺的环节。

首先,将切割好的硅片浸泡在溶剂中去除表面的油污和杂质。

接着,采用酸洗和碱洗的方法,去除硅片表面的氧化物和有机物。

最后,通过纯水冲洗,彻底去除残留的杂质和化学物质。

清洗后的硅片需要进行干燥处理,以保证表面的干净和光洁。

六、总结多晶硅片的生产工艺流程包括原料准备、硅熔炼、晶体生长、切割和清洗等环节。

每一个环节的控制都对最终的多晶硅片的质量和性能起着重要的影响。

通过不断优化和改进工艺流程,可以提高多晶硅片的生产效率和质量,推动光电子器件产业的发展。

硅基太阳能电池片工业上生产工艺流程

硅基太阳能电池片工业上生产工艺流程

硅基太阳能电池片工业上生产工艺流程1.原料准备:准备多晶硅块和其他辅助材料,如银浆、玻璃基板等。

Raw material preparation: Prepare polycrystalline silicon blocks and other auxiliary materials, such as silver paste, glass substrates, etc.2.切割硅片:将多晶硅块切割成薄片,作为太阳能电池片的基础材料。

Silicon wafer cutting: Cut polycrystalline silicon blocks into thin slices as the basic material for solar cell panels.3.清洗和抛光:经过切割后的硅片需要进行清洗和抛光,以提高表面平整度。

Cleaning and polishing: The cut silicon wafers need to be cleaned and polished to improve surface smoothness.4.衬底涂覆:在玻璃基板上涂覆一层透明导电氧化物膜,作为电池片的底部电极。

Substrate coating: Coat a layer of transparent conductive oxide film on the glass substrate as the bottom electrode of the solar cell panel.5.背面电场形成:利用掺杂和热处理形成背面电场结构,提高光电转换效率。

Formation of back surface field: Use doping and heat treatment to form a back surface field structure to improve photoelectric conversion efficiency.6.正面电场形成:在硅片正面形成p-n结构,形成正面电场,促进光生电荷的分离。

多晶硅太阳能电池的工作原理

多晶硅太阳能电池的工作原理

多晶硅太阳能电池的工作原理多晶硅太阳能电池是目前应用最广泛的一种太阳能电池技术。

它利用光的能量转化为电能,为人们提供了清洁的、可再生的能源。

本文将详细介绍多晶硅太阳能电池的工作原理,以及其在能源产业中的应用。

1. 多晶硅太阳能电池的结构多晶硅太阳能电池由多个薄片组成,每个薄片由多晶硅晶体构成。

这些多晶硅晶体的晶粒大小不一,边界存在缺陷,因此电池片的效率相对较低。

2. 光的入射与吸收多晶硅太阳能电池的工作原理是通过吸收光的能量来产生电流。

当太阳光照射到电池片表面时,光子的能量被多晶硅吸收,将光能转化为电能。

这个过程涉及到光子的能量交给半导体中的电子,使其跃迁到导电带,从而形成电流。

3. 光生电流的产生光子的能量跃迁到导电带后,会形成电子-空穴对。

多晶硅太阳能电池中,导电带是由硅晶体中的自由电子组成,而空穴则是缺乏电子的位置。

这些电子-空穴对的形成会导致在导电带中形成光生电流。

4. 电流的收集光生电流在电池片内流动,并通过金属导线传输出来。

多个电池片会连接在一起形成电池组,通过串联和并联的方式提高电压和电流的输出。

电池组可通过电流收集器将电能供给外部设备或储存起来。

5. 多晶硅太阳能电池的效率多晶硅太阳能电池的效率受到多个因素的影响。

首先,晶粒的大小和晶界缺陷会影响电池的效率。

晶粒越大、晶界缺陷越少,电池的效率越高。

其次,电池片的厚度也会对效率产生影响。

较薄的电池片可以提高透过率,但会降低光吸收量。

最后,表面反射和损耗也会对电池的效率造成一定影响。

6. 多晶硅太阳能电池在能源产业中的应用多晶硅太阳能电池广泛应用在能源产业中。

它可以用于家庭光伏发电系统,将太阳光转化为电能,为家庭供电。

此外,多晶硅太阳能电池还能应用于大型光伏电站、太阳能电池板等领域,为整个社会提供清洁的能源。

总结:多晶硅太阳能电池通过吸收光能将其转化为电能,在能源领域扮演着重要的角色。

通过工作原理的介绍,我们可以更好地理解多晶硅太阳能电池的运作方式及其在能源产业中的应用。

晶硅太阳能电池生产工艺

晶硅太阳能电池生产工艺

晶硅太阳能电池生产工艺
硅太阳能电池制作主要分为两个过程,单晶硅和多晶硅原材料的生产和电池片的制作。

常规晶硅太阳电池组件中,硅片的成本约占55%~60%,太阳电池制片成本约占15%~18%,组件材料及制造成本占约25%~27%、。

图1是单晶硅和多晶硅的生产过程,多晶硅可以看作是单晶硅的材料。

多晶硅棒直接用浇注法形成,单晶硅一般采用直拉法和区域熔化提纯法。

熔铸多晶硅锭比提拉单晶硅锭的工艺简单,省去了昂贵的单晶拉制过程,也能用较低纯度的硅作投炉料,材料利用率高,电能消耗较省。

同时,多晶硅太阳电池的电性能和机械性能都与单晶硅太阳电池基本相似,而生产成本却低于单晶硅太阳电池,这也是目前多晶硅太阳能电池得到快速发展的因素。

图1单晶硅和多晶硅原材料的生产工艺
单晶硅与多晶硅形成以后,就是电池制片工艺。

其工艺流程图如图2所示。

图2 单晶硅与多晶硅电池制片工艺流程图
由于单晶硅和多晶硅在物理结构上不一样,制绒环节不同,单晶硅主要有酸碱腐蚀形成绒面,而多晶硅由于晶界、位错、微缺陷等,酸碱腐蚀得到绒面效果不佳,目前多用机械刻槽,利用V形刀在硅表面摩擦以形成规则的V形槽;反应离子刻蚀技术,在硅表面沉积一层镍铬层,然后用光刻技术在镍铬层上印出织构模型,接着就用反应离子刻蚀方法制备出表
面织构,在硅表面制备出圆柱状和锥状织构,制成绒面,费用极高。

太阳能级多晶硅生产工艺介绍

太阳能级多晶硅生产工艺介绍
4. 流化床法
流化床法是美国 Boeing 公司研发的多晶硅生产工艺,该方法主要采用硅籽作为 沉积体,再将其与卤硅烷进行反应,进而制造多晶硅。流化床法制造多晶硅需要 用到流化床反应器,具体反应过程如下:将 SiHCl3 和 H2 由底部注入到反应装 置中,在经过加热区和反应区后,可以和装置顶部的硅晶体进行反应,反应条件 需要处在高温环境,同时在气相沉积的作用下,硅晶体将会不断增多,最终可以 形成多晶硅产物。该方法与西门子法相比主要具有以下优势:第一,可以进行连
加的节能,能耗大约在 40kW·h/kg 左右。然而,该方法存在着一定的安全问题, 这是由硅烷的特性决定的,硅烷是一种易燃、易爆的气体,这极大地增加了硅烷 的保存难度,在日常生产过程中不易于管理。产品和晶种相对容易受到污染,存 在超细硅粉问题,工艺和设备成熟度较低。
3. 冶金法
冶金法制备多晶硅主要分为两个步骤:第一,需要采用真空蒸馏、定向凝固等方 式对工业硅进行提纯,去除工业硅中的杂质,使其纯度达到要求。第二,通过等 离子炉清除 C、B 等元素,得到更加纯净的硅元素。通过这种方式制备的多晶硅 具有 P-极性,并且电阻系数较小,因而具有较高的光电转化效果。日本 Kawasaki Steel 企业采用的就是这种制造方式,可以有效地对工业硅进行提纯。此外,上 述方法还可以进行优化,优化过程主要用到了湿法精炼极性处理。通过这种方式 可以对多晶硅进一步进行精炼,与未使用该方法相比,可以将太阳能电池的工作 效率提升到 15%左右。由此可见,多晶硅的纯度非常的重要,通过提高多晶硅 的纯度可以极大地改变多晶硅的物理特性,能够在很大程度上提高太阳能电池的 工作效率。
6. 电解法
电解法采用电解硅酸盐的方式得到纯度较高的硅,在电解装置中,以 C 作为阳 极,反应温度控制在 1000℃,在经过一段时间的电解反应后,Si 单质将会在阴 极上附着,阳极生成 CO2 气体。电解反应对电极材料的要求较高,这是因为在 电解反应中,尤其是温度较高的反应条件下,电极极易发生腐蚀,进而将新的杂 质引入反应体系中,如 B、P 等,对硅的纯度造成影响。以 CaCl2 作为熔盐电解 为例,使用石墨作为阳极,阴极采用特制材料。电解完成后,需要将阴极置于真

多晶硅太阳能电池技术的研究及应用

多晶硅太阳能电池技术的研究及应用

多晶硅太阳能电池技术的研究及应用近年来,环境污染和化石能源的逐渐枯竭已经成为全球面临的重大问题之一,因此,对于可再生能源的研究特别受到人们的关注。

其中,太阳能是最具潜力的可再生能源之一。

太阳能电池作为太阳能发电的核心,其效率和性价比一直是太阳能电力领域的关键研究方向。

多晶硅太阳能电池技术作为太阳能电池的主流技术之一,目前广泛被应用于工业生产。

一、多晶硅太阳能电池技术的基本原理多晶硅太阳能电池技术的基本原理就是将硅源料熔化后,通过技术手段来使其冷却结晶形成多晶硅块,在之后的切割和抛光等工艺处理中得到多晶硅太阳能电池片。

而多晶硅太阳能电池片内部是由微米级别大小的晶粒组成的,因此分界面和晶界的比例比单晶硅太阳能电池片更高,这也是多晶硅太阳能电池片在电路增益和填充因子这些关键参数上相对差的原因之一。

二、多晶硅太阳能电池技术的研究进展及通用化多晶硅太阳能电池技术起步较早,但是由于钻石丝锯切技术及抛光等技术上的欠缺,以前的太阳能电池效率非常低。

近年来,在新工艺的加持下,多晶硅太阳能电池的效率得到了提升。

例如,钻石丝锯切技术越来越流行,可以生产高质量的硅片,这使得多晶硅太阳能电池在市场上得到更广泛的应用。

另外,多晶硅太阳能电池技术的通用化也是当前研究的一个焦点。

在多晶硅太阳能电池技术的普及过程中,其中一个关键因素就是生产成本。

现有的生产工艺中,硅片的成本占了太阳能电池整个产品成本的比重较大。

然而,通过创新设计和改进生产工艺,可以推动多晶硅太阳能电池技术的规模化制造和降低成本。

三、多晶硅太阳能电池技术的应用多晶硅太阳能电池技术广泛应用于家庭太阳能电源、商业和工业用途、建筑物外墙等几个方面。

对于家庭太阳能电源,多晶硅钙钛矿太阳能电池可以根据电力需求进行灵活组合,且效果显著,可以让家庭节约不少电费。

在商业和工业用途方面,多晶硅太阳能电池的特点是具有较强的承受压力能力和较强的耐候性,可以用于户外广告牌、停车场照明等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多晶硅太阳能电池制作工艺概述[ 雁舞白沙发表于 2005-10-16 18:11:00 ]孙铁囤陈东崔容强袁哓上海交通大学应用物理系太阳能所上海空间电源研究所摘要大规模开发和利用光伏太阳能发电, 提高电池的光电转换效率和降低生产成本是其核心所在,由于近十年人们对太阳电池理论认识的进一步深入、生产工艺的改进、IC技术的渗入和新电池结构的出现,电池的转换效率得到较大的提高,大规模生产上,多晶硅电池的转换效率已接近单晶硅电池,在非晶硅电池稳定性问题未取得较大进展时,多晶硅电池受到人们的关注,其世界产量已接近单晶硅,本文对目前多晶硅太阳电池的工艺发展分别从实验室工艺和规模化生产两个方面作了比较系统的描述。

1 绪论众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。

从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。

据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。

利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。

下面从两个方面对多晶硅电池的工艺技术进行讨论。

2. 实验室高效电池工艺实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。

2.1关于光的吸收对于光吸收主要是:(1)降低表面反射;(2)改变光在电池体内的路径;(3)采用背面反射。

对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。

但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法:[1]激光刻槽用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~900nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当。

而在(100)面单晶硅化学制作绒面的反射率为11%。

用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。

激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。

该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。

[2]化学刻槽应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。

据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。

但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。

应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。

掩膜层也可用丝网印刷的方法形成。

[3]反应离子腐蚀(RIE)该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在450~1000微米光谱范围的反射率可小于2%。

仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。

[4]制作减反射膜层对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5, PECVD沉积 Si3N3等。

ZnO导电膜也可作为减反材料。

2.2金属化技术在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。

实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于10微米),一般采用的方法为光刻、电子束蒸发、电子镀。

工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。

[1]电子束蒸发和电镀通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米)。

缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高,因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。

另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高。

工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。

另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线(通常为10微米),形成mushroom—like状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。

目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。

2.3 PN结的形成技术[1]发射区形成和磷吸杂对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。

扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺。

目前采用选择扩散,15×15cm2电池转换效率达到16.4%,n++、n+区域的表面方块电阻分别为20Ω和80Ω.对于Mc—Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc—Si的少子扩散长度提高两个数量级。

在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv, 转换效率超过17%。

[2]背表面场的形成及铝吸杂技术在Mc—Si电池中,背p+p结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVD SiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。

其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc—Si产生不利的影响。

到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。

[3]双面Mc—Si电池Mc—Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。

背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。

2.4 表面和体钝化技术对于Mc—Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面。

在氢气氛中退火可使钝化效果更加明显。

采用PECVD淀积氮化硅近期正面十分有效,因为在成膜的过程中具有加氢的效果。

该工艺也可应用于规模化生产中。

应用Remote PECVD Si3N4可使表面复合速度小于20cm/s。

3 工业化电池工艺太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是:[1]电池的制作工艺能够满足流水线作业;[2]能够大规模、现代化生产;[3]达到高效、低成本。

当然,其主要目标是降低太阳电池的生产成本。

目前多晶硅电池的主要发展方向朝着大面积、薄衬底。

例如,市场上可见到125×125mm2、150×150mm2甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下。

效率得到大幅度的提高。

***京磁(Kyocera)公司150×150的电池小批量生产的光电转换效率达到17.1%,该公司1998年的生产量达到25.4MW。

(1)丝网印刷及其相关技术多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。

a.发射区的形成利用丝网印刷形成PN结,代替常规的管式炉扩散工艺。

一般在多晶硅的正面印刷含磷的浆料、在反面印刷含铝的金属浆料。

印刷完成后,扩散可在网带炉中完成(通常温度在900度),这样,印刷、烘干、扩散可形成连续性生产。

丝网印刷扩散技术所形成的发射区通常表面浓度比较高,则表面光生载流子复合较大,为了克服这一缺点,工艺上采用了下面的选择发射区工艺技术,使电池的转换效率得到进一步的提高。

b.选择发射区工艺在多晶硅电池的扩散工艺中,选择发射区技术分为局部腐蚀或两步扩散法。

局部腐蚀为用干法(例如反应离子腐蚀)或化学腐蚀的方法,将金属电极之间区域的重扩散层腐蚀掉。

最初,Solarex应用反应离子腐蚀的方法在同一台设备中,先用大反应功率腐蚀掉金属电极间的重掺杂层,再用小功率沉积一层氮化硅薄膜,该膜层发挥减反射和电池表面钝化的双重作用。

在100cm2的多晶上作出转换效率超过13%的电池。

在同样面积上,应用两部扩散法,未作机械绒面的情况下转换效率达到16%。

c.背表面场的形成背PN结通常由丝网印刷A浆料并在网带炉中热退火后形成,该工艺在形成背表面结的同时,对多晶硅中的杂质具有良好的吸除作用,铝吸杂过程一般在高温区段完成,测量结果表明吸杂作用可使前道高温过程所造成的多晶硅少子寿命的下降得到恢复。

相关文档
最新文档