实验六磁电式传感器的性能

合集下载

磁电式传感器实训报告

磁电式传感器实训报告

一、实验目的1. 了解磁电式传感器的工作原理和结构特点;2. 掌握磁电式传感器的安装、调试和应用方法;3. 学会使用磁电式传感器进行测量和信号处理;4. 提高实际操作能力和工程应用能力。

二、实验原理磁电式传感器是一种能将非电量的变化转换为感应电动势的传感器,它利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号。

磁电式传感器主要由永久磁钢、感应线圈、电路等部分组成。

当被测物体运动时,磁钢与线圈产生相对运动,线圈中的磁通量发生变化,从而在线圈中产生感应电动势。

三、实验器材1. 磁电式传感器:型号为LM393;2. Arduino Uno控制板;3. USB数据线;4. 振动平台;5. 示波器;6. 直流稳压电源;7. 电桥;8. 霍尔传感器;9. 差动放大器;10. 电压表;11. 测微头。

四、实验步骤1. 磁电式传感器安装:将磁电式传感器安装在振动平台上,确保传感器与振动平台固定牢固。

2. 传感器调试:调整传感器与振动平台的相对位置,使传感器能够正常工作。

3. 磁电式传感器信号采集:使用Arduino Uno控制板采集磁电式传感器的信号。

4. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

5. 霍尔传感器安装:将霍尔传感器安装在振动平台旁的支架上,确保传感器与振动平台固定牢固。

6. 霍尔传感器信号采集:使用Arduino Uno控制板采集霍尔传感器的信号。

7. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

8. 比较两种传感器特性:比较磁电式传感器和霍尔传感器的信号波形和频率,分析两种传感器的优缺点。

9. 实验结果分析:根据实验结果,分析磁电式传感器的测量精度、响应速度和抗干扰能力。

五、实验结果与分析1. 磁电式传感器信号波形和频率:通过示波器观察,磁电式传感器信号波形稳定,频率与振动频率一致。

2. 霍尔传感器信号波形和频率:通过示波器观察,霍尔传感器信号波形稳定,频率与振动频率一致。

磁阻效应及磁阻传感器实验

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法;2、测量锑化铟传感器的电阻与磁感应强度的关系;3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线和直线拟合;4、学习用磁阻传感器测量磁场的方法。

三、实验原理:磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。

和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。

若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。

磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。

由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。

目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。

一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。

如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。

如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。

如果将图1中U H短路,磁阻效应更明显。

因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。

当磁感应强度平行于电流时,是纵向情况。

若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。

而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。

实验06(电涡流传感器)实验报告

实验06(电涡流传感器)实验报告

实验六-电涡流传感器实验1:电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验原理通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。

涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。

电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。

电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。

三、实验器械主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。

四、实验接线图五、实验数据记录以及数据分析实验数据如下:实验数据拟合图像如下:数据分析:由图像可知,位移-输出电压曲线的线性区域是0.4mm~4.4mm,进行正、负位移测量时的最佳工作点2.4mm处。

实验拟合直线方程为:y=1.9885x-0.8639灵敏度和非线性误差计算:测量范围为1mm时,灵敏度为1.0677(V/mm),非线性误差为20.426%测量范围为3 mm时,灵敏度为1.7738(V/mm),非线性误差为12.244%六、实验备注电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器?与被测物体的磁导率,电导率,尺寸因子,探头线圈的电流强度和频率有关。

通过调节前面五个因素的组合来达到所需要的量程。

实验2:被测体材质对电涡流传感器特性影响一、实验目的了解不同的被测体材料对电涡流传感器性能的影响。

二、实验原理涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。

三、实验器械和实验1相同,另加铜和铝的被测体。

四、实验接线图和实验1相同。

五、实验数据记录以及数据分析实验数据记录如下:被测物体材料为铝时被测物体材料为铜时实验数据拟合图像如下:材料为铝,量程为1mm和3mm数据分析:由图像可知,位移-输出电压曲线的线性区域是0.1mm~1.0mm。

《传感器》实验指导书

《传感器》实验指导书

实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器双杆式悬臂梁应变传感器、托盘、砝码、数显电压表、±5V 电源、差动放大器、电压放大器、万用表(自备) 三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1) 式中RR∆为电阻丝电阻相对变化; k 为应变灵敏系数;ll∆=ε为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。

如图1-1所示,将四个金属箔应变片(R1、R2、R3、R4)分别贴在双杆式悬臂梁弹性体的上下两侧,弹性体受到压力发生形变,应变片随悬臂梁形变被拉伸或被压缩。

图1-1 双杆式悬臂梁称重传感器结构图通过这些应变片转换悬臂梁被测部位受力状态变化,可将应变片串联或并联组成电桥。

电桥的作用完成电阻到电压的比例变化,如图1-2所示R6=R7=R8=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RR RR E U ∆⋅+∆⋅=211/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR 。

图1-2 单臂电桥面板接线图四、实验内容与步骤1.悬臂梁上的各应变片已分别接到调理电路面板左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2.按图1-2只接好“差动放大器”和“电压放大器”部分,将“差动放大器”的输入端短接并与地相连,“电压放大器”输出端接数显电压表(选择200mV档),开启直流电源开关。

将“差动放大器”增益电位器与“电压放大器”增益电位器调至最大位置(顺时针最右边),调节调零电位器使电压表显示为0V。

关闭直流开关电源。

(两个增益调节的位置确定后不能改动)3.按图1-2接好所有连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R6、R7、R8构成一个单臂直流电桥。

磁场变化实验的高灵敏度探测手段与技术

磁场变化实验的高灵敏度探测手段与技术

磁场变化实验的高灵敏度探测手段与技术磁场是物质世界中不可或缺的基本要素之一。

磁场的变化是一种重要的实验现象,对于研究材料特性、电磁学、天体物理学等领域具有重要的意义。

为了探测磁场变化,科学家们不断探索和研发出一系列高灵敏度的探测手段和技术。

本文将介绍一些常见的磁场变化实验的高灵敏度探测手段与技术。

一、磁力传感器磁力传感器是一种常见的磁场探测手段。

磁力传感器可以根据磁场的变化产生相应的电信号,从而实现磁场变化的探测。

常见的磁力传感器包括霍尔元件、磁电传感器和磁阻传感器等。

这些传感器具有体积小、响应速度快、精度高等特点,可以用于测量微弱的磁场变化。

二、超导量子干涉仪超导量子干涉仪是一种基于超导技术的高灵敏度磁场探测技术。

它利用超导材料的特殊性质,在超导态和正常态之间产生干涉效应,从而实现对微弱磁场的高灵敏度探测。

超导量子干涉仪具有极高的分辨率和稳定性,可以实现对亚微特斯拉级别的磁场变化进行探测。

三、自旋共振技术自旋共振技术是一种利用磁场与材料中自旋的相互作用实现磁场探测的方法。

它基于自旋的磁共振现象,通过测量自旋的能级结构和能级跃迁来实现对磁场变化的探测。

自旋共振技术具有高分辨率、高灵敏度的特点,可以用于研究材料的磁性特性、生物医学等领域。

四、磁化弛豫技术磁化弛豫技术是一种通过测量材料中磁化过程的变化来实现磁场探测的方法。

磁化弛豫是指在磁场变化下,材料的磁化强度随时间变化的过程。

通过分析磁化弛豫过程的特征,可以获得磁场变化的信息。

磁化弛豫技术具有高灵敏度和简便易行的特点,适用于一些需要在恶劣环境下进行磁场探测的场合。

五、低温技术低温技术是一种重要的磁场探测手段和技术。

在低温条件下,材料的磁性和超导性能会发生显著变化,磁场变化可以通过测量样品的低温性质来间接反映。

低温技术具有高灵敏度和较好的稳定性,特别适用于对微弱磁场变化的探测。

六、其他技术除了上述介绍的手段和技术外,还有一些其他的高灵敏度磁场探测技术。

磁电式传感器的性能实验报告

磁电式传感器的性能实验报告

磁电式传感器的性能实验报告
磁电式转速传感器是利用磁电感应来测量物体转速的,属于非接触式转速测量仪表。

磁电式转速传感器可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。

磁电转速传感器的工作原理
磁电式转速传感器是以磁电感应为基本原理来实现转速测量的。

磁电式转速传感器由铁芯、磁钢、感应线圈等部件组成的,测量对象转动时,转速传感器的线圈会产生磁力线,齿轮转动会切割磁力线,磁路由于磁阻变化,在感应线圈内产生电动势。

磁电式转速传感器的感应电势产生的电压大小,和被测对象转速有关,被测物体的转速越快输出的电压也就越大,也就是说输出电压和转速成正比。

但是在被测物体的转速超过磁电式转速传感器的测量范围时,磁路损耗会过大,使得输出电势饱甚至是锐减。

磁电式转速传感器的特点
磁电式转速传感器的工作方式决定了它有很强的抗干扰性,能够在烟雾、油气、水汽等环境中工作。

磁电式转速传感器输出的信号强,测量范围广,齿轮、曲轴、轮辐等部件,及表面有缝隙的转动体都可测量。

磁电式转速传感器的工作维护成本较低,运行过程无需供电,完全是靠磁电感应来实现测量,同时磁电式转速传感器的运转也不需要
机械动作,无需润滑。

磁电式转速传感器的结构紧凑、体积小巧、安装使用方便,可以和各种二次仪表搭配使用。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告一、实验目的1、了解磁阻传感器的工作原理和特性。

2、掌握利用磁阻传感器测量地磁场的方法。

3、学会对实验数据进行处理和分析,得出地磁场的相关参数。

二、实验原理1、磁阻效应磁阻效应是指某些金属或半导体在磁场中电阻值发生变化的现象。

磁阻传感器就是利用磁阻效应来测量磁场的。

2、地磁场地磁场是地球周围存在的磁场,其强度和方向在不同的地理位置有所不同。

地磁场可以分解为水平分量和垂直分量。

3、测量原理通过将磁阻传感器放置在不同的方向,测量磁场在不同方向上的分量,然后利用三角函数关系计算出地磁场的大小和方向。

三、实验仪器1、磁阻传感器实验仪包括磁阻传感器、亥姆霍兹线圈、数字电压表等。

2、电脑及数据采集软件四、实验步骤1、仪器连接与调试将磁阻传感器与实验仪连接好,打开电源,预热一段时间,确保仪器正常工作。

2、测量地磁场水平分量(1)将磁阻传感器水平放置,旋转传感器,使数字电压表的示数最大,此时传感器的方向即为地磁场水平分量的方向。

(2)记录此时的电压值,根据仪器的标定系数,计算出地磁场水平分量的大小。

3、测量地磁场垂直分量(1)将磁阻传感器垂直放置,同样旋转传感器,使数字电压表的示数最大。

(2)记录电压值,计算出地磁场垂直分量的大小。

4、数据记录与处理将测量得到的数据记录下来,利用三角函数计算地磁场的大小和方向。

五、实验数据|测量项目|电压值(V)|标定系数(V/T)|磁场分量大小(T)|||||||地磁场水平分量|_____ |_____ |_____ ||地磁场垂直分量|_____ |_____ |_____ |六、数据处理1、地磁场大小根据公式$B =\sqrt{B_{H}^{2} + B_{V}^{2}}$,其中$B_{H}$为地磁场水平分量,$B_{V}$为地磁场垂直分量,计算地磁场的大小。

2、地磁场方向利用反正切函数$\theta =\arctan\frac{B_{V}}{B_{H}}$计算地磁场的方向。

(整理)大学物理自主设计性实验

(整理)大学物理自主设计性实验

大学物理自主设计性实验(FB716-Ⅱ型物理设计性(传感器)实验装置)实验指导书杭州精科仪器有限公司目录第一、产品简介 (02)第二、实验项目内容 (04)实验一、应变片性能—单臂电桥 (04)实验二、应变片:单臂、半桥、全桥比较 (06)实验三、移相器实验 (08)实验四、相敏检波器实验 (10)实验五、应变片—交流全桥实验 (12)实验六、交流全桥的应用—振幅测量 (14)实验七、交流全桥的应用—电子秤 (14)实验八、霍尔式传感的直流激励静态位移特性 (16)实验九、霍尔式传感的应用——电子秤 (17)实验十、霍尔片传感的交流激励静态位移特性 (17)实验十一、霍尔式传感的应用研究—振幅测量 (18)实验十二、差动变压器(互感式)的性能 (19)实验十三、差动变压器(互感式)零点残余电压的补偿 (20)实验十四、差动变压器(互感式)的标定 (21)实验十五、差动变压器(互感式)的应用研究—振幅测量 (22)实验十六、差动变压器(互感式)的应用—电子秤 (23)实验十七、差动螺管式(自感式)传感器的静态位移性能 (24)实验十八、差动螺管式(自感式)传感器的动态位移性能 (25)实验十九、磁电式传感器的性能 (26)实验二十、压电传感器的动态响应实验 (27)实验二十一、压电传感器引线电容对电压放大器、电荷放大器的影响 (28)实验二十二、差动面积式电容传感器的静态及动态特性 (29)实验二十三、扩散硅压阻式压力传感实验 (30)实验二十四、气敏传感器(MQ3)实验 (32)实验二十五、湿敏电阻(RH)实验 (34)实验二十六、热释电人体接近实验 (34)实验二十七、光电传感器测转速实验 (36)第三、结构安装图片和说明 (37)第一、产品简介一、FB716-II型物理设计性(传感器)实验装置本实验装置主要由以下所述5个部分组成:1.传感器实验台部分:装有双平行振动梁(包括应变片上下各2片、梁自由端的磁钢)、双平行梁测微头及支架、振动盘(装有磁钢、用于固定霍尔传感器的二个半圆磁钢、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子、压电传感器),安装时可参考第三部分结构图片及安装说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档