变压器的设计

合集下载

变压器的设计计算方法

变压器的设计计算方法

变压器的设计计算方法变压器是电力系统中常用的电气设备,用来实现电能的传输和变换。

设计一个变压器需要考虑多种因素,包括预期的功率大小、电流密度、电压比、损耗和效率等。

下面将详细介绍变压器的设计计算方法。

1.确定设计参数:在设计变压器之前,需要明确需要满足的设计参数。

这包括输入和输出的电压、额定功率、频率等。

同时还需要了解电力系统的电压等级和标准,以确保变压器的设计符合系统要求。

2.计算变压器的额定功率:变压器的额定功率是指变压器能够输送的最大功率。

一般来说,额定功率可以通过下式计算得到:额定功率=输出电压×额定电流其中,额定电流可以通过下式计算得到:额定电流=额定功率/输入电压3.计算变压器的线圈匝数:线圈匝数的选择是决定变压器变比的重要因素。

通常情况下,变压器的线圈匝数比根据输入和输出电压的比例确定。

可以使用下式计算线圈匝数比:线圈匝数比=输入电压/输出电压4.确定变压器铁芯尺寸:变压器的铁芯尺寸是变压器的一个关键参数,直接影响变压器的功率和损耗。

选择合适的铁芯尺寸需要考虑到磁通密度、饱和磁感应强度和铁芯截面积等因素。

一般来说,可以使用下式计算铁芯截面积:铁芯截面积=额定功率/(线圈匝数×磁通密度×频率×磁通波动系数)5.计算变压器的损耗和效率:变压器的损耗和效率是设计中需要重点考虑的因素。

变压器的总损耗可以分为载流损耗和空载损耗两部分。

载流损耗是指变压器在额定电流下的功率损耗,可以通过下式计算得到:载流损耗=额定电流²×电阻总和空载损耗是指变压器在没有负载时的功率损耗,可以通过下式计算得到:空载损耗=铁芯损耗+线圈损耗其中,铁芯损耗可以通过下式计算得到:铁芯损耗=铁芯重量×铁芯材料的比热损耗系数线圈损耗可以通过下式计算得到:线圈损耗=线圈总重量×线圈材料的比热损耗系数变压器的效率可以通过下式计算得到:效率=(额定功率-损耗)/额定功率6.进一步优化设计:在上述基本设计计算完成之后,可以根据需要对变压器的设计进行进一步优化。

变压器设计计算公式

变压器设计计算公式

变压器设计计算公式1.整流变压器的设计计算公式:-一次侧绕组电流(I1)=输出电流(I2)×变比(N2/N1)- 一次侧绕组电压 (V1) = 输出电压峰值(V2_peak) × 变比(N2/N1)-二次侧绕组电流(I2)=二次负载功率(P2)/二次电压(V2)- 二次侧绕组电压 (V2) = 输出电压峰值(V2_peak) / √2-变比(N2/N1)=输出电压(V2)/输入电压(V1)-一次绕组线圈数(N1)=输入电压(V1)×变比(N2/N1)/输入电流(I1) - 二次绕组线圈数 (N2) = 输出电压峰值(V2_peak) × 变比(N2/N1) / 二次电压 (V2)2.隔离变压器的设计计算公式:-一次侧绕组电流(I1)=输出电流(I2)×变比(N2/N1)-一次侧绕组电压(V1)=输出电压(V2)×变比(N2/N1)-二次侧绕组电流(I2)=输出电流(I2)-二次侧绕组电压(V2)=输出电压(V2)-变比(N2/N1)=输出电压(V2)/输入电压(V1)-一次绕组线圈数(N1)=输入电压(V1)×变比(N2/N1)/输入电流(I1) -二次绕组线圈数(N2)=输出电压(V2)×变比(N2/N1)/输出电流(I2)3.功率变压器的设计计算公式:-铁芯截面积(A)=额定功率(P)/(变压器磁密(B)×变压器有效磁路长度(l))-铁芯有效磁路长度(l)=铁芯总长度(L)-窗口长度(Lw)-铁芯总长度(L)=两个E型铁片数量(n)×一个E型铁片长度(L1)+两个I型铁片数量(n)×一个I型铁片长度(L2)-窗口高度(Hw)=二次绕组高度(H2)-绝缘层厚度(h)-窗口宽度(Ww)=二次绕组宽度(W2)-绝缘层厚度(h)-铁芯窗口面积(Aw)=窗口高度(Hw)×窗口宽度(Ww)-铁芯有效磁路长度(l)=铁心总长度(L)-窗口总长度(Lw)需要注意的是,这些计算公式只是基础的设计公式,实际工程中还需要考虑到各种损耗和效率、绝缘、散热等因素的影响,以得到准确的变压器设计结果。

变压器设计与性能评估

变压器设计与性能评估

变压器设计与性能评估变压器是电能传输和分配系统中不可缺少的关键设备。

它具有将交流电能从一个电压等级传送到另一个电压等级的功能。

本文将探讨变压器的设计以及性能评估的相关内容。

一、变压器设计在进行变压器设计之前,首先需要确定变压器的使用情况和要求。

这包括输入和输出的电压等级、额定功率、变压器类型等。

在得到这些信息后,可以按照以下步骤进行变压器设计。

1. 计算变压器的额定容量变压器的额定容量是指变压器能够持续工作的最大功率。

根据输入和输出的电压等级以及额定功率,可以通过公式P=√3 * U1 * U2 * I / 1000 来计算变压器的额定容量。

其中P为变压器的额定容量,U1和U2分别为输入和输出的电压,I为变压器的额定电流。

2. 确定变比变比是指输入和输出电压之间的转换比例。

根据输入和输出的电压等级,可以计算出变比。

变比的计算公式为 a = U1 / U2,其中a为变比,U1和U2分别为输入和输出的电压。

3. 计算绕组参数绕组是变压器中的关键部分,通过绕组可以实现电能的转换。

绕组的设计涉及到导线的截面积、匝数以及互感器的制造方法等。

根据变压器的额定容量和额定电流,可以计算出绕组的参数。

4. 选择核心材料核心材料是变压器的另一个重要部分,它承担着传递磁场和减少能量损耗的功能。

核心材料的选择应考虑其磁导率、矫顽力以及磁滞损耗等因素。

根据变压器的额定容量和工作频率,可以选择合适的核心材料。

5. 进行设计计算根据以上参数和要求,进行细致的设计计算。

这包括计算绕组和核心的尺寸、绝缘材料的选择以及冷却系统的设计等。

设计完成后,可以制作变压器的原型进行测试。

二、变压器性能评估变压器的性能评估是确保其正常运行和高效能转换的关键环节。

常用的性能评估指标包括效率、温升、短路阻抗和空载损耗等。

1. 效率评估效率是指变压器能够将输入功率转换为输出功率的比例。

通过对输入和输出功率的测量,可以计算变压器的效率。

一般来说,变压器的效率应高于90%。

变压器设计方案

变压器设计方案

变压器设计方案变压器设计方案变压器是一种电气设备,用于改变交流电的电压。

在设计变压器时,需要考虑多个因素,例如输出电压、输入电压、功率损耗等等。

下面是一个基本的变压器设计方案。

1. 确定输出电压和输入电压:首先要确定变压器的输出电压和输入电压。

根据需要,计算所需的变压比。

例如,如果需要从220V的电源转换成110V的输出电压,变压比为2:1。

2. 计算功率:根据所需的输出电流和输入电压计算功率。

功率的计算公式为P=IV,其中P为功率,I为电流,V为电压。

根据功率的计算结果,选择合适的导线和铁芯材料。

高功率变压器需要使用更大的导线和更大的铁芯。

3. 选择合适的铁芯材料:铁芯材料对变压器的性能有很大的影响。

铁芯的主要作用是增强磁场,使得变压器的效率更高。

常用的铁芯材料有硅钢片和铁氧体。

硅钢片具有良好的磁导率和低的铁损耗,而铁氧体则具有更高的饱和磁感应强度。

4. 计算匝数:变压器的匝数对变压器的变压比和效率有很大的影响。

根据所需的变压比,计算主副线圈的匝数。

匝数的计算公式为N2/N1=V2/V1,其中N为匝数,V为电压。

根据匝数的计算结果,选择合适的导线。

5. 确定冷却方式:高功率变压器在工作时会产生较多的热量,因此需要选择合适的冷却方式,以确保变压器的正常工作。

常见的冷却方式有自然冷却和强制冷却。

6. 进行实际制造:在完成设计后,可以开始制造变压器。

根据设计方案,选择合适的导线、铁芯和冷却器进行制造。

在制造过程中,需要注意保证匝数的准确性、绕线的均匀性和绝缘材料的使用。

7. 进行测试和调试:制造完成后,需要对变压器进行测试和调试,以确保其正常工作。

可以使用电压表和电流表进行测试,检查输出电压和输入电流是否符合设计要求。

综上所述,一个变压器的设计方案需要考虑输出电压、输入电压、功率、铁芯材料、匝数、冷却方式等多个因素。

正确认识和处理这些因素,能够设计出性能良好的变压器。

同时,在实际制造和测试过程中,也要注意细节和质量控制,保证变压器的稳定性和安全性。

变压器的设计范文

变压器的设计范文

变压器的设计范文变压器是一种用于将交流电能从一个电路传递到另一个电路的电气设备。

它通过电磁感应原理工作,将输入电压变换为所需的输出电压。

变压器广泛应用于输电、发电、配电和电子设备中,因此其设计非常重要。

1.确定变压器的功率需求:首先,需要确定所需的输入功率和输出功率。

输入功率是指从电源输入的功率,而输出功率则是输出给负载的功率。

这些功率决定了变压器的尺寸和材料的选取。

2.确定变压器的额定电压:根据所需的输出电压和输入电压,可以计算变压器的变比。

变比是指输入电压与输出电压之间的比值。

选择适当的额定电压可以确保系统的稳定性和安全性。

3.计算变压器的绕组参数:变压器绕组是变压器的核心部分,负责将电能从一个线圈传递到另一个线圈。

绕组的设计涉及到导线的直径、绕组的层间绝缘和绕组的电阻等参数。

这些参数需要满足电流容量、损耗和温度升高等考虑。

4.选择合适的磁芯材料:变压器的磁芯是通过电磁感应实现能量传递的关键部分。

常用的磁芯材料包括硅铁、镍铁等。

根据所需的磁通密度和工作频率选择合适的磁芯材料。

5.设计变压器的冷却系统:由于变压器在工作过程中会产生热量,所以需要设计合适的冷却系统来散热。

常见的冷却系统包括自然冷却、风冷和水冷等。

根据功率需求和环境条件选择适当的冷却系统。

6.进行电路分析和模拟:通过使用电路分析工具和模拟软件,可以模拟和优化变压器的设计。

这可以节省时间和成本,并确保所设计的变压器符合要求。

7.制作和测试样品:在进行大规模制造之前,必须制作和测试样品。

这可以帮助验证设计的正确性和可行性,并进行必要的改进。

8.进行负载和故障测试:在将变压器投入使用之前,必须进行负载和故障测试。

这些测试可以确保变压器在高负载和故障条件下的性能和安全性。

变压器设计公式范文

变压器设计公式范文

变压器设计公式范文变压器设计是电力系统中非常重要的一环,通过变压器可以实现电压的升降,从而适应不同电气设备的需求。

变压器设计需要考虑多个因素,包括额定功率、额定电压、效率、温升和尺寸等。

本文将介绍变压器设计的基本公式和相关注意事项。

一、基本公式1.变比公式变压器的变比公式可以用如下公式表示:N1/N2=U1/U2=I2/I1其中,N1和N2分别表示一次侧和二次侧的匝数,U1和U2分别表示一次侧和二次侧的电压,I1和I2分别表示一次侧和二次侧的电流。

2.功率公式电力变压器的功率可以用如下公式表示:P = √3 x U x I x cosφ其中,P表示功率,U表示电压,I表示电流,φ表示功率因数。

二、设计的基本要点1.额定功率计算额定功率是指变压器能够长时间、稳定地传输的功率。

额定功率的计算通常是根据负载功率和变压器的额定电压进行估算的。

功率计算公式如下:P=UxI其中,P表示功率,U表示电压,I表示电流。

2.额定电压选择额定电压选择需要根据实际需求和系统的电压水平来确定。

通常,一次侧的额定电压会根据电力系统的电压等级来选择。

二次侧的额定电压一般根据用户的需求来确定。

3.匝数计算变压器的匝数计算涉及到一次侧和二次侧的电压和电流。

匝数的计算可以通过变比公式或额定功率公式得到。

4.功率因数功率因数是指电流与电压之间的相位关系。

在变压器的设计过程中,需要考虑功率因数对变压器性能的影响。

通常,功率因数一般会控制在0.8至1之间,以提高系统的效率。

5.效率计算变压器的效率是指输出功率和输入功率之间的比值。

通常,变压器的效率应在85%以上。

效率的计算公式如下:效率=输出功率/输入功率x100%6.温升计算变压器在工作过程中会产生一定的损耗,从而导致温度升高。

为了确保变压器的稳定运行和寿命,需要对变压器的温升进行合理计算和控制。

温升计算的公式如下:温升=PxR其中,P表示损耗,R表示热阻。

7.尺寸计算变压器的尺寸计算需要考虑绕组的大小、冷却装置的布置以及外壳的设计等。

电源变压器的设计与优化

电源变压器的设计与优化

电源变压器的设计与优化近年来,随着电子设备的发展和普及,电源变压器作为能量转换的关键部件之一,在各个领域扮演着重要的角色。

电源变压器的设计与优化是提高电子设备性能和效率的关键环节。

本文将深入探讨电源变压器的设计原理、优化方法以及实际应用中可能遇到的问题,并给出解决方案。

一、电源变压器的设计原理电源变压器是一种用于改变电压和电流的设备,将输入的交流电能转换成适合电子设备使用的电能。

其主要由铁芯、线圈和外包装等部分组成。

设计电源变压器需要考虑的主要因素如下:1. 输入输出电压和电流。

根据所需的输出电压和电流,确定变压器的参数,如匝数、线径等。

2. 电源变频。

根据输入电源的频率,确定变压器的工作频率范围。

3. 效率和功率因数。

设计变压器应充分考虑其能量转换效率和功率因数,以提高电源的效率和减小能量的浪费。

4. 绝缘和耐压。

为确保变压器在工作过程中的安全性和可靠性,需要保证绝缘材料和结构能够承受所需的耐压水平。

基于以上原则,设计电源变压器时需要进行详细的电路计算和结构设计,以满足输出参数和性能要求。

二、电源变压器的优化方法为了进一步提高电源变压器的性能和效率,可以采用以下优化方法:1. 选择合适的铁芯材料。

铁芯是电源变压器的重要组成部分,直接影响到工作效率和磁通损耗。

针对不同的应用场景,可以选择合适的铁芯材料,如硅钢片、铝镍锰合金等,以提高能量转换效率。

2. 优化线圈设计。

线圈是电源变压器的导线部分,通过线圈的匝数、线径和绕组方式等参数的调整,可以有效减小线圈的电阻、电感和损耗,提高电源的效率。

3. 降低功率损耗。

功率损耗是电源变压器不可避免的问题,但可以通过合理设计降低损耗。

例如,采用低温度升高和低磁通密度进行设计,选择合适的损耗材料以及增加冷却措施等,都可以有效减小功率损耗。

4. 优化绝缘结构。

电源变压器的绝缘结构是确保安全和可靠性的关键因素。

合理选择绝缘材料和结构布局,加强绝缘测试和控制,可以提高电源变压器的绝缘性能。

电力变压器的设计和优化

电力变压器的设计和优化

电力变压器的设计和优化随着能源需求的不断增长,电力系统中的变压器越来越成为重要的设备。

电力变压器可以使电能在不同的电压等级中进行传递,从而满足电力的需求。

因此,在电力系统中,变压器的设计和优化至关重要,可以提高电力系统的效率、优化能源利用,降低电力系统的损失。

一、变压器的基本概念1.1 变压器的工作原理变压器是一种静态电力设备,它主要是将电压从一个电压等级变换到另一个电压等级,同时保持电能的质量。

变压器的工作原理基于法拉第电磁感应定律。

当变压器中的电路闭合时,原边(输入端)的交流电流激起磁场,使它穿过变压器的铁芯和二次线圈。

这样就在二次线圈内建立了一个交变磁通,从而在二次线圈中感应出电动势。

因为原边和二次线圈的匝数比不同,所以它们之间的电压比也不同。

1.2 变压器的分类变压器可以按不同的标准进行分类。

按照应用,变压器可以分为电力变压器、配电变压器、特种变压器等。

按是否有铁芯,变压器可以分为铁心式变压器和无铁芯变压器。

按输出电流的波形,变压器可以分为线性变压器和非线性变压器。

二、变压器的设计与优化2.1 变压器的设计变压器的设计是电气工程师所必须面对的一个重要问题,它的目的是确保电力系统能够维持正常运行和稳定的电源。

在进行电力系统设计时,应该针对特定的情况和需求对变压器的参数进行计算。

根据功率、次级电压和基准电压等参数的确定,可以计算出变压器中的各项参数。

同时考虑到变压器的材料、结构和构造方法等因素,为电气工程师提供了一个清晰的数据架构。

2.2 变压器的优化对于已有的电力变压器,在工作时还可以进行一定的优化,以提高其效率和稳定性。

首先,可以采用周转式变压器的方法,改变变压器的接线方式以达到更好的效果。

其次,针对变压器的末缀电流、电压、损耗等基本参数进行调整和升级。

这样可以提高变压器的负载能力、减少线路损失和提高变压器的效率。

2.3 变压器的维护变压器在工作时会因为各种因素而出现故障,因此还需要进行维护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录目录_____________________________________________________ 0 摘要_________________________________________________ 2一、变压器的基本结构_____________________________________ 3二、变压器的工作原理____________________________________ 41、电压变换 __________________________________________ 32、电流变换 __________________________________________ 5三、设计内容____________________________________________ 41、额定容量的确定_____________________________________ 42、铁心尺寸的选定____________________________________ 53、计算绕组线圈匝数___________________________________ 74、计算各绕组导线的直径并选择导线_____________________ 85、计算绕组的总尺寸,核算铁芯窗口的面积 _______________ 90 四设计实例____________________________________________ 114、1 设计要求________________________________________ 114、2计算变压器参数___________________________________ 12 五总结_________________________________________________ 14 参考文献________________________________________________ 15 附录摘要随着我国经济建设的发展,电力工业规模迅速的壮大起来,变压器的单台容量与安装容量快速增长。

国际巨头强势参加海内市场竞争的面前,一方面瞧中的就是我国电力设备市场的伟大后劲;另一方面,也表现了中国企业长足的进步,尤其在质量方面,国产电力变压器已经越来越靠近海内程度,使得海内巨头们不得不拿出“瞧家身手”逐鹿中国市场。

变压器就是一种用于交流电能转换的电气设备。

它可以把一种交流电压、交流电流的电能转换成相同频率的另一种交流电压、交流电流的电能。

变压器在电力系统中的主要作用就是变换电压,以利于电能的传输。

电压经升压变压器升压后,可以减少线路损耗,提高送电经济性,达到远距离送电的目的。

电压经降压变压器降压后,获得各级用电设备的所需电压,以满足用户使用的需要。

此次设计的变压器为小型变压器,小型变压器指的就是容量1000V、A以下的变压器。

最简单的小型单相变压器由一个闭合的铁心(构成磁路)与绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成。

这类变压器在生活中的应用非常广泛。

一、变压器的基本结构1、铁心:铁心就是变压器磁路部分。

为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0、35或0、5mm、表面涂有绝漆的热轧或冷轧硅钢片叠装而成。

铁心分为铁柱与铁轭两部分,铁柱上套装有绕组线圈,铁轭则就是作为闭合磁路之用,铁柱与铁轭同时作为变压器的机械构件。

铁心结构有两种基本形式:心式与壳式。

2、绕组:绕组就是变压器的电路部分。

一般采用绝缘纸包的铝线或铜线绕成。

为了节省铜材,我国变压器线圈大部分就是采用铝线。

3、其它结构部件:储油柜、气体继电器、油箱。

图为单相心式变压器;1—铁柱;2—铁轭;3—高压线圈;4—低压线圈二、变压器的工作原理变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱与变压器)等,常用的铁心形状一般有E型与C型铁心。

变压器就是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。

变压器的主要部件就是一个铁心与套在铁心上的两个绕组,如图(1)所示。

一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。

原绕组各量用下标1表示,副绕组各量用下标2表示。

原绕组匝数为1N,副绕组匝数为2N。

理想状况如下(不计电阻、铁耗与漏磁),原绕组加电压u1,产生电流i1,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势e1与e2。

1、电压变换当一次绕组两端加上交流电压u1时,绕组中通过交流电流i1,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通。

说明只要改变原、副绕组的匝数比,就能按要求改变电压。

2、电流变换变压器在工作时,二次电流I2的大小主要取决于负载阻抗模|Z1|的大小,而一次电流I1的大小则取决于I2的大小。

说明变压器在改变电压的同时,亦能改变电流。

三、设计内容设计内容有四部分:额定容量的确定;铁心尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁心尺寸的最后确定。

1、额定容量的确定变压器的容量又称表现功率与视在功率,就是指变压器二次侧输出的功率,通常用KV A表示。

(1)二次侧总容量小容量单相变压器二次侧为多绕组时,若不计算各个绕组的等效的阻抗及其负载阻抗的幅角的差别,可认为输出总视在功率为二次侧各绕组输出视在功率之代数与,即S2=U2I2+U3I3+、、、、+UnIn;式中 S2为二次侧容量(V、A),U2,U3、、、、Un为二次侧各个绕组电压的有效值;I2I3、、、In为二次侧各个绕组的负载电流有效值。

(2)一次绕组的容量对于小容量变压器来说,我们不能就认为一次绕组的容量等于二次绕组的总容量,因为考虑到变压器中有损耗,所以一次绕组的容量应该为式中S1——变压器的额定容量;变压器的效率,约为0、8~0、9,表3-1所给的数据就是生产时间的统计数据,可供计算时初步选用。

(3)一次电流的确定I 1=(1、1~1、2)S1/U1式中(1、1~1、2)考虑励磁电流的经验系数,对容量很小的变压器应取大的系数。

2、铁心尺寸的选定(1)计算铁心截面积A为了减小铁损耗,变压器的铁心就是用彼此绝缘的硅钢片叠成或非晶材料制成。

其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,变压器铁心在叠装时相临两层硅钢片的接缝要相互错开。

小容量心柱截面积A大小与其视在功率有关,一般用下列经验公式计算(单位2)。

表3-2S/(V.A) 0-10 10-50 50-50 0以上K0 22-1、751、5-1、41、4-1、2 1A——铁心柱的净面积,单位为cm2,K——截面计算系数,与变压器额定容量S有关,按表3-2选取,当采用优质冷轧硅钢片时K可取小些截面积计算系数K。

(2)确定铁心规格小容量变压器铁心形式多采用壳式,中间心柱上套放绕组,铁心的几何尺寸如图:。

式中a ——心柱的宽度(mm); b ——心柱的净叠(mm)b ’——心柱的实际厚度(mm), Kc ——叠片系数,就是考虑到铁心叠片间的绝缘所占空间引起铁心面积的减小所引入的。

对于0、5mm 厚,两面涂漆绝缘的热轧硅钢片,Kc=0、93;对于0、35mm 厚两面涂漆绝缘的热轧硅钢片,Kc =0、91;对于0、35mm 厚,不涂漆的冷轧钢片,Kc=0、95。

按A 的值,确定a 与b 的大小,答案就是很多的,一般取b=(1、2~2、0)a,,并尽可能选用通用的硅钢片尺寸。

表3-3列出了通用的小型变压器硅钢片尺寸。

·国产小功率变压器常用的标准铁芯片规格(部分)(表3)铁芯片型号铁芯规格(mm)尺寸(mm)参考数据 cHhLld h1中间舌片净截面积(cm2) 铁芯片厚度(mm)ab冷轧 热轧0、350、5 0、350、5GEIB3030×381991531068769、510、710、810、410、530×45 12、7 12、812、312、430×52 14、7 14、814、214、430×60 16、9 17、116、416、6GEIB35 35×4422105、5 61、5123 101 6 1114、514、614、14、235×52 17、1 17、316、616、735×60 19、7 20、19、119、335×70 23、0 23、322、322、5GEIB40 40×5118 6 13 18、819、18、218、440×60 22、6 22、821、822、140×70 26、3 26、625、525、83、计算每个绕组的匝数N由变压器感应电势E的计算式可以导出每伏所需要的匝数关于值,不同的硅钢片就是不一样的。

当变压器容量在100VA以下,通常冷轧硅钢片DW240-35、DW260-35型的取0、8~1、2T;当变压器容量为100~1000VA 时,可取1、2~1、5T。

当变压器容量在100VA以下,热轧硅钢片DR320-35、DR280-35、DR360-50、DR315-50型的取0、8~1、0T;当变压器容量为100~1000VA时,取0、9~1、2T。

一般可取在0、7~1、0T之间。

然后确定铁芯柱截面积(=ab)及,最后根据下式求取各个绕组的匝数。

一次侧绕组的匝数为二次侧绕组的匝数为注意:二次侧绕组中有5%的匝数就是为补偿变压器的漏感与导线铜损所增加的裕量。

4、计算各绕组导线的直径并选择导线导线直径计算式为式中:I为绕组电流,A;为导线截面积,cm2;d为导线直径,mm;为电流密度,A/。

所以有电流密度一般可按下述方法选取:100V A以下连续使用的变压器取=2、5A/;100V A以上连续使用的变压器取=2A/;变压器短时工作时,电流密度可以取大一些,即=4~5A/。

以计算的直径d为依据,查圆铜漆包线规格(见下表),选出标称直径接近而稍大的标准漆包线。

5、计算绕组的总尺寸,核算铁芯窗口的面积变压器绕组需绕在框架上,根据已知的绕组匝数、线径、绝缘厚度等计算出的绕组总厚度应小于铁芯窗口宽度c,否则,应重新计算或选铁芯(1)根据铁芯窗高h(mm),求取每层匝数为式中:0、9为考虑绕组框架两端各空出5%的地方不绕导线而留的裕度;2~4为考虑绕组框架厚度留出的空间;d′为包括绝缘厚度在内的导线直径。

(2)每个绕组需绕制的层数为(3)计算层间绝缘及每个绕组的厚度,,,…。

通常使用的绝缘厚度尺寸主要如下:1)一、二次绕组间绝缘的厚度为绕组框架厚度1mm,外包对地绝缘为二层电缆纸(2×0、07mm)夹一层黄蜡布(0、14mm),合计厚度=1、28mm。

相关文档
最新文档