八年级下数学半期考试试题.doc

合集下载

人教版数学八年级下册《期中考试题》及答案解析

人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1a 的值可以是( ) A .1-B .6-C .3D .7-2.如图,在ABC V 中,90ABC ∠=︒,D 为AC 中点,若2BD =,则AC 的长是( )A .6B .5C .4D .33.下列式子中,属于最简二次根式的是( )A B C D 4.如图,在菱形ABCD 中,80ABC ∠=o ,BA BE =,则AED =∠( )A .95oB .105oC .100oD .110o5.下列计算正确的是( )A 3B ﹣2C ﹣3D .5=6.用配方法解方程2230x x --=时,配方后正确的是( ) A .()222x -=- B .()214x -= C .()212x -=-D .()224x +=7.已知实数a 在数轴上的对应点位置如图所示,则化简|1|a - )A .32a -B .1-C .1D .23a -8.若x m =是方程240x x +-=的根,则22024m m ++的值为( ) A .2028B .2026C .2024D .20209.如图,在矩形ABCD 中,对角线AC BD ,交于点O ,过点O 作EF AC ⊥交AD 于点E ,交BC 于点F .已知4AB =,AOE △的面积为5,则DE 的长为( )A .2BCD .310.如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF ⊥DE ,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中:①DE =EF ;②△DAE ≌△DCG ;③AC ⊥CG ;④CE =CF .其中正确的是( )A .②③④B .①②③C .①②④D .①③④二、填空题11在实数范围内有意义的条件是 .12.如图,ABCD Y 的对角线AC BD ,相交于点O ,请你添加一个条件使ABCD Y 成为矩形,这个条件可以是 .13.若关于x 的一元二次方程2(2)210k x x --+=有实数根,则k 的取值范围是 . 14.如图,在平面直角坐标系中,正方形ABCD 的边长为2,60DAO ∠=︒,则点C 的坐标为 .15.如图,矩形ABCD 中,3AB =,AD =E 、F 分别是对角线AC 和边CD 上的动点,且AE CF =,则BE BF +的最小值是 .三、解答题 16.计算(2)((2222-17.解方程: (1)()()242++=+x x x (2)2310x x --=18.如图,在ABC V 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF BC ∥交CE 的延长线于点F .(1)求证:AF BD=;=,求证:四边形ADBF是矩形.(2)连接BF,若AB AC19.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以21039x x+=为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+ )2,另一方面它又等于图中各部分面积之和,因为x+=+,则方程的正数解是x=.21039x x+=,可得方程()239根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程267-=的正数解的正x x确构图是(填序号).20.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF . 猜想并证明:判断四边形AECF 的形状并加以证明. 21的计算,将分母转化为有理数,这就是“分母有理化==;==-.类似地,将分子转化为有理数,就称为“分子有理化21===;()222111-====.根据上述知识,请你解答下列问题: (1);(2)的大小,并说明理由.22.在菱形ABCD 中,60A ∠=︒,点E ,F 分别是边AB ,BC 上的点.【尝试初探】(1)如图1,若60EDF ∠=︒,求证:DE DF =; 【深入探究】(2)如图2,点G ,H 分别是边CD ,AD 上的点,连接EG 与FH 相交于点O 且60EOF ∠=︒,求证:EG FH = 【拓展延伸】(3)如图3,若点E 为AB 的中点,6AB =,1BF =,60EOF ∠=︒. ①设DH x =,CG y =,请用关于x 的代数式表示y ; ②若6CG DH +=,求EG 的长.。

山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

绝密★启用前2023-2024学年度第二学期期中考试初三数学试题说明:1.考试时间120分钟,满分120分.2.考试过程允许学生进行剪、拼、折叠等实验.一.选择题(本大题共10个小题,每小题3分,满分30分)1. 下列关于x的方程是一元二次方程的是( )A. B.C. D.答案:B解析:解:、,含有两个未知数,故本选项不符合题意;、,可化为,满足一元二次方程的定义,故本选项符合题意;、不是整式方程,故本选项不符合题意;、最高次数3,故本选项不符合题意;故选:.2. 下列二次根式中,属于最简二次根式的是()A. B. C. D.答案:C解析:解:、,故本选项不符合题意;、,故本选项不符合题意;、是最简二次根式,故本选项符合题意;、,故本选项不符合题意;故选:.3. 如图,的对角线交于点O,下列条件不能判定是菱形的是()A. B.C. D.答案:D解析:解:A.由、,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;B.由可得,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.由,根据对角线垂直的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.是的对边,不能说明四边形是菱形,故该选项符合题意.故选:D.4. 若关于x的方程有两个不相等的实数根,则m的值可能是()A. B. C. D. 7答案:A解析:关于x的方程有两个不相等的实数根,,解得,,,故选:A.5. 若,,则的值为()A. 3B.C. 6D.答案:D解析:解:∵,,∴.故选:D.6. 如图,在正方形中,点,分别在和边上,,,则的面积为()A. 6B. 5C. 3D.答案:C解析:四边形是正方形,四边形平行四边形,的面积为,故选:C7. 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案:B解析:解:如图,四边形中,于点,、、、分别是边、、、的中点,连接、、、,得到四边形,设交于点.,,、、、分别是边、、、的中点,∴,,,,,∴,,四边形是平行四边形,,,∴,,∵,平行四边形是矩形.故选:B.8. 对于实数定义新运算:,若关于的方程没有实数根,则的取值范围()A. B.C. 且D. 且答案:A解析:解:由题意可得方程:,即,∵该方程没有实数根,∴,解得:;故选:A.9. 当时,代数式的值是( )A. 19B. 21C. 27D. 29答案:B解析:解:,,故选:B10. 已知,如图,点为x轴上一点,它的坐标为,过点作x轴的垂线与直线:交于点,以线段为边作正方形;延长交直线于点,再以线段为边作正方形;延长交直线于点,再以线段为边作正方形….依此类推,的坐标为()A. B. C. D.答案:C解析:解:过点作x轴的垂线与直线交于点,,线段为边作正方形,,同理可得,,,故答案为:C;二.填空题(本大题共6个小题,每小题3分,满分18分)11. 若在实数范围内有意义,则的取值范围是_________ .答案:且解析:解:由题意得,且,解得且,故答案为:且;12. 关于x的一元二次方程有两个相等的实数根,则的值为__________ .答案:解析:关于x的一元二次方程有两个相等的实数根,,,,故答案为:13. 在矩形中,对角线、相交于点O,过点A作,交于点M,若,则的度数为______ .答案:##60度解析:四边形是矩形,,,,,,,,,,,,,,故答案为:.14. 已知a是方程的一个根,则的值为______.答案:2030解析:a是方程的一个根,,,故答案为:2030.15. 已知,则___________.答案:25解析:解:由题意知:,解得:,,,故答案为:25;16. 如图,正方形的边长,对角线、相交于点,将直角三角板的直角顶点放在点处,三角板两边足够长,与、交于、两点,当三角板绕点旋转时,线段的最小值为________ .答案:解析:解:四边形是正方形,,,,,,,,,,,故要使有最小值,即求的最小值,当时,有最小值,,,,,线段的最小值为.故答案为:.三.解答题(本大题共9个小题,共72分.请在答题卡指定区域内作答.)17. 计算:(1);(2).答案:(1)(2)【小问1解析:】解:,【小问2解析:】解:原式.18. 用合适的方法解方程:(1);(2).答案:(1)(2)【小问1解析:】解:移项得,配方得,∴.【小问2解析:】,整理得:,∵,∴,∴,∴,.19. 如图,有一张矩形的纸片,将矩形纸片折叠,使点A与点C重合.(1)请用尺规在图中画出折痕,其中,点M在边上,点N在边上;(不写作法,保留痕迹),并说明折痕所在的直线与对角线有怎样的位置关系?(2)在(1)的条件下,直接写出折痕的长度.答案:(1)见解析,折痕所在的直线是对角线的垂直平分线(2)【小问1解析:】线段就是所要求作的折痕;折痕所在的直线是对角线的垂直平分线;【小问2解析:】连接,设,则,四边形是矩形,,,,在中,,是对角线的垂直平分线,在中,,,解得,,在中,,,,,,,折痕的长度为.20. 关于的一元二次方程有实数根.(1)求的取值范围;(2)若为正整数,请用配方法求出此时方程的解.答案:(1)且(2),【小问1解析:】解:∵关于的一元二次方程有实数根,∴且,解得:且,∴的取值范围为且;【小问2解析:】∵且,且m为正整数,∴,∴原方程为,∴,∴,∴,∴,∴此时方程的解为:,.21. 如图,在菱形中,,点E,F分别在上,且.(1)求证:;(2)若,试求出线段的长,并说明理由.答案:(1)证明见解析(2)10,理由见解析【小问1解析:】证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴,,∴是等边三角形,∴,∴,∵,∴,∴,和中,,∴.【小问2解析:】解:∵,∴,∵,∴是等边三角形.∴,∵,∴.22. 已知,.(1)分别求,的值;(2)利用(1)的结果求下列代数式的值:①;②.答案:(1),(2)①;②【小问1解析:】解:,,,;【小问2解析:】由(1)知,,①;②.23. 如图,菱形的对角线,相交于点O,过点D作,且,连接.(1)求证:四边形为矩形.(2)若菱形的面积是10,请求出矩形的面积.答案:(1)证明见解析(2)5【小问1解析:】证明:∵四边形是菱形,∴,,∵,∴,又∵,∴四边形为平行四边形,∵,∴四边形为矩形;【小问2解析:】∵菱形的面积是10,∴,∴,∵四边形是菱形,∴,∴,∴矩形的面积为5.24. 阅读理解:我们解决某些数学题的时候,经常会遇到题目中的条件比较含糊,它们常常巧妙地隐蔽在题设的背后,不易被发现和运用,导致我们解题受阻,因此,挖掘题设中的隐含条件,应该成为我们必备的一种能力.请阅读下面的解题过程,体会如何发现隐含条件,并依次解决所给的问题.化简:解:由题意可知隐含条件解得:,∴,∴.启发应用:(1)按照上面的解法,化简:;类比迁移:(2)已知的三边长分别为,,,请求出的周长.(用含有的代数式表示,结果要求化简)拓展延伸:(3)若,请直接写出的取值范围.答案:(1)2;(2);(3)解析:解:(1)由题意可知隐含条件解得:,∴,∴,(2)由题意可知隐含条件解得:,∴,∴,∴,∴的周长为;(3)由题意可知隐含条件,解得:,当时,,则,符合题意,当时,,则,不符合题意,综上所述,的取值范围为.25. 在学习了“特殊的平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有_______(把所有正确的序号都填上);①“双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,线段、于点O,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上,且,在第一象限内,是否存在点,使得四边形为“双直四边形”,若存在;请直接写出所有点的坐标,若不存在,请说明理由.答案:(1)②③(2)证明见解析(3)存在,点的坐标或小问1解析:】解:∵正方形是“双直四边形”,正方形的对角线相等.故①不正确.∵“双直四边形”的对角线互相垂直,∴“双直四边形”面积等于对角线乘积的一半.故②正确.∵中心对称的四边形是平行四边形,对角线互相垂直且有一个角是直角的的平行四边形是正方形.∴若一个“双直四边形”是中心对称图形,则其一定是正方形.故③正确.故答案为:②③;【小问2解析:】证明:如图,设与的交点为,∵四边形是正方形,,又,,,,,,,,,∴四边形为“双直四边形”.【小问3解析:】解:假设存在点在第一象限,使得四边形为“双直四边形”.如图,设的交点为∵,,,即,,解得,,是的中点,,设直线的解析式为则解得∴直线的解析式为设,①当时,则,,则;②当时,,是的垂直平分线,,,,,此时点坐标还是;③当时,,是等腰直角三角形,,,,∵,,∴,∴,整理得,,当时,,此时在第四象限,不符合题意.当时,,此时在第一象限,符合题意.综上,或.。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

贵州省贵阳市2022-2023学年八年级下学期期中数学试题(含答案)

贵州省贵阳市2022-2023学年八年级下学期期中数学试题(含答案)

2022—2023学年度第二学期半期联合统一检测八年级数学同学你好!答题前请认真阅读以下内容:1.全卷共4页,三个大题,共21小题,满分100分.考试时间为90分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.已知等腰三角形的两边长分别为6cm 、3cm ,则该等腰三角形的周长是( )A .9cm B .12cmC .12cm 或15cmD .15cm2.如图,OC 为的平分线,,,则点C 到射线OA 的距离为()A .3B .6C .9D .123.已知,则下列结论正确的是()A .B .C .D .4.下列四个图案中,不能由1号图形平移得到2号图形的是()A B CD5.不等式的解集在数轴上表示正确的是()A B CD6.下列式子从左到右变形,是因式分解的是( )A .B .C .D .7.如图,已知,点P 在边OA 上,,点M ,N 在边OB 上,AOB ∠CM OB ⊥6CM =a b >22a b->-a c b c+>+33a b<ac bc>10x ->22(2)44x x x +=++23221025x y x y y=⋅241(4)1x x x x -+=-+3(1)(1)y y y y y -=+-60AOB ∠=︒12OP =.若,则ON 的值为( )A .3B .4C .5D .68.如图,一次函数与一次函数的图象交于点,则关于x 的不等式的解集是()A .B .C .D .9.如图,在△ABC 中,,,.分别以点A ,B 为圆心,大于的长为半径作弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,则CD 的长为()A .1B .C .D .310.如果不等式的正整数解为1,2,3,则m 的取值范围是( )A .B .C .D .二、填空题:每小题4分,共16分.11.不等式组的解焦是________.12.分解因式:________.13.如图,△DEF 是由△ABC 通过平移得到的,且点B ,E ,C ,F 在同一条直线上.若,,则平移的距离是________.PM PN =2MN =1y x b =+24y kx =+()1,3P 4x b kx +>+2x >-0x >1x >1x <60C ∠=︒4AC =3BC =12AB 753230x m -≤912m ≤<912m <<12m <9m ≥54,x x -<>⎧⎨⎩242x xy -=14BF =6EC =14.如图,等腰Rt △ABC 和等腰Rt △ADE 的腰长分别为4和2,其中,M 为边DE 的中点.若等腰Rt △ADE 绕点A 旋转,则点B 到点M的距离的最大值为________.三、解答题:解答应写出必要的文字说明、演算步骤或证明过程,本大题共7小题,共54分.15.(本题满分8分)解下列一元一次不等式,并把解集在数轴上表示出来.(1);(2).16.(本题满分8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且,过点E 作,交BC 的延长线于点F .(1)求的度数;(2)若,求DF 的长.17.(本题满分8分)如图,在平面直角坐标系中,△ABC 的顶点都在网格点上,其中点C 的坐标为(1,2).(1)填空:点A 的坐标是________,点B 的坐标是________;(2)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到,请画出平移后的;(3)求△ABC 的面积.18.(本题满分6分)给出三个多项式:,,,请选择其中两个多项式进行加法运算,并把结果分解因式(写出一种情况即可).19.(本题满分8分)如图,,,,将△ABC 绕点B 逆时90BAC DAE ∠=∠=︒312)4(x x +≤+334642x x---<//DE AB EF DE ⊥F ∠2CD =A B C '''△A B C '''△21212x x +-21412x x ++2122x x -90DBC ∠=︒45C ∠=︒2AC =针旋转60°得到△DBE ,连接AE .(1)求证:;(2)连接AD ,求AD 的长.20.(本题满分8分)超市购进一批A ,B 两种品牌的饮料共320箱,其中A 品牌饮料比B 品牌饮料多80箱.两种饮料每箱的进价和售价如下表所示:品牌A B 进价(元/箱)5535售价(元/箱)6340(1)问销售一箱B 品牌的饮料获得的利润是多少元?(注:利润售价进价)(2)问该超市购进A ,B 两种品牌的饮料各多少箱?(3)受市场经济影响,该超市调整销售策略,将A 品牌的饮料每箱打折销售,B 品牌的饮料每箱售价改为38元.为使购进的A ,B 两种品牌的饮料全部售出且利润不低于700元,问A 品牌的饮料每箱最低打几折出售?21.(本题满分8分)如图,在△ABC 中,的平分线AE 与BC 的垂直平分线DE 交于点E ,过点E 作边AC 的垂线,垂足为N ,过点E 作边AB 延长线的垂线,垂足为M .(1)求证:;(2)若,,求BM 的长.2022—2023学年度第二学期半期联合统一检测八年级数学参考答案及评分标准一、选择题:每小题3分,共30分.题号12345678910答案DBBDADCCBA9.【解析】如图,连接BD ,过点B 作于点H ,由,可知,,∴,ABC ABE △≌△=-BAC ∠BM CN =2AB =8AC =BH AC ⊥60C ∠=︒3BC =30CBH ∠=︒1322CH BC ==∴,∴.设,则,根据作图可知,则,∴根据勾股定理可得,解得,∴.二、填空题:每小题4分,共16分.11.12.13.414.14.【解析】如图,连接AM .∵M 为边DE 的中点,且△ADE 为等腰直角三角形,∴,.在Rt △ADM 中,,由勾股定理可知,即.当A ,B ,M 三点不共线时,由三角形的三边关系可知,此时一定有;当A ,B ,M 三点共线且点M 不位于点A ,B 之间时,此时有,∴,即点B 到点M 的距离的最大值为三、解答题:本大题共7小题,共54分.15.解:(1)去括号,得,移项,得,合并同类项,得.解集在数轴上表示如图所示.4分BH ==35422AH AC CH =-=-=HD x =52AD x =+AD BD =52BD x =+22252x x ⎛⎫+=+ ⎪⎝⎭110x =3172105CD CH HD =-=-=54x -<<2()2x x y -4+AM DE ⊥12AM DE DM ==2AD =222AD AM DM =+AM DM ==BM AB AM <+BM AB AM =+4BM AB AM ≤+=+4+312)4(x x +≤+3128x x +≤+3281x x -≤-7x ≤(2)去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得.解集在数轴上表示如图所示.8分16.解:(1)∵△ABC 是等边三角形,∴.∵,∴.∵,∴,∴.4分(2)∵,,∴△EDC 是等边三角形,∴.∵,,∴.8分17.解:(1)(2,)(4,3)2分(2)如图,即为所.5分(3)△ABC 的面积.8分18.解:说明:(三个答案中任做一种正确即可给分)答案一:.答案二:.答案三:.6分334642x x---<324234()x x -<--32468x x -<-+82463x x -<-+721x -<3x >-60B ACB ∠=∠=︒//DE AB 60EDC B ∠=∠=︒EF DE ⊥90DEF ∠=︒9030F EDC ∠=︒-∠=︒60ACB ∠=︒60EDC ∠=︒2DE CD ==90DEF ∠=︒30F ∠=︒24DF DE ==1-A B C '''△111342431315222=⨯-⨯⨯-⨯⨯-⨯⨯=2221121416(6)22x x x x x x x x +-+++=+=+222112121(1)(1)22x x x x x x x +-+-=-=+-22221141221(1)22x x x x x x x +++-=++=+19.(1)证明:∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,,.∵,∴,∴.在△ABC 和△ABE 中,∴.4分(2)解:如图,连接AD .∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,.∵,∴,.∵,∴,∴,,∴8分20.解:(1)(元).答:销售一箱B 品牌的饮料获得的利润是5元.2分(2)设该超市购进A 品牌的饮料x 箱,B 品牌的饮料y 箱.依题意,得解得答:该超市购进A 品牌的饮料200箱,B 品牌的饮料120箱.5分(3)设A 品牌的饮料每箱打m 折出售.依题意,得,解得.答:A 品牌的饮料每箱最低打9折出售.8分21.(1)证明:如图,连接BE ,CE ,则DE 是边BC 的垂直平分线,∴.∵AE 是的平分线,,,∴.ABC DBE ∠=∠60EBC ∠=︒BC BE =90DBC ∠=︒–30ABC DBE DBC EBC ∠=∠=∠∠=︒30ABE ∠=︒,,,BC BE ABC ABE BA BA =⎧∠=∠=⎪⎨⎪⎩(SAS)ABC ABE △≌△2DE AC ==BED C ∠=∠ABC ABE △≌△C BEA ∠=∠2AE AC ==45C ∠=︒45BED BEA C ∠=∠=∠=︒90AED ∠=︒DE AE =AD ===40355-=320,80,x y x y +=-=⎧⎨⎩200,120.x y =⎧⎨=⎩6355200(3835)12070010m ⎛⎫⨯-⨯+-⨯≥ ⎪⎝⎭9m ≥BE CE =BAC ∠EM AB ⊥EN AC ⊥EM EN =在Rt △BME 和Rt △CNE 中,∴,∴.4分(2)解:由(1)得,.在Rt △AME 和Rt △ANE 中,∴,∴.又∵,,∴,∴.又∵,∴.8分,,BE CE EM EN ==⎧⎨⎩Rt Rt (HL)BME CNE △≌△BM CN =EM EN =BM CN =,,AE AE EM EN ==⎧⎨⎩Rt Rt (HL)AME ANE △≌△AM AN =AM AB BM =+AN AC CN =-AB BM AC CN +=-28BM CN +=-BM CN =3BM =。

人教版八年级下册数学期中考试试题及答案

人教版八年级下册数学期中考试试题及答案

人教版八年级下册数学期中考试试卷一、单选题1.下列式子中,属于最简二次根式的是()AB CD 2.下列运算正确的是()A .=B=C2=-D 2÷=3)A .﹣3B C .﹣3D 4.如图,将长方形纸片折叠,使A 点落在边BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分展开是一个正方形,其数学原理是()A .有一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形5.如图,在Rt ABC △中,1AB BC ==,90ABC ∠=︒,点A ,B 在数轴上对应的数分别为1,2,以点A 为圆心,AC 长为半径画弧,交数轴负半轴于点D ,则与点D 对应的数是()A 1B .1C D .6.有下列四个命题:其中正确的为()A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是菱形;C .两条对角线互相垂直的四边形是正方形;D .两条对角线相等且互相垂直的四边形是正方形.7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠= ,CFD 40∠= ,则E ∠为()A .102B .112C .122D .928.已知四个三角形分别满足下列条件:①三角形的三边之比为1:12;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有()个A .4B .3C .2D .19.如图是一圆柱形玻璃杯,从内部测得底面直径为12cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .25273cm-10.如图,在矩形ABCD 中,5AB =,3AD =,动点Р满足3PAB ABCD S S = 矩形,则点Р到A 、B 两点距离之和PA PB +的最小值为()A 29B 34C .52D 41二、填空题11在实数范围内有意义,则x的取值范围是_________12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD =________.13.如图,M 是ABC 的边BC 的中点,AN 平分BAC ∠,BN AN ⊥于点N ,延长BN 交AC 于点D ,已知10AB =,15BC =,3MN =,则ABC 的周长为______.14.勾股定理a 2+b 2=c 2本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,c )通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为_____.15.如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE 沿DE 所在直线翻折得到DC E ' ,当点C '恰好落在直线MN 上时,CE 的长为______.三、解答题16.计算:(1)23-(2)22111244a a a a a ---÷+++其中1a =17.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD 是矩形.18.如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若菱形BNDM 的周长为52,10MN =,求菱形BNDM 的面积.19.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B 处,在沿海城市A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A 城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?20.如图,已知正方形ABCD连接AC ,BD 交于点O ,CE 平分ACD ∠交BD 于点E .(1)求DE 的长;(2)过点E 作EF CE ⊥,交AB 于点F ,求证:BF DE =.21.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:ABM DCM △≌△;(2)四边形MENF 是__________;(3)当:AB AD =______时,四边形MENF 是正方形.22.在菱形ABCD 中,60ABC ∠=︒,点P 是射线DB 上一动点,以CP 为边向左侧作等边CPE △.点E 的位置随着点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接AE ,则DP 与AE 的数量关系是______,AE 与CB 的位置关系是______;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否成立?若成立,请选择图2或图3中的一种情况予以证明;若不成立,请说明理由.(3)如图4,当点P 在线段DB 的延长线上时,连接DE ,若AB =DE =出四边形CBPE 的面积.23.阅读材料,回答问题:1()中国古代数学著作图1《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”.上述记载表明了:在Rt ABC 中,如果C 90∠=︒,BC a =,AC b =,AB c =,那么a ,b ,c 三者之间的数量关系是:______.2()对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图2,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:ABC 1S ab 2= ,2ABCD S c =正方形,MNPQ S =正方形______.又 ______=______,221(a b)4ab c 2∴+=⨯+,整理得222a 2ab b 2ab c ++=+,∴______.3()如图3,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB 4=,BC 8=,求BE 的长.参考答案1.A【解析】最简二次根式要满足两个条件:被平方数中不含有开得尽方的因数或因式;被开方数中不含分母.依据这两条判断即可.【详解】A 、是最简二次根式,故符合题意;B 、8中有因数4可以开方,故不符合题意;C 、被开方数中含有分母,故不符合题意;D 、被开方数中有开得尽方的因式,故不符合题意;故选:A .【点睛】本题考查了最简二次根式的含义,关键把握最简二次根式的两个条件.2.D【解析】根据二次根式的运算及性质即可完成.【详解】A、被平方数不相同的两个最简二次根式不能相加,故错误;B≠C2=,故错误;D÷===,故正确;2故选:D.【点睛】本题考查了二次根式的加法和除法运算、二次根式的性质,掌握运算法则及性质是关键,同时在二次根式的学习中避免犯类似错误.3.C【解析】【详解】试题解析:原式=.故选C.考点:二次根式的乘除法.4.A【解析】【分析】将长方形纸片折叠,使A点落BC上的F处,可得到BA=BF,折痕为BE,沿EF剪下,故四边形ABFE为矩形,且有一组邻边相等,故四边形ABFE为正方形.【详解】解:∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选;A.【点睛】本题考查了正方形的判定定理,关键是根据邻边相等的矩形是正方形和翻折变换解答.5.B【解析】【分析】由勾股定理可得AC的长,从而得AD=AC,则由点A表示的数示得点D表示的数.【详解】在Rt△ABC中,AB=BC=1,则由勾股定理得:AC==∵以点A为圆心,AC长为半径画弧,交数轴负半轴于点D∴∴D点表示的实数为:1故选:B.【点睛】本题考查了实数与数轴、勾股定理等知识,熟知实数与数轴上的点一一对应关系是解答此题的关键.6.A【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A.两条对角线互相平分的四边形是平行四边形,正确;B.两条对角线互相垂直平分的四边形是菱形,故错误;C.两条对角线互相垂直平分且相等的四边形是正方形,故错误;D.两条对角线相等且互相垂直平分的四边形是正方形,故错误.故选:A.【点睛】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.7.B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠=== ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠= ,DBC BDF ADB 20∠∠∠∴=== ,又ABD 48∠= ,ABD ∴ 中,A 1802048112∠=--= ,E A 112∠∠∴== ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.8.A【解析】【详解】①设三角形三边分别为x 、x ,则x 2+x 2=x )2,∴此三角形是直角三角形;②92+402=412,∴此三角形是直角三角形;③设三角形三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30,3x=90,所以此三角形是直角三角形;④如图,∵CD=AD=BD ,∴∠A=∠ACD ,∠B=∠BCD ,∴∠ACD+∠BCD=90°,∴△ABC 是直角三角形.故选A.9.B【解析】【分析】吸管露出杯口外的长度最小,则在杯内的长度最长,此时若沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,然后用勾股定理即可解决.【详解】如图,沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,22121620+=(cm)所以吸管露出杯口外的长度最少为25-20=5(cm)故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,关键是构造直角三角形,利用勾股定理解答.10.D【解析】【分析】由3PAB ABCD S S = 矩形,可得△PAB 的AB 边上的高h=2,表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2;延长FC 到G ,使FC=CG ,连接AG 交EF 于点H ,则点P 与H 重合时,PA+PB 最小,在Rt △GBA 中,由勾股定理即可求得AG 的长,从而求得PA+PB 的最小值.【详解】设△PAB 的AB 边上的高为h∵3PAB ABCDS S = 矩形∴132AB h AB AD ⨯= ∴h=2表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2,如图所示∴BF=2∵四边形ABCD 为矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延长FC 到G ,使CG=FC=1,连接AG 交EF 于点H∴BF=FG=2∵EF ∥AB∴∠EFG=∠ABC=90゜∴EF 是线段BG 的垂直平分线∴PG=PB∵PA+PB=PA+PG≥AG∴当点P 与点H 重合时,PA+PB 取得最小值AG在Rt △GBA 中,AB=5,BG=2BF=4,由勾股定理得:AG ===即PA+PB 故选:D .【点睛】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P 运动的路径,路径确定后就是典型的将军饮马问题.11.x≤5.【解析】【详解】解:由题意得:50x -≥,解得5x ≤,故答案为5x ≤.考点:二次根式有意义的条件.12.70°【解析】【分析】根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD ,求出∠BCD=∠B 即可.【详解】解:在Rt △ABC 中,∵∠A=20°,∴∠B=90°-∠A=70°,∵CD 是斜边AB 上的中线,∴BD=CD ,∴∠BCD=∠B=70°,故答案为70°.【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD 和∠B 的度数是解此题的关键.13.41【解析】【分析】证明△ABN ≌△ADN ,得到AD =AB =10,BN =DN ,根据三角形中位线定理求出CD ,计算即可.【详解】解:∵AN 平分BAC ∠,∴∠BAN=∠DAN在△ABN 和△ADN 中,BAN DAN AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN ,∴AD =AB =10,BN =DN ,∵M 是△ABC 的边BC 的中点,BN =DN ,∴CD =2MN =6,∴△ABC 的周长=AB+BC+CA =41,故答案为:41.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(11,60,61)【解析】【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第5组勾股数中间的数为:5×(11+1)=60,进而得出(11,60,61).【详解】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61).故答案为(11,60,61).【点睛】本题主要考查了勾股数,关键是找出数据之间的关系,掌握勾股定理.15.52或10【解析】【分析】分两种情况:E 点在BC 上;点E 在CB 的延长线上.分别由折叠性质勾股定理,矩形的性质进行解答.【详解】解:设CE=x,则C′E=x,当E点在线段BC上时,如图1,∵矩形ABCD中,AB=5,∴CD=AB=5,AD=BC=6,AD∥BC,∵点M,N分别在AD,BC上,且3AM=AD,3BN=BC,∴DM=CN=4,∴四边形CDMN为平行四边形,∵∠NCD=90°,∴四边形MNCD是矩形,∴∠DMN=∠MNC=90°,MN=CD=5由折叠知,C′D=CD=5,===,∴MC′3∴C′N=5﹣3=2,∵EN=CN﹣CE=4﹣x,∴C′E2﹣NE2=C′N2,∴x2﹣(4﹣x)2=22,解得,x=2.5,即CE=2.5;当E点在CB的延长线上时,如图2,∵矩形ABCD 中,AB =5,∴CD =AB =5,AD =BC =6,AD ∥BC ,∵点M ,N 分别在AD ,BC 上,且3AM =AD ,3BN =BC ,∴DM =CN =4,∴四边形CDMN 为平行四边形,∵∠NCD =90°,∴四边形MNCD 是矩形,∴∠DMN =∠MNC =90°,MN =CD =5由折叠知,C′D =CD =5,∴MC′2222'543C D MD =-=-=,∴C′N =5+3=8,∵EN =CE ﹣CN =x ﹣4,C′E 2﹣NE 2=C′N 2,∴x 2﹣(x ﹣4)2=82,解得,x =10,即CE =10;综上,CE =2.5或10.故答案为:2.5或10.【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,关键是分情况讨论.16.(1)1132;(2)11a -+,22.【解析】【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】(1)原式==(2)原式21(1)(1)12(2)a a a a a -+-=-÷++21(2)12(1)(1)a a a a a -+=-⋅+-+211a a +=-+1211a a a a ++=-++11a =-+当1a =时,原式2=-.【点睛】本题考查了二次根式的加减混合运算以及分式的化简求值,熟知运算的法则是解答此题的关键.17.证明见解析【解析】【分析】根据已知条件易推知四边形BECD 是平行四边形.结合等腰△ABC“三线合一”的性质证得BD ⊥AC ,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD 是矩形.【详解】证明:∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC ,AD=CD .∵四边形ABED 是平行四边形,∴BE ∥AD ,BE=AD ,∴四边形BECD 是平行四边形.∵BD ⊥AC ,∴∠BDC=90°,∴▱BECD 是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.18.(1)见解析;(2)120【解析】【分析】(1)证△MOD ≌△NOB (AAS ),得出OM=ON ,由OB=OD ,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的周长得到菱形的边长BM=13,由菱形的性质及MN=10得到OM=5,在Rt BOM △中由勾股定理得到OB 的长,进而得到BD 的长,利用菱形的面积公式即可求得BNDM 的面积【详解】(1)证明:∵//AD BC ,∴DMO BNO ∠=∠.∵直线MN 是对角线BD 的垂直平分线,∴OB OD =,MN BD ⊥.在MOD 和NOB 中,DMO BNO MOD NOB OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)MOD NOB ≌△△,∴OM ON =,∵OB OD =,∴四边形BNDM 是平行四边形,∵MN BD ⊥,∴四边形BNDM 是菱形;(2)∵菱形BNDM 的周长为52,∴13BN ND DM MB ====,∴12OM ON MN ==,又10MN =,∴5OM =在Rt BOM △中,由勾股定理得12OB ===,故24BD =,故菱形BNDM 面积11202MN BD =⨯⨯=.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.19.(1)该城市会受到这次台风的影响;(2)16;(3)7.2.【解析】【详解】试题分析:(1)过A 作AD ⊥BC 于D ,利用30°角所对边是斜边一半,求得AD,与200比较.(2)以A 为圆心,200为半径作⊙A 交BC 于E 、F,勾股定理计算弦长EF.(3)AD 距台风中心最近,计算风力级别.试题解析:(1)该城市会受到这次台风的影响.理由是:如图,过A 作AD ⊥BC 于D .在Rt △ABD 中,∵∠ABD=30°,AB=240,∴AD=12AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200,∵120<200,∴该城市会受到这次台风的影响.(2)如图以A 为圆心,200为半径作⊙A 交BC 于E 、F,则AE=AF=200,∴台风影响该市持续的路程为:EF=2DE=2∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).20.(1)22(2)见解析【解析】【分析】(1)根据正方形的性质,CE 平分ACD ∠,可得122.52ACE DCE ACD ∠=∠=∠=︒,从而67.5∠=︒BCE ,根据三角形的内角和定理可得BEC BCE ∠=∠,从而2BE BC =利用勾股定理求出2BD =,即可求解;(2)根据EF CE ⊥,可得∠=∠FEB DCE ,又有45FBE CDE ∠=∠=︒,BE BC CD ==,可证≌FEB ECD △△,即可求证.【详解】解:(1)∵四边形ABCD 是正方形,∴90ABC ADC BCD ∠=∠=∠=︒,45DBC BCA ACD ABD CDB ∠=∠=∠=∠=∠=︒.∵CE 平分DCA ∠,∴122.52ACE DCE ACD ∠=∠=∠=︒,∴4522.567.5BCE BCA ACE ∠=∠+∠=︒+︒=︒,∵45DBC ∠=︒,∴18067.54567.5BEC BCE ∠=︒-︒-︒=︒=∠,∴2BE BC ==在Rt BCD 中,由勾股定理得()()22222BD =+=,∴22DE BD BE =-=(2)∵EF CE ⊥,∴90CEF ∠=︒,∴9067.522.5FEB CEF CEB DCE ∠=∠-∠=︒-︒=︒=∠,∵45FBE CDE ∠=∠=︒,BE BC CD ==,∴(ASA)FEB ECD ≌△△,∴BF DE =.【点睛】本题主要考查了正方形的性质,三角全等的判定和性质,等腰三角形的判定,三角形内角定理,勾股定理等知识,证明三角形全等是解题的关键.21.(1)见解析;(2)菱形;(3)当:1:2AB AD =时,四边形MENF 是正方形.【解析】【分析】(1)在矩形ABCD 中,可得AB DC =,90A D ∠=∠=︒,再根据M 为AD 中点,得AM DM =,即可求证;(2)由(1)ABM DCM △≌△,得BM CM =,再由E ,F 分别是线段BM ,CM 的中点,可得EM FM =,然后N 分别是边BC 的中点,根据三角形中位线定理可得EN MF =,FN EM =,得到四边形MENF 是平行四边形,即证;(3)当:1:2AB AD =时,有12AB AD =,可得45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,可得90EMF ︒∠=,即可求解.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB DC =,90A D ∠=∠=︒,∵M 为AD 中点,∴AM DM =,在ABM 和DCM △,AM DM =,A D ∠=∠,AB CD =,∴()SAS ABM DCM ≌△△;(2)由(1)ABM DCM △≌△,∴BM CM =,∵E ,F 分别是线段BM ,CM 的中点,∴12BE EM BM ==,12CF MF MC ==,∴EM FM =,∵N 分别是边BC 的中点,∴12EN MC =,12FN BM =,∴EN MF =,FN EM =,∴四边形MENF 是平行四边形,∵EM FM =,∴四边形MENF 是菱形;(3)解:当:1:2AB AD =时,四边形MENF 是正方形;理由如下:当:1:2AB AD =时,有12AB AD =,∵M 为AD 中点,∴AB AM =,∴ABM AMB ∠=∠,∵90A ︒∠=,∴45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,∴180180454590EMF AMB DMC ︒︒︒︒︒∠=-∠-∠=--=,由(2)四边形MENF 是菱形,∴四边形MENF 是正方形,∴当:1:2AB AD =时,四边形MENF 是正方形.【点睛】本题主要考查了矩形的性质,三角形全等的判定和性质,菱形的判定,正方形的判定,三角形的中位线定理,熟练掌握相关性质定理,判定定理是解题的关键.22.(1)①DP AE =,②AE CB ⊥;(2)(1)中的结论仍然成立,理由见解析;(3)四边形CBPE 【解析】【分析】(1)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(2)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(3)连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,利用菱形的性质和勾股定理可求得7==DP AE ,3BO =,从而1PB PD BD =-=,4PO =,利用勾股定理求得PE PC ==EM =,即可得到四边形CBPE 的面积等于CPE PBC S S + ,即可求解.【详解】(1)①DP AE =②AE CB ⊥理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,1302CDP ADC ︒∠=∠=,∴ADC 、ABC 是等边三角形,∴AC CD =,60ACD ∠=︒,60BAC ︒∠=.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴∠-∠=∠-∠ACD ACP PCE ACP ,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,30︒∠=∠=CAE CDP ,∴30BAE CAE ︒∠=∠=,即AE 平分BAC ∠,∴AE CB ⊥;(2)(1)中的结论仍然成立,理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,∴ADC 是等边三角形,∴AC CD =,60ACD ∠=︒.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴ACD ACP PCE ACP ∠+∠=∠+∠,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,CAE CDP ∠=∠.∵在菱形ABCD 中,1302CDP ADC ∠=∠=︒,60ACB ∠=︒,∴30CAE CDP ∠=∠=︒,∴90DAE ∠=︒,即AE AD ⊥,∵//AD BC ,∴AE CB ⊥.(3)如图,连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,在菱形ABCD 中,AC BD ⊥,23AB BC AD ===,12AO CO AC ==,12BO BD =,∵DE =,∴7AE ===,∴7==DP AE ,∵60ABC ∠=︒,∴ABC 是等边三角形,∴1302ABO ABC ︒∠=∠=,AC AB ==,∴12AO CO AC ===3BO ==,∴6BD =,∴1PB PD BD =-=,4PO =,∴PC ===,∴2PM =,PE PC ==∴2EM ==,∴四边形CBPE 的面积是11111222224CPE PBC S S PC EM PB CO +=⋅+⋅=⨯⨯+⨯⨯= .【点睛】本题主要考查了菱形的性质,等边三角形的性质和判定,全等三角形的判定与性质,勾股定理,解题的关键是找到全等三角形,利用全等三角形的性质解答问题.23.(1)222+=a b c ;(2)()2a b +,正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,222+=a b c ;(3)3.【解析】【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(3)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在Rt ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,由勾股定理得,222+=a b c ,故答案为:222+=a b c ;(2)12ABC S ab ∆= ,2ABCD S c =正方形,2()MNPQ S a b =+正方形;又 正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,221()42a b ab c ∴+=⨯+,整理得,22222a ab b ab c ++=+,222a b c ∴+=,故答案为:2()a b +;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;222+=a b c ;(3)设BE x =,则8EC x =-,由折叠的性质可知,8AE EC x ==-,在Rt ABE △中,222AE AB BE =+,则222(8)4x x -=+,解得,3x =,则BE 的长为3.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.。

浙江省宁波市第七中学2023-2024学年八年级下学期期中考试数学试题(解析版)

浙江省宁波市第七中学2023-2024学年八年级下学期期中考试数学试题(解析版)

宁波七中教育集团2023学年第二学期初二数学期中质量评估试题(2024.4)本试题卷分选择题和非选择题两部分,共6页,满分为110分,考试时间为90分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色笔迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

选择题部分一、选择题(本题共10小题,每小题3分,共30分)1. 下列无理数中,大小在3与4之间的是().A. B. C. D.【答案】C【解析】【分析】根据无理数的估算可得答案,熟练掌握无理数的估算方法是解题的关键【详解】解:∵,,∴大小在3与4,故选:C.2. 下列图案是一些国产新能源车的车标,其中既是轴对称图形又是中心对称图形的是()A. B. C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念,对选项逐个判断即可.【详解】解:A、该图形既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B、该图形不是中心对称图形,是轴对称图形,故此选项不合题意;C、该图形既是中心对称图形,也是轴对称图形,故此选项符合题意;3=4==91316<<D 、该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形的概念,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,是解答本题的关键.3. 正九边形的每一个外角的度数是( )A. B. C. D. 【答案】B【解析】【分析】根据正n 多边形的每一个外角的度数为,进行求解即可.【详解】解:正九边形的每一个外角的度数是,故选:B .4. 用反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A. 每一个内角都大于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 有一个内角小于60°【答案】A【解析】【分析】本题考查的是反证法的运用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判定.【详解】解:反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应假设这个三角形中每一个内角都大于60°.故选:A .5. 2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为,则可列方程为( )A. B. C. D. 180︒30︒40︒60︒135︒360n ︒360409︒=︒x 600(12)2850x +=2600(1)2850x +=2600600(1)600(1)2850x x ++++=22850(1)600x -=【答案】C【解析】【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.【详解】解:设进馆人次的月平均增长率为x ,则由题意得:.故选:C .【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.6. 八年级某班甲、乙、丙、丁四位同学准备选一人参加学校“跳绳”比赛.经过三轮测试,他们的平均成绩都是每分钟个,方差分别是,你认为派哪一个同学去参赛更合适( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】根据方差越小,成绩越稳定,进行判断即可.【详解】∵甲、乙、丙、丁四位同学的平均成绩相同,方差分别是,∴方差最小的为丁,∴派丁同学去参赛更合适.故选:D .【点睛】本题考查利用方差作决策.熟练掌握方差越小,成绩越稳定是解题的关键.7. 如图,在四边形中,,添加下列条件,不能判定四边形是平行四边形的是( )A. B. C. D. 【答案】A【解析】2600600(1)600(1)2850x x ++++=180222265,56.5,53,50.5S S S S ====甲乙丁丙222265,56.5,53,50.5S S S S ====甲乙丁丙ABCD BC AD ∥ABCD AB CD=AB CD A C ∠=∠BC AD=【分析】本题主要考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键.【详解】解;添加条件,再由,不能根据一组对边相等,另一组对边平行证明四边形是平行四边形,故A 符合题意;添加条件,再由,能根据两组对边分别平行的四边形是平行四边形,证明四边形是平行四边形,故B 不符合题意;添加条件,由得到,进而得到,则,能根据两组对边分别平行的四边形是平行四边形,证明四边形是平行四边形,故C 不符合题意;添加条件,再由不能根据一组对边平行且相等的四边形是平行四边形,证明四边形是平行四边形,故D 不符合题意;故选;A .8. 已知关于的方程,下列说法正确的是( )A. 当时,方程无解B. 当时,方程有一个实数解C. 当时,方程有两个相等实数解D. 当时,方程总有两个不相等的实数解【答案】C【解析】【分析】根据一元二次方程根的判别式求解即可.【详解】解:当时,方程为一元一次方程有唯一解,.当时,方程为一元二次方程,解的情况由根的判别式确定:∵,∴当时,方程有两个相等实数解,当且时,方程有两个不相等的实数解.综上所述,说法C 正确.故选:C .【点睛】此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.的的AB CD =BC AD ∥ABCD AB CD BC AD ∥ABCD A C ∠=∠BC AD ∥180A B ∠+∠=︒180C B ∠+∠=︒AB CD ABCD BC AD =BC AD ∥ABCD x ()2110kx k x +--=0k =1k =1k =-0k ≠()()()221411k k k ∆=--⋅⋅-=+0k =10x -=1x =0k ≠()()()221411k k k ∆=--⋅⋅-=+1k =-0k ≠1k ≠-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-9. 如图,平行四边形的对角线相交于点的平分线与边相交于点是中点,若,则的长为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查了平行四边形的性质,三角形中位线定理,根据平行四边形的性质可得,再根据平分,可得,从而可得,可得,进一步可得,再根据三角形中位线定理可得,即可求出的长.【详解】解:在平行四边形中,,∴,∵平分,∴,∴,∴,∵,∴,∵E 是中点,∴.故选:B .10. 如图,在中,,斜边,分别以的三边长为边任上方作正方形,分别表示对应阴影部分的面积,则()ABCD AC BD 、,O ADC ∠AB ,P E PD 12,16AD CD ==EO CDP APD ∠=∠DP ADC ∠CDP ADP ∠=∠APD ADP ∠=∠12AP AD ==4BP =EO ,,AB DC AB CD OD OB ==∥CDP APD ∠=∠DP ADC ∠CDP ADP ∠=∠APD ADP ∠=∠12AP AD ==16AB CD ==4BP =PD 122OE BP ==Rt ABC △60CBA ∠=︒2AB =ABC AB 12345,,,,S S S S S 12345S S S S S ++++=A. 2B. C. 4 D. 【答案】B【解析】【分析】本题考查勾股定理的应用和全等三角形的判定,根据题意过作于,连接,进而结合全等三角形的判定与性质得出进行分析计算即可.【详解】解:在中,,斜边,,,过作于,连接,在和中,,,同理,,,,,,,四边形是平行四边形,D DN BF ⊥N DI 123454ABC S S S S S S ++++= Rt ABC △60CBA ∠=︒2AB =BC ∴=121AB =AC==D DN BF ⊥N DI ACB BND 90ACB BND CAB NBD AD BD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS ACB BND ∴ ≌Rt MND Rt OCB ≌MD OB ∴=DMN BOC ∠=∠EM DO ∴=DN BC CI ∴== DN CI ∥∴DNCI,四边形是矩形,,、、三点共线,,,,图中,,在和中,,,同理,,.故选:B .非选择题部分二、填空题(本题共8小题,每小题3分,共24分)11.的取值范围是________.【答案】##【解析】【分析】本题考查二次根式有意义的条件,根据题中二次根式列出不等式求解即可得到答案,熟记二次根式有意义的条件是解决问题的关键.【详解】解:有意义,90NCI ∠=︒ ∴DNCI 90DIC ∴∠=︒D ∴I H 90F DIO ∠=∠=︒ EMF DMN BOC DOI ∠=∠=∠=∠()AAS FME DOI ∴ ≌ 2Rt DOI BOC MND S S S S ==, ∴243ABC ABC S S S S S +==. Rt AGE Rt ABC AE AB AG AC =⎧⎨=⎩()Rt Rt HL AGE ACB ∴ ≌Rt Rt DNB BHD ≌∴12345S S S S S ++++13245()S S S S S =++++4ABCS = 1412=⨯⨯=x 3x ≥-3x-≤,解得,故答案为:.12. 若一组数据,,,,的众数是,则这组数据的方差是______.【答案】####【解析】【分析】首先根据众数的定义求出的值,进而利用方差公式得出答案.【详解】解:,,,,的众数是,,,,故答案为.【点睛】此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.13. 若a 是一元二次方程的一个根,则的值是______.【答案】8【解析】【分析】本题考查了一元二次方程的根的定义,整体思想的应用是本题的关键.根据一元二次方程解的定义可得,再整体代入求代数式即可.【详解】解:∵a 是一元二次方程的一个根,把代入得,,即,∴,故答案为:8.14. 已知菱形的周长为,其相邻两内角的度数比为,此菱形的面积为______.【答案】【解析】【分析】本题考查菱形性质,含度角的直角三角形的性质;根据相邻两内角的度数比为:,可求出一个角,根据周长为,求出菱形的边长,根据直角三角形里角的性质求出高,从而求出面积.【详解】解:作于点,的∴30x +≥3x ≥-3x ≥-02-81x 2-13.63135685x 02-81x 2-2x ∴=-1(02812)15x =-++-=2222221[(01)(21)(81)(11)(21)]13.65S =-+--+-+-+--=13.62240x x +-=224a a +224a a +=2240x x +-=x a =2240a a +-=224a a +=()222422248a a a a +=+=⨯=ABCD 241:518301530︒2430︒AE BC ⊥E其相邻两内角的度数比为:,,菱形的周长为,..菱形的面积为:.故答案为:.15. 如图,在正方形ABCD 中,△ABE 为等边三角形,连接DE ,CE ,延长AE 交CD 于F 点,则∠DEF 的度数为_____.【答案】105°【解析】【分析】根据四边形ABCD 是正方形,可得AB =AD ,∠BAD =90°,△ABE 为等边三角形,可得AE =BE =AB ,∠EAB =60°,从而AE =AD ,∠EAD =30°,进而求得∠AED 的度数,再根据平角定义即可求得∠DEF 的度数.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∵△ABE 为等边三角形,∴AE =BE =AB ,∠EAB =60°,∴AE =AD ,∠EAD =∠BAD ﹣∠BAE =30°,∴∠AED =∠ADE=(180°﹣30°)=75°,∴∠DEF =180°﹣∠AED =180°﹣75°=105°.故答案为105°. 15180B ∴∠=︒⨯115+30=︒ ABCD 24AB BC ∴==14246⨯=AE ∴=1263⨯=∴6318BC AE ⨯=⨯=1812【点睛】本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.16. 如图,有5个形状大小完全相同的小矩形构造成一个大矩形(各小矩形之间不重叠且不留空隙),图中阴影部分的面积为16,且每个小矩形的宽为1,则每个小矩形的长为______.【解析】【分析】本题考查了一元二次方程的应用,结合图形建立方程是解题的关键.设小矩形的长为x ,根据“阴影部分的面积为16”列出方程求解.【详解】解:设小矩形的长为x ,根据题意,得,解得(负值舍去),故答案.17. 如图,点是平行四边形的对称中心,是边上的点,,是边上的点,且.若分别表示和的面积,则______.【答案】##【解析】【分析】本题考查了平行四边形的性质,连接,根据点是平行四边形的对称中心得到点是线段的中点,且,再由,进而可求解,熟练掌握平行四边形的性质是解题的关键.为(21)(2)516x x x ++-=x =O ABCD ,,AD AB E F >AB G H BC 42,79EF AB GH BC ==12,S S EOF GOH 12S S =18718:7,AC OB O ABCD O AC 14AOB BOC ABCD S S S ==平行四边形 47EF AB =29GH BC =【详解】解:如图,连接,点是平行四边形的对称中心,点是线段的中点,且,令 , ,,,故答案为:.18. 如图,在矩形中,,点是的中点,将沿折叠后得到延长交射线于点,若,则的值为______.或【解析】【分析】本题考查了全等三角形的判定及性质、折叠的性质、勾股定理,连接,由折叠和线段中点的性质可得,,利用可得,可得,分两种情况:当点在线段上时,当点在的延长线上时,利用勾股定理即可求解,找准点的位置是解题的关键.【详解】解:由矩形的性质可知,,则,,AC OB O ABCD ∴O AC 14AOB BOC ABCD S S S ==平行四边形 AOB BOC S S S == 47EF AB = 29GH BC =47EOF S S =∴ 29GOH S S = 124187279S S ∴==187ABCD ,2AB m BC ==E AD ABE BE GBE BG DC F 2CD CF =m EF ,EG AE DE BG AB m ====90BGE A ∠=∠=︒HL Rt Rt EGF EDF △≌△DF GF =①F CD ②F DC F AB CD m ==1122CF CD m ==连接,如图:由折叠和线段中点的性质可得 ,,,(公共边),,,分两种情况:如图(1),当点在线段上时,易知,,,在中,由勾股定理得,,解得:或(舍去),如图(2),当点在的延长线上时, 易知,,,在中,由勾股定理,得,EF ,EG AE DE BG AB m ====90BGE A ∠=∠=︒90EGF D ∴∠=∠=︒EF EF = ()Rt Rt HL EGF EDF ∴ ≌DF GF ∴=①F CD 12GF DF CF m ===1322BF BG GF m m m ∴=+=+=Rt BCF 22213222m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭m=②F DC 12CF m =1322GF DF m m m ==+=3522BF BG GF m m m ∴=+=+=Rt BCF 22215222m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭解得:或(舍去),综上所述,,.三、解答题(19、20、21每题6分,22题8分,23、24每题10分,共46分)19. 计算.(1;(2).【答案】(1)(2)1【解析】【分析】(1)先化成最简二次根式,再合并同类二次根式即可;(2)先化简二次根式并合并同类二次根式,再按照二次根式的除法进行即可.【小问1详解】;【小问2详解】解:.【点睛】本题考查了二次根式的加减运算及混合运算,关键是化为最简二次根式.20.解方程:m=m+÷6=-+=÷=-÷=÷1=(1)(2)【答案】(1)(2)【解析】【分析】本题考查了解一元二次方程;(1)根据直接开平方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【小问1详解】解:∴∴解得:【小问2详解】解:∴∴解得:,21. 如图,在的正方形网格中,小正方形的顶点叫做格点已知两点是格点仅用无刻度的直尺分别按下列要求画图保留画图痕迹,不写画法(1)如图,以线段为边长作菱形;(2)如图,以线段为边作一个面积为的正方形.2280x -=()2240x x -+=122,2x x =-=124,2x x ==-2280x -=228x =24x =122,2x x =-=()2240x x -+=228=0x x --()()420x x -+=124,2x x ==-106⨯.A B ,.(.)1AB ABCD 2AB 10【答案】(1)见解析(2)见解析【解析】【分析】(1)作一个边长为的菱形即可;(2的正方形即可.【小问1详解】如图所示,菱形即为所求;或【小问2详解】如图所示,正方形即为所求.【点睛】本题考查作图应用与设计作图,勾股定理,菱形的判定以及正方形的判定等知识,解题的关键是学会利用数形结合的思想解决问题.22. 每年的月日是我国全民国家安全教育日.某中学在全校七、八年级各名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分分,分及以上为合格)八年级抽取的学生的竞赛成绩:.七年级抽取的学生的竞赛成绩条形统计图七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级5ABCD ABC -415500201064466667778888889991010,,,,,,,,,,,,,,,,,,,平均数中位数众数合格率根据以上信息,解答下列问题:(1)填空:______;______;______.(2)估计该校八年级名学生中竞赛成绩不合格的人数;(3)在这次“国家安全法”知识竞赛中,你认为哪个年级的学生成绩更优异?请说明理由.【答案】(1),,(2)人(3)八年级的学生成绩更优异,理由见解析【解析】【分析】()根据平均数、中位数、众数的定义即可求解;()用乘以不合格率即可求解;()根据平均数、中位数、众数比较即可判断;本题考查了条形统计图和统计表,平均数、中位数、众数,看懂统计图表是解题的关键.【小问1详解】解:由题意可得,,,,故答案为:,,;【小问2详解】解:(人),答:估计该校八年级名学生中竞赛成绩不合格的人数为人;【小问3详解】解:八年级学生成绩更优异,理由:七、八年级的平均分一样,但是八年级的中位数,众数和合格率都的a7.4b 87c 85%90%=a b =c =5007.47.58501250034152617685941017.420a ⨯+⨯+⨯+⨯+⨯+⨯+⨯==787.52b +==8c =7.47.58()500190%50⨯-=50050高于七年级的,所以八年级“国家安全法”知识竞赛的学生成绩更优异.23. 根据以下销售情况,解决销售任务.销售情况分析总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,它们的销售情况如下:店面甲店乙店日销售情况每天可售出20件,每件盈利40元.每天可售出32件,每件盈利30元.市场调查经调查发现,每件衬衫每降价1元,甲、乙两家店一天都可多售出2件.情况设置设甲店每件衬衫降价元,乙店每件衬衫降价元.任务解决任务1甲店每天的销售量  (用含的代数式表示).乙店每天的销售量  (用含的代数式表示).任务2当,时,分别求出甲、乙店每天的盈利.任务3总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和为2244元.【答案】任务1:件,件;任务2:甲店每天的盈利为1050元,乙店每天的盈利为1040元;任务3:11元【解析】【分析】任务1,由题意即可得出结论;任务2,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【详解】解:任务1,根据题意得:甲店每天的销售量为件,乙店每天的销售量为件,故答案为:件,件;任务2,当时,甲店每天的盈利为(元);a b a b 5a =4b =()202a +()322b +m ()202a +()322b +()202a +()322b +5a =()()40520251050-⨯+⨯=当时,乙店每天的盈利为(元);任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,由题意得:,整理得:,解得:,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.【点睛】本题考查了一元二次方程的应用、列代数式、有理数的混合运算,找准等量关系,正确列出一元二次方程是解题的关键.24. 已知平行四边形为边上的中点,为边上的一点.(1)如图1,连接并延长交的延长线于点,求证:;(2)如图2,若,求;(3)如图3,若为的中点,为的中点,,求线段的长.【答案】(1)见解析(2) (3【解析】【分析】(1)证明,即可得证;(2)连接并延长交的延长线于点,易得,进而得到,利用,得到,即可得解;(3)连接并延长交的延长线于点,易得,进而得到,从而得到,再利用勾股定理进行求解即可.【小问1详解】证明:四边形是平行四边形,,4b =()()30432241040-⨯+⨯=m ()()()()40202303222244m m m m -++-+=2221210m m +=-1211m m ==,ABCD E BC F AB FE DC G =FE GE ,36FB AB DF EDC +=∠=︒AFD ∠,FE DE P =AF Q FD 4,AQ DP ==BE 72︒FEB GEC ≌△△FE DC G =FE GE EDC EDF ∠=∠AB DC 2AFD FDC EDC ∠=∠=∠FE DC M FE DE ME ==90FDM EDF EDM ∠=∠+∠=︒90AFD FDM ∠=∠=︒ ABCD AB DC ∴,为边上的中点,,;【小问2详解】解:四边形是平行四边形,,连接并延长交的延长线于点,由(1)可得,∴,,即,∴;【小问3详解】解:连接并延长交的延长线于点,由(1)可得,,EFB EGC B ECG ∴∠=∠∠=∠E BC ,BE CE ∴=()AAS FEB GEC ∴ ≌FE GE ∴= ABCD AB DC ∴=FE DC G FEB GEC ≌△△FB GC =,FB AB DF += GC DC BF AB ∴+=+DG DF=,FE GE = EDC EDF ∴∠=∠,36AB DC EDC ︒∠= ∥272AFD FDC EDC ∠︒=∠=∠=FE DC M FE ME =,,为直角三角形,为的中点,为的中点,设,,,【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理.熟练掌握平行四边形的性质,通过添加辅助线,证明三角形全等,是解题的关键.附加题部分25. 若,则的值为_______.【答案】【解析】【分析】根据换元法以及一元二次方程的解法即可求出答案.【详解】,,FE DE = ,FE DE ME ∴==,EFD EDF EDM EMD ∴∠=∠∠=∠180,EFD EDF EDM EMD ∠+∠+∠+∠=︒ 90FDM EDF EDM ︒∴∠=∠+∠=,AB DC 90,AFD FDM ∠=∠=︒∴,DF AB AFD ∴⊥△P AF Q FD ∴,AP FP x FQ DQ y ====222222,,4,PF DF DP AF FQ AQ AQ DP +=+=== ()()22222224,2x y x y ∴+=+=2210x y ∴+=222224440AD AF FD x y ∴=+=+=AD ∴=22BC AD BE ∴===2250a ab b +-=a b 52-±2250a ab b +-=.令,,,,.故答案为:【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟练应用一元二次方程的解法,本题属于中等题型.26. 实数满足,且则______.【答案】##0.5【解析】【分析】本题考查了因式分解的应用,根据和可整理得,再进行因式分解得,进而可求得a 、b 、c 的值,则可求解,熟练掌握因式分解的方法是解题的关键.【详解】解:,,,,,22510a a b b∴+-=a tb =2510t t ∴+-=22529544t t ∴++=252924t ⎛⎫∴+= ⎪⎝⎭52t ∴=-52-±,,a b c 2a b =+25204ab c c +++=bc a =122a b =+25204ab c c +++=(()2122104b b c c ++++=()221102c ⎫+++=⎪⎭2a b =+ 25204ab c c +++=(()2122104b bc c ∴+++++=()2212104b c ⎛⎫∴+++= ⎪⎝⎭()221102c ⎫∴+++=⎪⎭10,102c +=+=,,,故答案为:.27. 如果菱形有一条对角线等于它的边长,那么称此菱形为“完美菱形”.如图,已知“完美菱形”的边长为是它的较短对角线,点分别是边上的两个动点,且,点为的中点,点为边上的动点,则的最小值为______.【答案】##【解析】【分析】本题考查轴对称最短路线问题,菱形的性质,勾股定理,用一条线段的长表示两线段和的最小值是解题的关键.连接,,易知,因为,所以求的最小值只要求出的最小值,然后减去1即可,再利用将军饮马模型构造出的最小值时的线段,利用勾股定理求出即可.【详解】解:设与的交点为,连接,,四边形是菱形,,,1b c ∴==-2a ∴=+=12bc a ∴==12ABCD 8,BD ,E F ,AC BD 4EF =G EF P AB PD PG +2-2-+-OG OP 122OG EF ==OG PG OP +≥PD PG +PD PO +PD PO +BD AC O OG OP ABCD BD AC ∴⊥122OG EF ∴==,的最小值为,作点关于的对称点,延长交于点,连接,,,,,的最小值为,四边形是菱形,,,四边形是“完美菱形”,∴菱形的边只能和较短对角线相等,∵的边长为8,,,,,,,由对称性和菱形的性质,知,,OG PG OP +≥ PG ∴2OP -O AB O 'O O 'CD H OP O P 'O D 'PO PO ∴'=222PD PG PD PO PD PO O D ∴+≥+-=+'-≥'-PD PG ∴+2O D '- ABCD O O AB '⊥O H CD ∴'⊥ ABCD ABCD 8AD AB BD ∴===4OD =60ODH ABD ∴∠=∠=︒30DOH ∠=︒122DH OD ==OH ==3O H OH '==O D '===的最小值为,故答案为:.PD PG ∴+22-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泸州七中 09 年春期 2010 级半 期考试试题
2019-2020 年八年级下数学半期考试试题
数学 (A 卷)
一、单项选择题 :(每小题
3 分,共 30 分)
1、下列有理式中是分式的是 :



2、点 P ( 1,— 2)关于 y 轴对称点的坐标是(


A 、 ( 1, 2)
B 、( 1, 2)
C 、(— 1, 2)
D 、(— 2, 1)
3、一种球形细胞的半径约为
1.1 10 6 米,用小数表示是(

A . 0.00000011 B. 0.000000011
C. 0.000011
D. 0.0000011
4、如图 2 所示 , 在△ ABC 中 , ∠ C=90° ,BE 是∠ ABC 角平分线 ,ED ⊥ AB 于 D, 如果 AC=3cm,那么
线
AE+DE=( )
B
A.2cm
B.3cm
C.4cm
D.5cm
D
5、将直线 y x 4 向下移 2 个单位,这时直线的解析式为(

A 、 y
x 6 B 、 y x 2
C 、 y
2x 4 D 、 y
2x 4
6、一次函数 y
2x 6 的图象与两坐标轴所围成的三角形的面积为
(
)
A
E C
(2)
名 A 、 18
B 、 9
C
、 6
D
、 12

7、下列命题中,真命题是(

A. 两个锐角的和等于直角
B.相等的角是对顶角;

C.两直线平行,同位角互补
D.经过两点有且只有一条直线
(3)
8、如图 3,∠ 1=∠ 2, BC = EF ,欲证△ ABC ≌△ DEF ,则须补充一个条件是(

A. AB =DE
B.∠ ACE =∠ DFB
C.BF =EC
D.AB//DE
9、当 k<0 时,反比例函数
y
k
的图象大致为(

和一次函数 y=kx-k
级 y
x
y
y y

O
x
O
x
O
x
O
x

A
B
C D
10、已知 1
1 6 , 则 a 2ab b 的值等于(

a b 2a 2b 7ab
8
B.
8 4
4
A.
5
C.
D.
5
5
5
校 二、(每小题 7 分,共 21 分)

11、计算:2-1 3 | -2 | (- 1
) 0 - 1 12 、化简: (1 1 )
x 2
x 2 4 x 1 1
13、解分式方程
3 x : 2
x 2 2 x
三、(第 14 题 7 分,第 15、 16 每题 8 分,共 23 分)
14、已知线段 a 和 b,求作一个等腰三角形,使它的底边长等于a,底边上的高等于b。

(不写出作法,保留作图痕迹)。

a
b
15、如图,在△ ABC和△ ABD中,现给出如下三个论断:①AC=BD,②< C=< D,③< 1=<2,请选择其中两个论断为条件,另一个论断为结论,构造命题。

( 1)请写出一个真命题(注:写成“”)的形式,用序号表示);
( 2)请你对你写的真命题加以证明。

16、如图,l A、l B分别表示 A 步行与 B 骑车在同一路上行驶的路程S 与时间t的关系。

(1)B出发时与 A 相距千米。

(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时。

(3)B出发后小时与A相遇。

(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离 B 的出发点千米。

(5)求出A行走的路程S 与时间t的函数关系式。

(写出过程)
S(千米) l B
l A
22.5
10
7.5
O 0.5 1.5 3t(时)
四、(每小题 8 分,共 16 分)
17、如图:在△ ABC中, AB=BC=AC, AE=CD, AD与 BE相交于点 P, BQ⊥ AD于
Q。

求证:①△ ADC ≌△ BEA ② BP=2PQ
18.阅读下面的对话:
MM:" 请帮我称些梨."
售货员 :" 您上次买的梨卖没了, 您试一试新进的苹果, 价格虽然比梨贵些, 但苹果营养价质更高。

"
MM:" 好, 我跟上次一样, 也买 30 元钱 ."
对比两次的电脑小票,MM发现:每千克苹果的价格是梨的 1.5 倍 , 苹果的重量比梨轻 2.5 千克 .
根据上面的对话和MM 发现 , 分别求出苹果和梨的单价.
五、(共 10 分)
19、如图,一次函数y kx b 的图像与反比例函数y m
的图像相交于A、B两点,x
(1)利用图中条件,求反比例函数和一次函数的解析式。

(2)根据图像写出使一次函数的值小于反比例函数的值的x 的取值范围。

(3)求△ AOB的面积。

泸州七中 09 年春期2010级半期考试试题
数学( B 卷)
一、填空题: (每小题 4 分,共 20 分)
1、函数 2 x

y
自变量的取值范围为:
x
1
2、点 P(3— a ,5— a)是第二象限的点,则 a 2 — 4 a 4
| a — 5 |

3、当 m=______时 , 方程
x 2 m 会产生增根 .
x
3 x 3
4、如图 4,点 P 是反比例函数 y
k
APBO 的面积为 2,则这个反
图象上的一点,若矩形
x
比例函数的解析式为。

5、如图 5,已知 △ ABC 的周长是 22, OB ,OC 分别平分∠ ABC 和∠ ACB , OD ⊥ BC 于 D ,

OD = 3,则△ ABC 的面积是
A。

y
P
B
O
x
A O
B
D
C
图 5
图 4
二、解答题: (第 6 题 8 分,第 7 题 10 分,第 8 题 12 分,共 30 分)
6、已知实数 1
1
a 、
b 满足 ab=1, 记 M=
+
1 a 1 b
大小 .
a
+
b
, N=
, 试比较 M 、N 的
1 a 1 b
7、如图 7,在 ABCD 中, E 是 AD 的中点, CE 的延长线交 BA 的延长线于点 F 。

( 1)求证: CD=AF ;
( 2)连接 BE ,且 BE ⊥ CF ,则 CD 与 BC 之间的长度关系是什么,并说明理由。

图 7
8、某农机租赁公司共有50 台联合收割机,其中甲型20 台,乙型 30 台。

现将这 50 台联合收割机派往 A 、 B 两地区收割小麦,其中 30 台派往 A 地区, 20 台派往 B 地区。

每天的租
赁价格如下表:
每台甲型收割机的租金每台乙型收割机的租金
A 地区1800 元1600 元
B 地区1600 元1200 元
(1)设派往 A 地区 X 台乙型收割机,租赁公司这50 台联合收割机一天获得的租金为Y
元 .请先填写下表 ,再求出 Y 与 X 之间的函数关系式并写出X 的取值范围;
派往地
甲型 (台 ) 乙型 (台 ) 总计 (台 )
收割机类型
A 地区X 30
B 地区20
总计 (台 ) 20 30 50
(2)若使这50 台联合收割机一天获得的租金总额不低于79600 元,租赁公司有几种分派方案?
(3)若使这50 台联合收割机一天获得的租金总额最高,请你给租赁公司提出一条合理的建议。

相关文档
最新文档