第5章 抽样分布与抽样方法.

合集下载

社会调查研究方法教案第5章 抽样

社会调查研究方法教案第5章 抽样

第5章抽样(8学时)第一节抽样的意义与作用一、抽样的概念1.总体总体(population)通常与构成它的元素共同定义:总体是构成它的所有元素的集合,元素则是构成总体的最基本单位。

2.样本样本(sample)就是从总体中按一定方式抽取出的—部分元素的集合。

或者说一个样本就是总体的一个子集。

3.抽样明白了总体和样本的概念,再来理解抽样的概念就十分容易了。

所谓抽样(sampling),指的是从组成某个总体的所有元素的集合中,按一定的方式选择或抽取一部分元素(即抽取总体的一个子集)的过程,或者说,抽样是从总体中按一定方式选择成抽取样本的过程。

4.抽样单位抽样单位(sampling unit)就是一次直接的抽样所使用的基本单位。

抽样单位与构成总体的元素有时是相同的,有时又是不同的。

5.抽样框抽样框(sampling frame)又称做抽样X围,它指的是一次直接抽样时总体中所有抽样单位的。

6.参数值参数值(parameter)也称为总体值,它是关于总体中某一变量的综合描述,或者说是总体中所有元素的某种特征的综合数量表现。

在统计中最常见的总体值是某一变量的平均值,7.统计值统计值(statistic)也称为样本值,它是关于样本中某一变量的综合描述,或者说是样本中所有元素的某种特征的综合数量表现。

样本值是从样本的所有元素中计算出来的,它是相应的总体值的估计量。

二、抽样的作用在社会研究中,抽样主要解决的是对象的选取问题,即如何从总体中选出一部分对象作为总体的代表的问题。

本章一开始我们就说过,一项社会研究若能对总体中的全部个体都进行了解,那当然是很好的。

但实际上广大研究人员在时间、经费、人力等方面遇到难题,甚至陷入困境,从而不得不在庞大的总体与有限的时间、人力、经费这二者之间寻求平衡。

以现代统计学和概率论为基础的现代抽样理论,以及不断发展、不断完善的各种抽样方法.正好适应了社会研究的发展和应用的需要,成为社会研究知识体系中必不可少的一部分内容。

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

第5章--抽样分布与参数估计教案资料

第5章--抽样分布与参数估计教案资料

(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

抽样与抽样分布(试题及答案)

抽样与抽样分布(试题及答案)

第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.抽样推断的主要目的是( )。

A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。

2.抽样调查中,无法消除的误差是( )。

A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。

3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。

A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。

因为,故。

4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。

据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。

在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。

A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。

5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。

表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。

第五章 抽样法

第五章 抽样法

抽样的作用

抽样调查能够解决全面调查无法或难以解决的问
题。

抽样调查可以补充和订正全面调查的结果。
抽样调查方法可以用于生产过程中产品质量的检
查和控制。 抽样调查方法可以用于对总体的某种假设进行检 验,以判断这种假设的真伪,决定行动的取舍。

抽样中的几个基本术语
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素
一、抽样的概念、特点、作用 二、抽样中的基本术语 (一)总体和样本 (二)参数和统计量 (三)样本容量和样本个数 (四)重复抽样和不重复抽样 (五)概率抽样与非概率抽样 (六)抽样框 三、抽样误差
抽样的概念 特点
(一)概念 抽样调查是按照随机原则从全部研究对象中抽取 一部分单位进行观察,并依据获得的数据对全部研 究对象的数量特征做出具有一定可靠性的估计和判 断.达到对现象总体认识的一种方法. (二)特点 它是按照随机原则从总体中抽取样本。 它是由部分推算整体的一种方法。 它是运用概率估计的方法。 抽样误差可事先计算并加以控制。
抽样中的几个基本术语
X
i 1 N
总体均值
X
i
N

X F
i 1 K i
K
i
F
i 1
i
标准差

X
N i 1
i
X
2
N

X
K i 1
i K
X Fi
i
2
F
i 1
抽样中的几个基本术语
总体方差
2
( X i X )2
i 1
N
N

( X i X ) 2 Fi

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断

σ
n )
抽样推断的基本原理
抽样推断的优良标准
设θ 为待估计的总体参数, θ为样本统计量,则 θ的优良标 准为: 1若 E(θ ) =θ ,则称 θ为 θ 的无偏估计量(无偏性)
更有效的估计量(有效性) 2若σθ1 < σθ2,则称θ1为比θ2
3若 越大σθ 越小,则称 θ 为θ 的一致估计量(一 致性)
即中选成分相同但中选顺序不同的视为同一样本
抽样推断的一般问题
抽样组织方式
简单随机抽样 类型抽样 整群抽样 等距抽样 多阶段抽样 多重抽样
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示. 考虑顺序的不重复抽样 考虑顺序的重复抽样 不考虑顺序的不重复抽样 不考虑顺序的重复抽样
抽样推断的一般问题
全及总体指标:参数 (未知量) 统计推断 样本总体指标:统计量 (已知量)
抽样推断的一般问题
抽样推断的特点 按随机原则抽取样本 运用概率论的理论和方法,用样本指标来推断 总体指标。 推断的误差可以事先计算和控制。
抽样推断的一般问题
抽样推断的应用 无法或 很难进行全面调查而又需要了解 其全面情况时 某些可以采用全面调查的社会经济现象, 也可采用抽样推断。 可用于生产过程的质量控制 进行假设检验
抽样推断的基本原理
抽样推断的优良标准——有效性 中位数的抽样分布
9 8 7 6 5 4 3 2 1 0 -1 45 50 55 60 65 70 75
平均数的抽样 分布
E(x) =
E ( me ) =
e
σx <σm
抽样推断的基本原理

曾五一 应用统计学 第5章

曾五一 应用统计学 第5章
2
(
)
(
)
2
P =
n1 n
σ 2 ( P ) = P( 1 − P )
二、样本容量与样本个数 1.样本容量。样本集合的大小称为样本容量, 一般用n表示。一般地,样本容量大于30的样 本称为大样本,不超过30的样本称为小样本。 2.样本个数。样本个数又称样本可能数目,它 是指从一个总体中可能抽取多少种样本。样本 个数的多少与抽样方法有关。
Xi = ∑ X ij
j =1 M
M 样本平均是: X=
i =1 j =1
(i = 1,2,L, r )
∑ ∑ X ij rM
r M
= i =1
∑Xi r
r
群间方差是: 2 ∑ (µ i − µ ) 2 δ = R 或者由样本数据估计: −X δ2 r 由于整群抽样都采用不重复抽样的方法,所以样本平均数的标准差是:
四、抽样组织的设计 1.简单随机抽样是基本抽样组织方式 2.类型抽样与整群抽样比较 (1)减小类型抽样中样本平均数标准差的 办法。 (2)减小整群抽样的样本平均数标准差的 办法。
第四节 大数定理与中心极限定理
大数定理:独立同分布的随机变量 X1,X2,…,Xn,…,设它们的平均数 为 µ ,方差为 σ 2 ,即, E ( X i ) = X , σ 2 ( X i ) = σ 2 ,(i=1,2,…)。则对任意的 正数 ε,有: 1 n lim p ∑ X i − µ < ε = 1 n→∞ n i =1
解:样本平均数(平均每次加油量) X = 用样本组间方差代替总体组间方差:
i =1
∑ Xi r
r
=
330 = 33 (公斤) 10
δ2
∑ (X =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本k阶原点矩 样本k阶中心矩
它反映了总体k 阶 中心矩的信息
1 k Ak X i n i 1
1 n Bk ( X i X )k n i 1
n
k=1,2,…
它们的观察值分别为: 1 n 样本均值 x xi n i 1
样本方差
n n 1 1 2 2 2 2 s ( x x ) [ x n x ] i i n 1 i 1 n 1 i 1
2 ( x x ) s n 1 2
第5章 抽样分布与抽样方法
gongwei@
本章主要内容
• 随机抽样和统计推断 • 抽样分布 • 抽样设计方法
教学基本要求
• 通过本章的学习,掌握抽样的概念,简单随机 抽样的方法;掌握重置抽样的抽样分布,不重 置抽样的抽样分布;识记抽样其他组织形式, 抽样设计的基本原则,掌握各种抽样组织形式 的抽样平均误差的计算方法,了解抽样方案的 设计内容。
抽样的基本概念
• 抽样涉及的基本概念有: – 总体与样本 – 样本容量与样本个数 – 总体参数与样本统计量 – 重复抽样与不重复抽样 • 这些概念是统计学特有的,体现了统计学的基本 思想与方法。
总体和样本(回顾)
• 1.总体:又称全及总体、母体,指所要研究对象的 全体,由许多客观存在的具有某种共同性质的单位 构成。总体单位数用 N 表示。 • 2.样本:又称子样,来自总体,是从总体中按随机 原则抽选出来的部分,由抽选的单位构成。样本单 位数用 n 表示。 • 3.总体是唯一的、确定的,而样本是不确定的、可 变的、随机的。
• 计算有限总体参数的公式中要使用总体的所有单 位的标志值,(有限总体的单位总数N),而计 算样本统计量的公式中只使用抽取到的样本(其 个数是样本量n)。
总体参数和样本统计量
• 总体参数:反映总体数量特征的指标。其数值是唯一的、确定的。 • 样本统计量:根据样本分布计算的指标。是随机变量。
总体 样本
常用统计量
n
它反映了总体均值 的信息
样本均值
1 X Xi n i 1
它反映了总体方差 的信息
n 1 2 样本方差 S 2 ( Xi X ) n 1 i 1
n 1 2 样本标准差: S S2 ( X X ) i n 1 i 1
它反映了总体k 阶矩 的信息,当k=1时, 就是X ~ N ( , 2 ) 的一个样本, 其中未知 , 2已知, 问下列随机变量中那些是统计 量
X1 X n X1 X n ; ; 2 n 2 ( X 1 X n ) ( X 1 X n ) n . ; . 2 n
2、同时,有1500人参加了公司培训, 则参加公司培训计划的比例为: P=1500/2500=0.60 参数是总体的数值特征(A parameter is a numerical characteristic of a population.)。 如:例3中的中层干部平均年薪,年薪标准差 及受培训人数所占比例均为该公司中层干部这一 总体的参数。 ●抽样估计就是要通过样本而非总体来估计总体 参数。
1 n 2 s ( x x ) n 1 i 1 i
样本标准差
1 n k ak xi , k 1,2 n i 1 样本k阶矩 1 n bk ( xi x )k , k 1,2 n i 1 样本k阶中心矩
注意:
• 总体参数是常数,计算总体参数的公式中所用到 的总体各单位的标志值是确定的具体数值,而样 本统计量是随机变量,计算样本统计量的公式中 所用的样本在未具体观察前是随机变量。
样本容量与样本个数
• 样本容量:一个样本中所包含的单位数,用n表示。 • 样本个数:又称样本可能数目,指从一个总体中所 可能抽取的样本的个数。对于有限总体,样本个数 可以计算出来。样本个数的多少与抽样方法有关。 (这个概念只是对有限总体有意义,对无限总体没有 意义!)
例3:某大公司人事部经理整理其2500个中层干部 的档案。其中一项内容是考察这些中层干部的平 均年薪及参加过公司培训计划的比例。 总体:2500名中层干部(population ), 如果:上述情况可由每个人的个人档案中得知, 可容易地测出这2500名中层干部的平均年薪及标 准差。 假如:1:已经得到了如下的结果: 总体均值(population mean) =51800 总体标准差(Population standard deviation=4000
统计量
1. 若X1, X2,…, Xn是来自总体X 的一个样本,
g(X1,X2,…, Xn)是X1,X2,…, Xn的函数, 若 g中 则称g(X1,X2,…, Xn)是一统计量。 不含任何未知参数,
注:统计量是随机变量。
x1,x2,…, xn是相应于样本X1,X2,…, Xn的样本值, 则称g(x1,x2,…, xn)是g(X1,X2,…, Xn)的观察值。
400个 样本 支持人数: 160
推断
支持该候选人的选民 占全部选民的比例: 160/400=40%
抽样估计方法主要用在下列两种情况: 1、对所考查的总体不可能进行全部测度; 2、从理论上说可以对所考查的总体进行全部测度, 但实践上由于人力、财力、时间等方面的原因,无法 或没有必要(不划算)进行全部测度。 注意: ● 抽样调查必须遵循随机原则。 ● 抽样估计只能得到对总体特征的近似测度,因此, 抽样估计还必须同时考察所得结果的“可能范围”与 “可靠程度”。
例1:一汽车轮胎制造商生产一种被认为寿命更长的新型轮胎。
平均里程: 36,500公里
120个 样本
测试
推断
新轮胎 平均寿命: 36,500公里
例2:某党派想支持某一候选人参选美国某州议员,为了决定 是否支持该候选人,该党派领导需要估计支持该候选人的民众 占全部登记投票人总数的比例。由于时间及财力的限制:
相关文档
最新文档