抽样与抽样分布教材
合集下载
统计学-抽样分布与抽样方法

重复抽样的特点: ①在重复抽样的过程中,被抽取的总体单位总数始终
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
第5章--抽样分布与参数估计教案资料

(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。
统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
抽样检验和抽样分布

占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n
in
n N i N i N
样本比率抽样样本容量:按前面指定的比
例(n/N)从每组的Ni单位中抽取ni个单位 即构成一个抽样总体,其样本容量为:
K
n= n1+ n2+ n3+…+ nk= ni i 1
数μ;
3、样本平均数 x 分布的均方差 x 等于:
当为有限总体无放回抽样时,其样本均值 标准差为:
N
N x
N
N
p
1
p
如果总体为无限总体的或抽取是有放回的
,其样本均值标准差为:
x
N
(二)非正态总体样本平均数 x 的分布及
性质?
1、中心极限定理可以解决上述问题:
一个具有任意函数形式的总体,其样
2、抽样误差:是指由于随机抽样的偶然因 素使样本各单位的结构不足以代表总体 各单位的结构,而引起抽样指标和全及 指标之间的绝对离差。不包含登记性误 差和不遵守随机原则造成的偏差。
影响抽样误差的因素有:总体各单位标 志值的差异程度;样本的单位数;抽样 的方法;抽样调查的组织形式。
第二节 随机抽样设计
样本容量足够大(n=50),据中心极限
定理,x 近似服从正态分布。
(1)
3160
x
800 113.14
x
N
50
x
P x3000 P
x
3000
3160
/ n
113.14
Pz 1.41 0.9207
同理处理(2)和(3)
统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学抽样与抽样分布

查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
x
xi
i 1
M
1.0 1.5 4.0 16
2.5
n
(xi x )2
2 x
i 1
M
(1.0 2.5)2
(4.0 2.5)2
2
0.625
16
n
式中:M为样本数目
比较及结论:1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
Ⅲ-26
样本均值的分布与总体分布的比较
Ⅲ-19
(1)抽样平均数的平均误差(抽样均值误差)注意啦:
重复抽样
当抽样比例
小于5%时,
不区别抽样
方法影响
不重复抽样
2 N n
()
x n N 1
N n N 1
称为修正系数
Ⅲ-20
(2)抽样成数的平均误差
重复抽样
p
P(1 P) n
不重复抽样
p
P(1 P) ( N n) n N 1
N n N 1
的点
为卡方分布的上a分位点。
a
2 a
(
n)
Ⅲ-40
样本方差的分布
设总体服从正态分布 X~ N(μ,σ2 ),X1,X2, …,Xn为来自该正态总体的样本,则样本方 差 s2 的分布为
(n 1)s 2
2
~
2 (n 1)
将2(n – 1)称为自由度为(n-1)的卡方分布
Ⅲ-41
卡方 (2) 分布
第一个 观察值
第二个观察值
1234
1 1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
3 2.0 2.5 3.0 3.5
4 2.5 3.0 3.5 4.0
.3 P ( x ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
Ⅲ-25
所有样本均值的均值和方差
12个样本的均值(x)
第一个
第二个观察值
观察值
1
2
3
4
1
-
1.5
2.0
2.5
2
1.5
-
2.5
3.0
3
2.0
2.5
-
3.5
4
2.5
3.0
3.5
-
Ⅲ-34
12个样本的均值(x)
样本均值 频数 频率
1.5
2 2/12
2.0
2 2/12
2.5
4 4/12
3.0
2 2/12
3.5
2 2/12
合计 12 1
0.4
总体
选择容量为n 的 简单随机样本 计算样本方差S2
计算卡方值
2 = (n-1)S2/σ2
计算出所有的
2值
Ⅲ-42
不同容量样本的抽样分布
n=1 n=4 n=10 n=20
2
样本统计量
样本均值
样本成数
样本方差
正态总体或非正 态总体大样本
正态 总体小样本
大样本
正态分布
t分布
Ⅲ-43
正态分布
2分布
解:(1)重复抽样条件下
单位 A B C D A A,A A,B A,C A,D B B,A B,B B,C B,D C C,A C,B C,C C,D D D,A D,B D,C D,D
(2)不重复抽样条件下
单位 A A-
BCD A,B A,C A,D
B B,A - B,C B,D
C C,A C,B - C,D
0.95 (1 0.95) 0.02179 100
Ⅲ-30
根据中心极限定理可知,当样本容量足够大时,样 本均值的抽样分布逐渐趋于正态分布。而抽样成数 的样本容量足够大的条件是np≥5和n(1-p)≥5,而本例 中n=100,p=0.95,所以服从正态分布,即 p~N(p,p(1-p)/n)
2 = p(1-p)/n
x~N(μ,σ2/n)
=10
n= 4
x 5
n =16
x 2.5
= 50 X
总体分布
x 50
X
抽样分布
Ⅲ-28
中心极限定理(图示)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值x 的
抽样分布近似服从均值为μ、方差为σ2/n的正态分布
一个任意分
p
P(1 P) ( N n) n N 1
0.95 (1 0.95) 10000 100 0.02168
100
10000 1
Ⅲ-37
样本方差的抽样分布
卡方分布定义
设X1,X2,…,Xn为来自总体N(0,1)的样本,则 称统计量
服从自由度为n的卡方分布 简记为:
Ⅲ-39
卡方分布定义
对于给定的正数a,0<a<1,称满足条件
第3章 抽样与抽样分布
本章内容
§3.1 总体与样本 §3.2 抽样的组织形式 §3.3 抽样误差与抽样分布
Ⅲ-2
§3.1 总体与样本
一、全及总体与抽样总体 1、全及总体
指调查对象的全部单位构成的整体,即具有某种 共同性质的若干单位的集合体。简称总体、母体。 可分为有限总体和无限总体 总体单位数用N来表示 2、抽样总体 从全及总体中按照随机原则抽取一部分单位构成 的集合体。简称样本、子样。 大样本和小样本 样本单位数用n来表示
T ( X ) 为统计量,它服从自由度为(n-1)的t 分布
0.3
0.2
0.1
0
1.5
2
2.5
3
3.5
样本均值的抽样分布
Ⅲ-35
所有样本均值的均值和方差
n
x
xi
i 1
M
1.5 3.5 12
30 12
2.5
n
(xi x )2
2
i 1
x
M
(1.5 2.5)2 (3.5 2.5)2 5 2 ( N n )
12
12 n N 1
代表性误差: 偏差 随机误差
Ⅲ-18
2、抽样误差的概念 指根据样本数据计算而得到的样本统计量与被估计的未知 的总体参数真值之间的随机误差。
3、影响抽样误差的因素 (1)抽样单位数目的多少 (2)总体被研究标志的变异程度 (3)抽样方法和组织形式的不同
4、抽样平均误差 指抽样平均数(或抽样成数)的标准差。它反映抽样平均 数(或抽样成数)与总体平均数(或总体成数)的平均误 差程度。
(1)抽样平均数
Ⅲ-7
(2)抽样成数
定义:在抽样总体中, 一个现象有两种表现 时,其中具有某一种 表现的单位数占抽样 总体单位数目的比重, 叫抽样成数,或样本 成数。
pq 1
例:某灯泡厂生产的10000只 灯泡中,从中抽取1000只进 行检验,其中有50只不合格, 则
样本不合格率:
p=50/1000=5% 合格率:q=1-p=95%
总体分布
.3
.2
.1 0
1
234
= 2.5
σ2 =1.25
抽样分布
.3 P ( x ) .2
x 2.5
2 x
0.625
.1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
Ⅲ-27
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N ~ (μ,σ2 )时,来自该总体 的所有容量为n的样本的均值x 也服从正态分布, x 的数学期望为μ,方差为σ2/n。即
D D,A D,B D,C -
Ⅲ-12
§3.2 抽样的组织形式
一、简单随机抽样(纯随机抽样) 二、类型抽样(分类抽样) 三、机械抽样(等距抽样) 四、整群抽样
Ⅲ-13
一、简单随机抽样(纯随机抽样)
1、概念
对全及总体的所有单位不进行任何分类或排队,按照随机 原则直接从总体单位N中抽取n个单位作为样本,保证每个 单位在抽选中都有相等的中选机会。
T 统计量的分布
学生氏分布定义 设X~N(0,1),Y~2(n),并且X,Y 独立,则称随机变量
服从自由度为n 的t分布,记为t~t(n)
Ⅲ-45
t分布定义
对于给定的正数a,0<a<1,称满足条件
的点
为t(n)分布的上a分位点。
a
ta (n)
Ⅲ-46
T 统计量的分布
设X1,X2,…,Xn是来自正态总体N~(μ1,σ12 )的一个 样本, 称
2、具体抽样方法
将总体各单位编号,然后随机抽取,直到抽够预定数目。
Ⅲ-14
二、类型抽样(分类抽样)
1、概念 先将总体按某个标志分成若干组,再随机从各组 中抽取样本单位。
2、具体抽样方法 (1)不等比例类型抽样法 (2)等比例类型抽样法
Ⅲ-15
三、机械抽样(等距抽样)
1、概念
将总体各单位按某一标志进行排序,然后再按固 定的顺序和间隔来抽选样本单位。
x
n
布的总体
当样本容量足够
大时(n ≥30) ,
样本均值的抽样
分布逐渐趋于正
态分布
x
X
Ⅲ-29
二、抽样分布 (一)重复抽样分布
2、抽样成数的抽样分布
例:对某种产品质量的合格率进行检验,现用重复 抽样方法,从总体中抽取100个样本进行检验,其 合格率p=95%,其抽样平均误差为:
p
P(1 P) n
Ⅲ-3
二、全及指标和抽样指标 1、全及指标
根据总体各单位标志值计算的反映总体数量特征 的综合指标,也称为总体指标或总体参数。 (1)总体平均数
Ⅲ-4