2012年浙江专升本数学真题试卷

合集下载

2012浙江理数学试题及答案

2012浙江理数学试题及答案

数学(浙江理科)解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

2 …1. 设集合A=(x|1 V x V 4},集合B =(x| x -2x-3 < 0},则A n ( C R B ) = BA (1,4)B (3,4)C (1 ,3)D (1,2) U (3,4)解析:B =(x|-1 < x< 3}, C R B={X|X>3或x<-1}2. 已知i是虚数单位,贝U —— = D1 -iA 1-2iB 2-iC 2+iD 1+2i解析:—(3 i)(1 Di』1 -i 1 -i3. 设a€ R ,贝U “ a= 1” 是“直线l〔:ax+2y=0 与直线l2 : x+(a+1)y+4=0 平行”的AA充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件解析:"直线11: ax+2y=0与直线12 : x+(a+1)y+4=0平行”的充要条件是"a= 1或a= -2”。

4. 把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是A解析:y=cos2x+1伸长2倍得到y=cosx+1,想左平移得到y=cos (x+1) +1,向下平移1个单位得到y=cos (x+1)o5. 设a, b是两个非零向量。

CA. 若|a+b|=|a|-|b| ,贝U a± bB. 若a± b,则|a+b|=|a|-|b|C. 若|a+b|=|a|-|b| ,则存在实数入,使得b=入aD. 若存在实数入,使得b=入a,则|a+b|=|a|-|b|数学(浙江理科)解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

21. 设集合A={x|1 <x<4},集合B={x| X -2x-3 < 0},则AC ( C R B)=BA (1,4)B (3,4)C (1 ,3)D (1,2) U (3,4)解析:B ={x|-1 < x< 3}, C R B=(X|X>3或X〈-1}2. 已知i是虚数单位,贝U 3 「= D1 iA 1-2i B2-i C 2+i D 1+2i、3 i (3 i)(1 i) , o.解析: 1 21 i 1 i3. 设a€ R ,则“a=1” 是“直线li: ax+2y=0 与直线l2 : x+(a+1)y+4=0 平行”的AA充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件解析:"直线h: ax+2y=0与直线12 : x+(a+1)y+4=0平行"的充要条件是"a= 1或a=-2"。

浙江省专升本数学练习题

浙江省专升本数学练习题

浙江省专升本数学练习题### 浙江省专升本数学练习题#### 一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = \sin(x) \)C. \( f(x) = x^3 \)D. \( f(x) = \cos(x) \)2. 计算定积分 \( \int_{0}^{1} x^2 dx \) 的值是?A. 1/3B. 1/2C. 2/3D. 13. 以下哪个选项是二阶导数?A. \( \frac{d^2y}{dx^2} \)B. \( \frac{dy}{dx} \)C. \( \frac{d^2y}{dx} \)D. \( \frac{d^2x}{dy^2} \)4. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式是?A. 2B. -2C. 5D. -55. 函数 \( y = \ln(x) \) 的导数是?A. \( \frac{1}{x} \)B. \( x \)C. \( \ln(x) \)D. \( e^x \)6. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是?A. 0B. 1C. \( \pi \)D. \( \infty \)7. 以下哪个选项是线性方程的一般形式?A. \( ax^2 + bx + c = 0 \)B. \( ax + by = c \)C. \( ax^3 + bx^2 + cx + d = 0 \)D. \( ax^2 + bx + c = 0 \)(其中 \( a \neq 0 \))8. 函数 \( y = e^x \) 的反函数是?A. \( \ln(x) \)B. \( e^{-x} \)C. \( \frac{1}{e^x} \)D. \( \ln(x) + 1 \)9. 以下哪个选项是二项式定理的展开式?A. \( (x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \)B. \( (x+y)^n = \sum_{k=1}^{n} \binom{n}{k} x^{n-k} y^k \)C. \( (x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} \)D. \( (x+y)^n = \sum_{k=1}^{n} \binom{n}{k} x^{k} y^{n-k} \)10. 计算 \( \sum_{k=1}^{n} k^2 \) 的值是?A. \( \frac{n(n+1)(2n+1)}{6} \)B. \( \frac{n(n+1)}{2} \)C. \( \frac{n(n+1)(2n+1)}{3} \)D. \( \frac{n(n+1)(2n+1)}{4} \)#### 二、填空题(每题4分,共20分)1. 计算 \( \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \) 的值是 _______。

2012年普通高等学校招生全国统一考试浙江卷(数学理)解析版

2012年普通高等学校招生全国统一考试浙江卷(数学理)解析版

绝密★考试结束前2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R = ()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),则A ∩(C R B )=(1,4).【答案】A2.已知i 是虚数单位,则3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i 2=1+2i . 【答案】D3.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案.【答案】B5.设a ,b 是两个非零向量.A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立.【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C=种;4个都是奇数:455C=种.∴不同的取法共有66种.【答案】D7.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误..的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意的n∈N*,均有S n>0D.若对任意的n∈N*,均有S n>0,则数列{S n}是递增数列【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.【答案】C8.如图,F1,F2分别是双曲线C:22221x ya b-=(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ABCD【解析】如图:|OB |=b ,|O F 1|=c .∴k PQ =b c ,k MN =﹣bc.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y x a ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣bc(x -ac c a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M=322c c a -,解之得:2232a c e a ==,即e. 【答案】B9.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则()2l n 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.【答案】C绝密★考试结束前2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科) 非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二、填空题:本大题共7小题,每小题4分,共28分. 11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=. 【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________. 【解析】T ,i 关系如下图:【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q 表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =ACcos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠= 【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 则实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x的距离为:d ==故曲线C 2到直线l :y =x的距离为d d r d '=-=-= 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),74d a '==⇒=. 【答案】7417.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1;考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:a =,舍去a =,得答案:a =【答案】a =三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin BC . (Ⅰ)求tan C 的值;(Ⅱ)若a∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。

铭远教育-(历年真题)2012年浙江省专升本数学试卷及解析

铭远教育-(历年真题)2012年浙江省专升本数学试卷及解析

当 x 0 时,因为 f 0 lim
x 0
x2 0 1 e2 x 0 , 0 f 0 lim 2 f 0 , x0 x x
所以函数 f x 在点 x 0 处不可导.
2e 2 x , x 0 . 因此 f x 2 x, x 0
lim i n
1 n
1 n
an
n 1
2 n

1 1 n n
i 1 n

1 0
i . n x dx.
为 x .所以上下限确定为 0,1. 定积分表示为
lim 12. 1,1 解析: R n a
lim 3
n
n 1 n
1.
收敛区间 1,1.
二、填空题 6. 2 解析:
x
lim x x 2 2 x 5 x 1 lim 4x x2 2x 5 x 1
解析:


x x 2 2 x 5 x 1
2

x
x 2 x 5 x 1
x
2
2 x 5 x 1
14. , ,0 或
3 4 3 4 , ,0 5 5 5 5

解析:在 xoy 平面上: a 4,3,7 ,单位向量为 1.

A2 B 2 1 设 b A, B,0 , 4 A 3B 0
15.
1 arctan x 1 sin x x 1 ln 1 3 x , x 0 f x , ,若 f x 在点 x 0 处连续, 3 16、设 a, x 0

浙江省专升本历年真题卷-浙江专升本真题及答案

浙江省专升本历年真题卷-浙江专升本真题及答案

浙江省普通高校“专升本”联考《高等数学(一)》试卷一、填空题1.函数xe x x x y --=)1(sin 2的连续区间是 。

2.=-+-∞→)4(1lim 2x x x x 。

3.(1)x 轴在空间中的直线方程是 。

(2)过原点且与x 轴垂直的平面方程是 。

4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=--1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点1=x 处连续。

5.设参数方程⎩⎨⎧==θθ2sin 2cos 32r y r x , (1)当r 是常数,θ是参数时,则=dxdy。

(2)当θ是常数,r 是参数时,则=dxdy。

二.选择题1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值。

(A )当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f , (B )当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , (C )当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , (D )当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则=--+→hh x f h x f h )2()3(lim000( )。

).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A3.设函数⎪⎩⎪⎨⎧<-=>=--0 ,0 0,0x ,)(22x e x e x f x x ,则积分 ()11-=⎰f x dx ( )。

(完整版)2012高考浙江文科数学试题及答案(高清版),推荐文档

(完整版)2012高考浙江文科数学试题及答案(高清版),推荐文档

2012年普通高等学校夏季招生全国统一考试数学文史类(浙江卷)本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.选择题部分(共50分)参考公式:球的表面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径锥体的体积公式V=13 Sh其中S表示锥体的底面积,h表示锥体的高柱体的体积公式V=Sh其中S表示柱体的底面积,h表示柱体的高台体的体积公式V=13h(S1+12S S+S2)其中S1,S2分别表示台体的上、下底面积.h表示台体的高如果事件A,B互斥,那么P(A+B)=P(A)+P(B)如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中事件A恰好发生k 次的概率P n(k)=C k n P k(1-P)n-k(k=0,1,2,…,n)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(U Q)=() A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}2.已知i是虚数单位,则3i1i+-()A.1-2i B.2-i C.2+i D.1+2i3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是()A.1 cm3B.2 cm3C.3 cm3D.6 cm34.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.设l是直线,α,β是两个不同的平面,()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β6.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是() 7.设a,b是两个非零向量,()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|8.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3 B.2 C D9.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.245B.285C.5 D.610.设a>0,b>0,e是自然对数的底数()A.若e a+2a=e b+3b,则a>bB.若e a+2a=e b+3b,则a<bC.若e a-2a=e b-3b,则a>bD.若e a-2a=e b-3b,则a<b非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为__________.12.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为2的概率是__________.13.若某程序框图如图所示,则该程序运行后输出的值是__________.14.设z =x +2y ,其中实数x ,y 满足10,20,0,0,x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩则z 的取值范围是__________.15.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=u u u r u u u r__________.16.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则3()2f =__________. 17.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =__________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin Aa cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.19.已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n+3,n ∈N *.(1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n .20.如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB,AB =,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.21.已知a∈R,函数f(x)=4x3-2ax+a.(1)求f(x)的单调区间;(2)证明:当0≤x≤1时,f(x)+|2-a|>0.22.如图,在直角坐标系xOy中,点P(1,12)到抛物线C:y2=2px(p>0)的准线的距离为54.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.(1)求p,t的值;(2)求△ABP面积的最大值.【自选模块】3.“数学史与不等式选讲”模块(10分)已知a∈R,设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A.(1)若a=1,求A;(2)若A=R,求a的取值范围.4.“矩阵与变换和坐标系与参数方程”模块(10分)在直角坐标系xOy 中,设倾斜角为α的直线l :2cos 3sin x t y t αα⎧⎪⎨⎪⎩=+,=+(t 为参数)与曲线C :2cos sin x y θθ⎧⎨⎩=,=(θ为参数)相交于不同两点A ,B . (1)若π3α=,求线段AB 中点M 的坐标;(2)若|P A |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率.1. D 由已知得,U Q ={1,2,6},所以P ∩(U Q )={1,2}.2.D ∵23i (3i)(1i)3+3i+i+i 24i12i 1i (1i)(1i)22++++====+--+, ∴选D .3.A 由三视图得,该三棱锥底面面积S =12×2×1=1(cm 2),高为3 cm ,由体积公式,得V =13Sh =13×1×3=1(cm 3). 4. A l 1与l 2平行的充要条件为a (a +1)=2×1且a ×4≠1×(-1),可解得a =1或a=-2,故a =1是l 1∥l 2的充分不必要条件.5.B A 项中由l ∥α,l ∥β不能确定α与β的位置关系,C 项中由α⊥β,l ⊥α可推出l ∥β或l β,D 项由α⊥β,l ∥α不能确定l 与β的位置关系.6. A y =cos2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应的图象为A 项.7. C 由|a +b |=|a |-|b |两边平方可得,|a |2+2a ·b +|b |2=|a |2-2|a ||b |+|b |2,即a ·b =-|a ||b |,所以cos 〈a ,b 〉=-1,即a 与b 反向,根据向量共线定理,知存在实数λ,使得b =λa .8. B 由题意可知椭圆的长轴长2a 1是双曲线实轴长2a 2的2倍,即a 1=2a 2,而椭圆与双曲线有相同的焦点.故离心率之比为21212c a a c a a ==. 9. C ∵x +3y =5xy ,∴13155y x+=. ∴3x +4y =(3x +4y )×1=(3x +4y )1355y x ⎛⎫+ ⎪⎝⎭=3941213555555x y y x +++≥+=, 当且仅当31255x y y x =,即x =1,12y =时等号成立. 10. A 函数y =e x +2x 为单调增函数,若e a +2a =e b +2b ,则a =b ;若e a +2a =e b +3b ,∴a >b .故选A .11.答案:160解析:根据分层抽样的特点,此样本中男生人数为560280160560420⨯=+.12.答案:25解析:五点中任取两点的不同取法共有25C 10=种,而两点之间距离为2的情况有4种,故概率为42105=. 13.答案:1120解析:当i =1时,T =11=1,当i =2时,12T =,当i =3时,11236T ==,当i =4时,116424T ==,当i =5时,11245120T ==,当i =6时,结束循环,输出1120T =.14.答案:[0,72]解析:不等式组表示的可行域如图阴影部分,结合图象知,O 点,C 点分别使目标函数取得最小值、最大值,代入得最小值为0,最大值为72.15.答案:-16解析:AB u u u r ·AC u u u r =(AM u u u u r +MB u u u r )·(AM u u u u r +MC u u u u r )=2AM uuuu r +AM u u u u r ·MC u u u u r +AM u u u u r ·MB u u u r+MB u u u r ·MC u u u u r =|AM u u u u r |2+(MB u u u r +MC u u u u r )·AM u u u u r +|MB u u u r ||MC u u uu r |cosπ=9-25=-16. 16.答案:32解析:331113()(2)()()1222222f f f f =-=-==+=.17.答案:94解析:x 2+(y +4)2=2到直线y =x=,所以y =x 2+a 到y =x 的,而与y =x 的直线有两条,分别是y =x +2与y =x -2,而抛物线y =x 2+a 开口向上,所以y =x 2+a 与y =x +2相切,可求得94a =.18.解:(1)由b sin A cos B 及正弦定理sin sin a bA B=,得sin B B ,所以tan B π3B =.(2)由sin C =2sin A 及sin sin a cA C=,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac .所以a =c =.19.解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1. 所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n b n =(4n -1)·2n -1,n ∈N *.所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n ,所以2T n -T n =(4n -1)2n -[3+4(2+22+…+2n -1)]=(4n -5)2n +5. 故T n =(4n -5)2n +5,n ∈N *.20. (1)证明:①因为C 1B 1∥A 1D 1,C 1B 1平面ADD 1A 1, 所以C 1B 1∥平面A 1D 1DA .又因为平面B 1C 1EF ∩平面A 1D 1DA =EF , 所以C 1B 1∥EF ,所以A 1D 1∥EF .②因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥B 1C 1. 又因为B 1C 1⊥B 1A 1,所以B 1C 1⊥平面ABB 1A 1, 所以B 1C 1⊥BA 1.在矩形ABB 1A 1中,F 是AA 1的中点,tan ∠A 1B 1F =tan ∠AA 1B =22,即∠A 1B 1F =∠AA 1B ,故BA 1⊥B 1F .所以BA 1⊥平面B 1C 1EF .(2)解:设BA 1与B 1F 交点为H ,连结C 1H .由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与面B 1C 1EF 所成的角. 在矩形AA 1B 1B 中,2AB =AA 1=2,得6BH =. 在直角△BHC 1中,125BC =,6BH =, 得1130sin BH BC H BC ∠==所以BC 1与平面B 1C 1EF 30. 21. (1)解:由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x )=12(x 6a x 6a , 此时函数f (x )的单调递增区间为 (-∞,6a 6a).单调递减区间为[.(2)证明:由于0≤x≤1,故当a≤2时,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.当a>2时,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.设g(x)=2x3-2x+1,0≤x≤1,则g′(x)=6x2-2=6(x-3)(x+3),于是所以,g(x)39所以当0≤x≤1时,2x3-2x+1>0.故f(x)+|a-2|≥4x3-4x+2>0.22.解:(1)由题意知21,51,24ptp=⎧⎪⎨+=⎪⎩得1,21.pt⎧=⎪⎨⎪=⎩(2)设A(x1,y1),B(x2,y2),因为OM过AB的中点,而且直线OM的方程为x-y=0,所以设线段AB的中点为Q(m,m).由题意,设直线AB的斜率为k(k≠0).由211222,,y xy x⎧=⎨=⎩得(y1-y2)(y1+y2)=x1-x2,故k·2m=1.所以直线AB方程为y-m=12m(x-m),即x-2my+2m2-m=0.由22220,,x my m my x⎧-+-=⎨=⎩消去x,整理得y2-2my+2m2-m=0,所以∆=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m .从而|AB |·|y 1-y 2| 设点P 到直线AB 的距离为d , 则2d =. 设△ABP 的面积为S ,则S =12|AB |·d =|1-2(m -m 2 由∆=4m -4m 2>0,得0<m <1.令u 0<u ≤12,则S =u (1-2u 2). 设S (u )=u (1-2u 2),0<u ≤12, 则S ′(u )=1-6u 2.由S ′(u )=0,得1(0,)2u =,所以S (u )max =S =.故△ABP 【自选模块】3.解:(1)当x ≤-3时,原不等式化为-3x -2≥2x +4,得x ≤-3. 当-3<x ≤12时,原不等式化为4-x ≥2x +4,得-3<x ≤0. 当12x >时,原不等式化为3x +2≥2x +4,得x ≥2. 综上,A ={x |x ≤0或x ≥2}(2)当x ≤-2时,|2x -a |+|x +3|≥0≥2x +4成立.当x >-2时,|2x -a |+x +3=|2x -a |+|x +3|≥2x +4,得x ≥a +1或13a x -≤, 所以a +1≤-2或113a a -+≤,得a ≤-2. 综上,a 的取值范围为a ≤-2.4.解:设直线l 上的点A ,B 对应参数分别为t 1,t 2.将曲线C 的参数方程化为普通方程24x +y 2=1. (1)当π3α=时,设点M 对应参数为t 0.直线l方程为12,22x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入曲线C 的普通方程24x +y 2=1,得13t 2+56t +48=0, 则12028213t t t +==-,所以,点M 的坐标为(1213,-. (2)将=2+cos sin x t y t αα⎧⎪⎨⎪⎩,代入曲线C 的普通方程24x +y 2=1,得 (cos 2α+4sin 2α)t 2+(α+4cos α)t +12=0,因为|P A |·|PB |=|t 1t 2|=2212cos 4sin αα+,|OP |2=7, 所以22127cosα=+,得25tan 16α=. 由于∆=32cos α(α-cos α)>0, 故tan α=. 所以直线l。

2012年成人高考专升本高等数学一考试真题及参考答案

2012年成人高考专升本高等数学一考试真题及参考答案

2012年成人高考专升本高等数学一考试真题及参考答案第一篇:2012年成人高考专升本高等数学一考试真题及参考答案2012年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

参考答案:A参考答案:C参考答案:D参考答案:A参考答案:B参考答案:D参考答案:C参考答案:B参考答案:A参考答案:B二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第11题参考答案:0 第12题设y=sin(x+2),则Y'=_________ 参考答案:cos(x+2)第13题设y=ex-3,则dy=_________.第14题参考答案:5sinx+C 第15题第16题曲线Y=x2-x在点(1,0)处的切线斜率为_________.参考答案:1 第17题设y=x3+2,则y''=__________.参考答案:6x 第18题设z=x2-y,则dz=_________.参考答案:2xdx-dy 第19题过点M(1,2,3)且与平面2x—Y+z=0平行的平面方程为_________.参考答案:2x—y+z=3 第20题参考答案:3π三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题参考答案:第22题参考答案:第23题设函数f(x)=x-1nx,求f(x)的单调增区间.参考答案:第24题参考答案:第25题参考答案:第26题参考答案:第27题设L是曲线y=x2+3在点(1,4)处的切线。

求由该曲线,切线L及y轴围成的平面图形的面积S.参考答案:第28题参考答案:第二篇:2013年成人高考专升本高等数学一考试真题及参考答案2013年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

参考答案:C参考答案:A参考答案:B参考答案:D参考答案:B参考答案:A参考答案:D参考答案:B参考答案:C参考答案:A二、填空题:本大题共10小题。

2012年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2012年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2012年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(x)=在x∈(一∞,+∞)上为( )A.有界函数B.奇函数C.偶函数D.周期函数正确答案:A解析:因为=0,故函数f(x)有界,答案A正确;可验证f(x)非奇非偶函数,所以答案B,C错误,也明显不是周期函数.2.已知f′(x0)=2,当△x→0时,dy为△x的( )A.同阶无穷小B.等价无穷小C.高阶无穷小D.低阶无穷小正确答案:A解析:=f′(x0)=2,所以当△x→0时,dy为△x 的同阶无穷小,即A答案正确.3.设函数f(x)满足f(0)=1,f(2)=3,f′(2)=5,f″(x)连续,则xf″(x)dx ( )A.10B.9C.8D.7正确答案:C解析:xf″(x)dx=xdf′(x)=xf′(x)f′(x)dx=2f′(2)一f(x)=2f′(2)一f(2)+f(0)=10—3+1=8,选项C正确.4.由y=,y=1,x=4围成的图形的面积为( )A.B.C.D.正确答案:B解析:画图并利用定积分的几何意义,可知所围图形的面积A=dx-3=,因此答案B正确.5.已知二阶微分方程y″+2y′+2=e-xsinx,则设其特解y*= ( ) A.e-x(acosx+bsinx)B.ae-xcosx+bxe-xsinxC.xe-x(acosx+bsinx)D.axe-xcosx+be-xsinx正确答案:C解析:二阶微分方程y″+2y′+2=e-xsinx的特征方程为r2+2r+2=0,解得r1=-1+i,r2=-1-i,又因λ+ωi=-1+i是特征方程的根,故取k=1,Rm(x)=1,因此y″+2y′+2=e-xsinx具有的特解形式可设为y*=xe-x(acosx+bsinx),答案C正确.填空题6.-(x+1)]=___________.正确答案:2解析:-(x+1)]===2 7.函数y=sin的连续区间为___________.正确答案:[,1]解析:该函数在定义域内处处连续,所以解不等式组,解得定义域为x∈[-,1].因此所求函数的连续区间为x∈[-,1]8.已知f′(3)=2,则=___________.正确答案:一4解析:由导数定义可得=-4.9.若函数y=y(x)由方程y=1+xey所确定.则y′=___________.正确答案:y′=解析:隐函数方程求导,y′=ey+xey.y′,解得y′=10.dx=___________.正确答案:ln|cscx-cotx|+cosx+C解析:dx=∫cscxdx-∫sinxdx=ln|cscx-cotx|+cosx+C11.极限表示的定积分为___________.正确答案:dx解析:利用定积分定义求极限,=,此极限为函数f(x)=在x∈[0,1]上的定积分,即12.级数的收敛区间为___________.正确答案:(-1,1)解析:因为ρ==1,所以幂级数的收敛半径R==1,故收敛区间为(一1,1).13.一阶线性微分方程y′+P(x)y=Q(x)的通解为___________.正确答案:y=e∫-P(x)dx[∫Q(x)e∫P(x)dxdx+C]解析:由一阶线性微分方程y′+P(x)y=Q(x)的通解公式y=e∫-P(x)dx[∫Q(x)e∫P(x)dxdx+C].14.在xOy平面上与向量a=(4,一3,7)垂直的单位向量是___________.正确答案:b=解析:设所求向量b=(x,y,0),则x2+y2=1 ①;且a.b=0,即4x-3y=0②由①和②解得,即b=,0)15.平面2x+y一z一1=0到平面2x+y一z+3=0的距离为___________.正确答案:解析:可以判断两平面平行,故平面2x+y—z一1=0到平面2x+y—z+3=0的距离可以转换为平面2x+y-z-1=0上任一点到平面2x+y-z+3=0的距离,即d=解答题解答时应写出推理、演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学试题 第 1页 (共 3页)
浙江省2012年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸 规定的位置上。

2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、 选择题: 本大题共 5 小题, 每小题4 分, 共20 分。

在每小题给出的四个选项中, 只 有一项是符合题目要求的。

1. 设 ( ) ( )
2
sin 1 1 x f x x + = + ,-∞<x<+∞,则此函数是 A.有界函数 B.奇函数 C.偶函数
D.周期函数
2. 若函数 y =f (x )满足 f ' (x 0)=2,则当Δx →0 时,函数 y =f (x )在 x =x 0 处的微分 d y 是
A.与Δx 等价的无穷小
B.与Δx 同阶的无穷小
C.比Δx 低阶的无穷小
D.比Δx 高阶的无穷小
3. 设函数 f (x )满足 f (0)=1, f (2)=3, f ' (2)=5, f " (x )连续,则 2 0
xf ò " (x )d x = A.10 B.9 C.8
D.7
4. 由曲线 y = x ,y =1,x =4 所围成的平面图形的面积是 A. 4 3
B. 5 3
C. 7 3
D. 16 3
5. 已知二阶微分方程 y "+2y '+2y =e - x
sin x ,则其特解形式为 A.e - x (a cos x +b sin x ) B.a e - x cos x +bx e - x
sin x C.x e - x (a cos x +b sin x )
D.ax e - x cos x +b e - x sin x
高等数学试题 第 2页 (共 3页)
非选择题部分
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图, 可先使用 2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、 填空题: 本大题共 10 小题, 每小题4 分, 共 40 分。

6. 极限 ( ) 2 lim 251 x x x x x ®+¥
++-+ [ ] =______.
7. 函数 2 sin 1 y x x =+- 的连续区间为______. 8. 已知 f ' (3)=2,则 ( )
(32)3 lim
h f h f h
® -- =______.
9. 若函数 y =y (x )由方程y =1+x e y 所确定,则 y '=______.
10. 2 cos d sin x x x
ò =______.
11. 极限 1
lim (12) n n n n ®¥
++¼+ 用定积分表示为______.
12. 级数 0 3
n
n n x
¥
= å 的收敛区间是______.
13. 一阶线性微分方程 y'+P (x )y =Q (x )的通解为______.
14. 在 xOy 平面上与向量 a =(4,-3,7)垂直的单位向量是______. 15. 平面 2x +y -z -1=0与平面 2x +y -z +3=0之间的距离等于______.
三、计算题:本题共有 8 小题,其中 16-19 小题每小题 7 分,20-23 小题每小题 8 分,共 60 分。

计算题必须写出必要的计算过程, 只写答案的不给分。

16. 设 ( ) ( ) 1
1 1 arctan()sin ln 130 3
0. x x x x x f x a x -- ì ++-<< ï = í ï ³ î , , , [ ]
若f (x )在 x =0 处连续,求 a 的值. 17. 设 ( ) 2 2 1e 0 0 x x f x x x ì -£ ï
= í > ï î , , , ,
求 f ' (x ).
18. 求函数 2
3
24
y x x =
-+ 图形的拐点与凹凸区间.
19. 讨论方程 x 2 =x sin x +cos x 的根的个数.
高等数学试题 第 3页 (共 3页)
20. 求 2 ln d x x x ò . 21. 计算 4
1 d x x x - ò .
22. 计算瑕积分 ( )
1
3
d 1 x x x + ò
.
23. 将函数 f (x )=ln(1-x -2x 2 )展开成x 的幂级数,并指出其收敛域.
四、综合题: 本大题共 3 小题, 每小题10 分, 共 30 分。

24. 已知 ( ) ( )
( ) ln e lim
0 n
n n x f x x n
®¥
+ => ,求f (x ).
25. 设 a >b >e ,证明:a b <b a .
26. 若 f (x )在[0,1]上是连续的. (Ⅰ)证明 ( ) ( ) 00 π sin d sin d 2 xf x x f x x p p
= òò ;
(Ⅱ)计算 3 π
2 0 sin d 1cos x x
x x
+ ò .。

相关文档
最新文档