江苏省苏州市太仓2019年中考数学一模试卷及答案

合集下载

江苏太仓2019初中毕业暨升学考试重点试卷-数学

江苏太仓2019初中毕业暨升学考试重点试卷-数学

江苏太仓 2019 初中毕业暨升学考试要点试卷 - 数学本卷须知1.答题前,考生先将自己的姓名、准考据号填写清楚,将条形码正确粘贴在考生信息条形码粘贴区。

2、选择题一定使用 2B 铅笔填涂;非选择题一定使用 0.5 毫米黑色笔迹的署名笔书写,字体工整、笔迹清楚。

3、请依照题号次序在各题目的答题地区内作答,高出答题地区书写的答案无效;在底稿纸、试题卷上答题无效。

4、保持卡面洁净,不要折叠,不要弄破、弄皱,禁止使用涂改液、修正带、刮纸刀。

数学本卷须知1、本试卷共 3 大题, 29 小题,总分值 130 分,考试时间120 分钟;2、答题前,考生务势必自己的姓名、考点名称、考场号、座位号用0.5 毫米黑色墨水署名笔填写在答题卡相对应的地点上;3、答选择题一定用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动,请用橡皮擦洁净后,再选涂其余答案;答非选择题一定用毫米黑色墨水署名笔写在答题卡指定的地点上,不在答题地区内的答案一律无效,不得用其余笔答题〔作图可用铅笔〕;4、考生答题一定答在答题卡上,答在试卷和底稿纸上一律无效、【一】选择题〔本大题共10 小题,每题 3 分,共 30 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的〕1、下边四个由 - 2 和 3 构成的算式中,运算值最小的是〔▲〕A、- 2- 3B、- 2〔3C、3- 2D、〔- 3〕22、一个正方形的面积为28,那么它的边长应在〔▲〕A、3 到 4 之间B、4到 5之间C、5到 6之间D、6到 7之间3、一组数据 4,5, 6, 7,7, 8 的中位数和众数分别是〔▲〕A、7,7B、7,C、5.5 ,7D、6.5 ,74、如图,在平面直角坐标系中,菱形OACB的极点 O在y A原点,点 C的坐标为〔 4,0〕,点 B 的纵坐标是 - 1,那么顶C 点 A 坐标是〔▲〕O xA、〔2,- 1〕B、〔1, -2〕BC、〔1,2〕D、〔2, 1〕5、如图,△ABC是边长为2 的等边三角形,将△ ABC沿射线 BC向右平移获得△DCE,连结 AD、 BD,以下结论错误的选项是〔▲〕A、AD∥BCB、AC⊥ BDC、四边形 ABCD面积为43 D、四边形 ABED是等腰梯形x1≤ 1 26、不等式组x24( x1)的解集是〔▲〕A、- 2《X≤3B、- 2《 X《3C、2《X≤3D、- 2≤X《31 27、对于 X 的两个方程x2x 2 0 与 x2 x a有一个解同样,那么 A 的值为〔▲〕A、- 2B、-3C、 -4D、-58、如图,△ ABC是边长为 6 的等边三角形, AD=2,AE∥BC,直线 BD交 AE 于点 E,那么 BE的长为〔▲〕 AEA、3 7B、4 3DC、3 3D、 5B C9、P 是⊙ O内一点,⊙ O的半径为 15,P 点到圆心 O的距离为9,那么经过 P 点且长度是整数的弦的条数是〔▲〕A、5B、 7C、 10D、 1210、在△ ABC中,∠ ABC= 30°, AB边长为 10,AC边的长度能够在3、5、7、11 中取值,知足这些条件的互不全等的三角形的个数是〔▲〕A、3B、 4C、 5D、 6【二】填空题〔本大题共8 小题,每题 3 分,共 24 分〕11、分解因式:X3- 4X=▲、12、昨年,太仓全市实现全口径财政收入226.5 亿元,同比增加25.8 %、那么亿元用科学记数法可表示为▲元、x 213、函数y x中,自变量 X 的取值范围是▲、14、现有四条线段,长度挨次是2,3,4,5,从中任选三条,能构成三角形的概率是▲、15、抛物线的极点坐标为〔2,9〕,且它在 X 轴上截得的线段长为 6,那么该抛物线的分析式为▲、16、如图是函数Y=3- |X- 2|的图象,那么这个函数的最大值是▲、17、假定一个圆锥的侧面积是它底面积的 2 倍,那么这个圆锥的侧面睁开图的圆心角是▲〔、y 33 yx18、如图,直线 4 交 X轴、Y轴于点 A、B,⊙ P的 Ax 圆心从原点出发以每秒 1 个单位的速度向 X 轴正方向挪动,移O Pt B动时间为 T〔 S〕,半径为2,那么 T=▲ S 时⊙ P与直线 AB 相切、【三】解答题〔本大题共10 小题,共76 分,应写出必需的计算过程、推理步骤或文字说明〕201221 cos60 o1 3 π 119、〔本题共5 分〕计算: 2 、2x y 2,20、〔本题共5 分〕解方程组3 x 2 y 10.x 2 x 1 4 x21、〔本题共 6 分〕先化简x2 2x x2 4 x 4 x ,再从 -2,0,1,2 中选择一个适合的数代入,求出这个代数式的值、22、〔本题共6 分〕如图,四边形 ABCD的对角线 AC、BD订交于点 O,△ ABC≌△ BAD、〔 1〕求证: OA=OB;D C〔 2〕假定∠ CAB= 35〔,求∠ CDB的度数、O23、〔本题共6 分〕太仓地灵人杰,为了认识学生对家乡历史文假名人的了解状况,某校正部分学生进行了随机抽样检查,并将检查结果绘制成以下列图统计图的一部分、A B依据统计图中的信息,回答以下问题:〔1〕本次抽样检查的样本容量是▲_;〔2〕在扇形统计图中,“认识极少”所在扇形的圆心角是▲度;〔3〕假定全校共有学生 1300 人,那么该校约有多少名学生“基本认识”太仓的历史文假名人?24、〔本题共 6 分〕我们在配平化学方程式时,对于某些简单的方程式能够用察看法配平,对于某些复杂的方程式,还能够试试运用方程的思想和比率的方法、比如方程式:NH3 O2 催化剂NO + H2O,能够设 NH3的系数为 1,其余三项系数分别为X、Y、1 y,3 2z,Z,即: 1 NH 3催化剂y z ,x O2y NO + z H2O,依照反响前后各元素守恒,得:2 x5 3解之得四项系数之比为1:4: 1:2,扩大 4 倍得整数比为 4: 5: 4: 6,即配平结果为:催化剂4NO +6H2O、请运用上述方法,配平化学方程式:4NH 3 5O2Al + MnO高温Al 2O3 Mn 、225、〔本题共6 分〕智好手机假如安装了一款丈量软件“以丈量物高、宽度和面积等、如图,翻开软件后将手机摄像头的屏幕准星瞄准脚部按键,再瞄准头部按键,即可丈量出人体的高度、其数学原理如图②所示,丈量者AB与被丈量者 CD都垂直于地面 BC、〔1〕假定手机显示 AC=1M,AD=,∠ CAD= 60〔,求此时 CD的高、〔结果保存根号〕〔2〕对于一般状况,尝试究手机设定的丈量高度的公式:设 AC= A,AD= B,∠ CAD=α,即用 A、B、α来表示 CD、〔提示: SIN2α+ COS2α= 1〕SMARTMEASURE”后,便可DA图①B 图② Ck226、〔本题共 8 分〕如图,一次函数 Y1= K1X+6 与反比率函数y2x 〔X》0〕的图象交于点 A、 B,且 A、 B 两点的横坐标分别为 2 和 4、y〔 1〕 K1=▲, K2=▲;〔 2〕求点 A、 B、O所构成的三角形的面积;ABO x〔 3〕对于 X 》 0,尝试究 Y1 与 Y2 的大小关系〔直接写出结果〕 、27、〔本题共 9 分〕如图,矩形 ABCD 中, AB = 10,AD =4,点 E 为 CD 边上的一个动点,连结 AE 、 BE ,以 AE 为直径作圆,交 AB 于点 F ,过点 F 作 FH ⊥BE 于 H ,直线 FH 交⊙O 于点 G 、〔 1〕求证:⊙ O 必经过点 D ;〔 2〕假定点 E 运动到 CD 的中点,试证明:此时 FH 为⊙ O 的切线;〔 3〕当点 E 运动到某处时, AE ∥FH ,求此时 GF 的长、28、〔本题共 9 分〕如图,将□ OABC 搁置在平面直角坐标系 XOY 内, AB 边所在直线 的分析为: Y = - X +4、〔 1〕点 C 的坐标是〔▲,▲〕 ; DEy C〔 2〕假定将□ OABC 绕点 O 逆时针旋转CHB90〔得 OBDE , BD 交 OC 于点 P ,求△ OBP 的面积;〔 3〕在〔 2〕的情况下,假定再将四边 形 OBDE 沿 Y 轴正方向平移,设平移的距离A为 X 〔 0≤X ≤ 8〕,与□ OABC 重叠部分面积为S ,试写出 S 对于 X 的函数关系式,并求出 S 的最大 值、OPGDFOABx29、〔本题共 10 分〕如图,点 A 〔 - 3,5〕在抛物1E线 Y = 2 X2+ C 的图象上,点 P 从抛物线的极点 Q 出发,沿 Y 轴以每秒 1 个单位的速度向正方向运动,连结 AP 并延伸,交抛物线于点 B ,分别过点 A 、 B 作 X 轴的垂线,垂足为 C 、 D ,连结 AQ 、 BQ 、〔 1〕求抛物线的分析式;〔 2〕当 A 、Q 、B 三点构成以 AQ 为直角边的直角三角形时,求点P 走开点 Q 多少时间?〔 3〕尝试究当 AP 、AC 、BP 、BD 与一个平行四边形的四条边对应相等〔即这四条线段能构成平行四边形〕时,点 P 走开点 Q 的时辰、2018 年太仓市初中毕业暨升学考试模拟试卷数学参照答案及评分标准【一】选择题〔每题 3 分,共 30 分〕题号1234 5678 910答案BCDDCADADB【二】选择题〔每题3 分,共 24 分〕311、X 〔X +2〕〔X- 2〕12、2.265 〔1010 13、X ≥- 2 且 X ≠014、 42415、Y =- 〔X +1〕〔X- 5〕 16 、3 17、180 18、11或 24【三】解答题〔共 10 大题,共 76 分〕 19、〔共 4 小题,每题 4 分,共 16 分〕1 1解:原式= 1〔 4+ 1+ 2 =5 2 4' +1'20、〔共 2 小题,每题4分,共 8分〕解:①〔 2 得: 4X + 2Y = 4③ 1'②+③得: 7X =14 2'∴ X =2 3'把 X =2 代入①得: Y =-2 4'x 2,y 2.∴原方程组的解为:5'21、〔本题共 6 分〕x 2 x 1xx( x2)x 2 24 x2'解:原式= ( x 2)( x 2) x( x 1)x=x( x 2)2 4 x3'4xx= x( x2)2 4 x 4'12=x 25'取 X = 1 代入得,原式= - 1 6'22、〔本题 6 分〕〔 1〕证明:∵△ ABC ≌△ BAD ,∴∠ BAC =∠ ABD 、 1'∴ OA =OB 、 2'〔 2〕解:∵△ ABC ≌△ BAD ,∴ AC =BD 、 3' ∵ OA =OB ,∴ OC = OD ,∴∠ OCD =∠ ODC 、 4'∵∠ OAB +∠ OBA = 2∠CAB = 70〔,∴∠ OCD +∠ ODC = 70〔、 5' ∴∠ CDB = 35〔、 6' 23、〔本题共 6 分〕 〔 1〕 50 2' 〔 2〕 1804'〔 3〕解:由题意得, “很认识”占 10%,故“基本认识”占 30%、 5' ∴“基本认识”的学生有: 1300〔30%= 390〔人〕 6' 24、〔本题共 6 分〕解:设 AL 的系数为 1,其余三项分别为 X , Y ,Z即: 1Al + xMnO 2高温yAl 2 O 3 zMn 1'1 2 y,x z,由题意得: 2x3y4'3 1 3x, y, z解之得:424、 5'313即四项系数之比为: 1:4:2 : 4 ,扩大 4 倍得整数比为: 4:3:2:3、∴ 4Al + 3MnO高温 2Al 2O 3 3Mn 、 6'225、〔本题 6 分〕D解:〔 1〕作 CH ⊥AD 于点 H在 RT △ ACH 中, AC = 1,∠ CAH = 60〔,H 13A∴AH = 2 ,CH =2、 1'BC∵ AD =1.8 ,∴ HD = 1.3 、 2' 图②CH 2HD 261∴ CD =5〔M 〕3'〔 2〕同上可得, AH =ACOS α ,CH =ASIN α 、 4' ∵ AD =B ,∴ HD =B- ACOS α 、 5'∴CD = CH2HD 2 a 2 sin 2b a cos26'222abcos、= ab26、〔本题共 8 分〕y解:〔 1〕 K1= - 1, K2= 8、 1' +1'〔2〕可得 A 〔2,4〕,B 〔4,2〕、 3'直线与 X 轴交点为 C 〔6,0〕、 4'A∴ S △ OAB =S △ OAC-S △ OCB = 6 5'B〔3〕当 0《X 《2 和 X 》4 时, Y1《Y2, 6'当 2《X 《4 时, Y1》Y2, 7'O Cx当 X =2 或 4 时, Y1=Y2、8' 27、〔本题 9 分〕〔 1〕证明:∵矩形 ABCD 中,∠ ADC = 90〔,且 O 为 AE 中点,1∴ OD = 2 AE , 2' ∴点 D 在⊙ O 上、〔 2〕证明:如图,连结 OF 、 EF 、易证 AFED 为矩形,∴ AF =DE 、∵ E 为 CD 的中点, ∴F 为 AB 的中点、 3'∴ OF 为△ ABE 的中位线,∴ OF ∥EB 、 4'∵ FH ⊥EB ,∴ OF ⊥ FH 、 5' ∴ FH 为⊙ O 的切线、〔 3〕解:作 OM ⊥FG ,连结 OF 、∵ AE ∥FH ,∴∠ AEB =90〔、易证△ ADE ∽△ ECB ,由相像得: DE =2 或 8、DECHOAF BDECH OG MAFB①当 DE = 2 时,如图, AF =2, FB = 8, EB = 45,AE =2 5、 6'16 54 5由△ BFH ∽△ BAE 得, HB =5,∴ OM =EH = 5 、65∴ FG =2FM =5、 7'DE②当 DE = 8 时,O1如图,同上解法,可得OG = 2 AE =2 5、 8'AF8 5M OM = EH = 5、G12 5∴ FG =2GM = 5、 9'CHB28、〔本题 9 分〕 解:〔 1〕 C 〔- 4, 4〕 2'〔 2〕证得等腰直角△ OBP , 3' ∵ OB =4,∴ S △OBP =4 4'〔 3〕①当 0≤X 《4 时, ∵ OF =GB =X ,1 x21 x 2∴ S △ OFK = 4 , S △ HBG = 2、1 x 42∵ S △ OPG =4,121212x 4x- 2 x∴ S 五边形 KFBHP = 4- 4124x2 x= 2 、5' 当 X = 2 时, SMAX = F 〔 2〕= 6、 6'②当 4≤X ≤8 时,∵ HB =FB =X- 4,∴CH =8- X ,128 x∴S △ CPH = 4、 7'当 X = 4 时, SMAX = F 〔 4〕= 4、 8' ∴当 X = 2 时, S 获得最大值为 6、 9' 29、〔本题 10 分〕1yGCHBPDK FOEyGDFCHBPEOA xA x解:〔 1〕把 A 〔- 3,5〕代入得: 5= 2〔9+C , 1'1∴C = 2、 2'〔 2〕①假定 AQ ⊥BQ ,过点 Q 作 MN ⊥ Y 轴,可证△ AMQ ∽△ QNB 、9∵ AM =AC- MC = 2 ,MQ =3,BNMQ 2 ∴ NQAM3 、1设 B 〔 3K , 2K + 2〕,44 25代入抛物线分析式得: K = 9,即 B 〔 3,18〕、∴直线 AB 的分析式为: y5 x 562 、 5∴OP = 2 ,∴ PQ =2、 4'②假定 AQ ⊥AB ,∵ AC ∥PQ ,可证△ AMQ ∽△ QAP ,3 13又由勾股定理得 AQ =2、AQ 2 13∴ PQ = AM2、 6'13∴对应的时辰 T 为:2或 2 、〔 3〕①假定 AC =BD , AP =BP , 此时点 A 与点 B 对于 Y 轴对称, ∴ OP =AC =5,1∴ PQ =4 2 、 8' ②假定 AC =AP ,设 P 〔 0, Y 〕,那么: 9+〔 Y- 5〕 2= 25,解之得, Y =1,即 OP = 1、1∴PQ = 2 、 9'y 4 1x此时,直线 AP 分析式为:3、15与抛物线的交点 B 为〔 3 ,9〕,1 25 6∴PB =9819=BD 、 10'AMC3'A MCyPQB NO DxyBPQDOx1 1 ∴知足条件的时辰为:2和42、。

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 3.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23−C . 23±D .32± 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .155. 已知 2 是关于y 的方程23202y a −=的一个解,则21a −的值是( ) A . 3B . 4C . 5D . 66.直线443y x =−−与两坐标轴围成的三角形面积是( ) A .3 B . 4 C . 6 D . 12 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .168.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个9.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯−=−;④(36)(9)4−÷−=−. 其中正确的有( ) A . 1个B . 2个C .3个D .4个二、填空题10.在 Rt △ABC 中,∠C= Rt ∠,AB=5 cm ,BC= 3 cm ,以 A 为圆心,4 cm 长为半径作圆,则:(1) 直线 BC 与⊙A 的位置关系是 ; (2)直线 AC 与⊙A 的位置关系是 .(3)以 C 为圆心,半径为 cm 的圆与直线 AB 相切.11.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 12.当a 时,二次根式3a −−−有意义. 13.二次根式14x −中,字母x 的取值范围是 .14.填空: (1)21122818323−+−= ; (2)2211()0.339+−= ; (3) 482375+− ; (4)3111212233−−= . 15.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为 .16.多项式24ax a −与多项式244x x −+的公因式是 .17.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.18.已知a 2-ab=15,ab-b 2= -10,则代数式a 2-b 2= .三、解答题19.已知二次函数y =x 2+ax +a -2,证明:不论a 取何值,抛物线的顶点总在x 轴的下方. Δ=(a-2)2+4>0,抛物线与x 轴有两个交点,又抛物线的开口向上,所以抛物线的顶点总在x 轴的下方.20.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值21.某人骑自行车以10km/h 的速度由 A 地到B 地,路上用了 6 h.(1)如果以 v(km/h)的速度行驶,那么需t(h)到达,写出 t 与 v 之间的函数关系式; (2)如果返回时以 12 km/h 的速度行进,求路上所需的时间? (3)如果要求在 4 h 内到达,那么速度至少要多少?22.用反证法证明:在一个三角形中,如果两条边不等,那么它们所对的角也不等.23.解下列方程:(1)0252=−−x x ; (2)0)52(4)32(922=−−+x x (3)3)76(2)76(222=−−−x x x x24.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台4325.如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D,过C 作BD的垂线交BD的延长线于E,交BA的延长线于F,请说明:(1)△BCF是等腰三角形;(2)△ABD≌△ACF;(3)BD=2CE.26.如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.球的体积公式为343r π,求地球的体积.(地球的半径6371 km ,结果保留2个有效数字)30.求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5 (4)132−与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.C6.C7.A8.B9.B二、填空题10.(1)相切;(2)相交;(3)12 511.12y x=−12. 3≤−13. 4x >14.(12)0. 3;(34) 15..2x − 17.△0AB ,418.5三、解答题 19. 20.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .21.(1)设 t 与 v 之间的函数关系式为st v =,其中 s 为A 地、B 地间距离. ∵当 t=6 时,v= 10,∴s =60,∴60t v=(2)v= 12 时,60512t ==,∴路上要用 5 h . (3)t=4 时,60154v ==,∴速度至少要 15 km/h . 22.略23.⑴2335,233521+=−=x x ;⑵219,10121−==x x ; ⑶61,1,31,234321==−==x x x x . 24.(1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.25.(1)利用△CBE≌△FBE来说明;(2)利用ASA说明;(3)利用CF=2CE而CF=BD来说明26.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合27.AB∥CD(同位角相等,两直线平行)28.略.29.1.O8×lO12km330.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。

2019-2020苏州市数学中考一模试题附答案

2019-2020苏州市数学中考一模试题附答案

2019-2020苏州市数学中考一模试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.72.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.45.如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 7.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C .24 D .0.310.an30°的值为( )A .B .C .D .11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.14.分解因式:x 3﹣4xy 2=_____.15.计算:2cos45°﹣(π+1)0111()42-=______. 16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.17.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 18.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .19.正六边形的边长为8cm ,则它的面积为____cm 2.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.24.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.25.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.4.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 5.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C .【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.6.B解析:B【解析】【分析】【详解】解:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD ,∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B . 7.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()2134204mm ∆=----⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()2134204m m ∆=----⨯≥,解得m≤52且m≠2.故选B.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.B解析:B【解析】【分析】【详解】A.18=32,与3不是同类二次根式,故此选项错误;B.13=33,与3,是同类二次根式,故此选项正确;C.24=26,与3不是同类二次根式,故此选项错误;D.0.3=310=3010,与3不是同类二次根式,故此选项错误;故选B.10.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.11.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.12.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.14.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【解析】解:原式==故答案为:32.【解析】解:原式=121222⨯-++3232.16.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=82=,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=22+=22FC FB+=5,34∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.25.(1)12(2)16【解析】解:所有可能出现的结果如下:甲组乙组结果AB CD(AB CD,)AC BD(AC BD,)(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162, A B ,都在甲组的概率=16。

2019年江苏省苏州市中考数学一模试卷(含答案解析)

2019年江苏省苏州市中考数学一模试卷(含答案解析)
【第6题】 【答案】 D 【 解析 】 解:∵ 四边形 ABCD 内接于⊙O,∠ C=130°, ∴ ∠ A=50°, ∵ DO=AO, ∴ ∠ ADO=∠ A=50°, ∴ ∠ AOD=80°, ∵ BC∥ OD, ∴ ∠ AOD=∠ B=80°. 故选:D. 直接利用圆内接四边形的性质得出∠ A=50°,进而利用等腰三角形的性质和平行线的性质分析得 出答案. 此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠ A 的度 数是解题关键.
°
°
°
°
8、(3 分) 如图,一架无人机航拍过程中在 C 处测得地面上 A,B 两个目标点的俯角分别为 30°和 60°.若 A,B 两个目标点之间的距离是 120 米,则此时无人机与目标点 A 之间的距离(即 AC 的 长)为( )


B.


D. 米
9、(3 分) 已知,在 Rt△ ABC 中,∠ ACB=90°,点 D,E 分别是 AB,BC 的中点,延长 AC 到 F,使 得 CF= AC,连接 EF.若 EF=4,则 AB 的长为( )

27、(10 分) 如图 1,在平面直角坐标系中,一次函数 y=- x+8 的图象与 y 轴交于点 A,与 x 轴交 于点 B,点 C 是 x 轴正半轴上的一点,以 OA,OC 为边作矩形 AOCD,直线 AB 交 OD 于点 E,交 直线 DC 于点 F. (1)如图 2,若四边形 AOCD 是正方形. ①求证:△ AOE≌ △ COE; ②过点 C 作 CG⊥CE,交直线 AB 于点 G.求证:CG=FG. (2)是否存在点 C,使得△ CEF 是等腰三角形若存在,求该三角形的腰长;若不存在,请说明 理由.
!

江苏省苏州市太仓市中考数学模拟试卷(6月份)

江苏省苏州市太仓市中考数学模拟试卷(6月份)

2019年江苏省苏州市太仓市中考数学模拟试卷(6月份)一.选择题(共10小题,满分30分)1.(3分)若|x|=﹣x,则x的值是()A.正数B.负数C.非负数D.非正数2.(3分)下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a63.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A.2×109B.20×108C.20×1018D.8.5×1084.(3分)已知,如图AB∥CD,∠1=∠2,EP⊥FP,则以下错误的是()A.∠3=∠4 B.∠2+∠4=90° C.∠1与∠3互余D.∠1=∠3 5.(3分)如图,点P为函数y=(x>0)的图象上一点,且到两坐标轴距离相等,⊙P半径为2,A(3,0),B(6,0),点Q是⊙P上的动点,点C是QB的中点,则AC的最大值是()A.2﹣1 B.2+1 C.4 D.26.(3分)下列说法正确的是()A.为了解我国中学生的体能情况,应采用普查的方式B.若甲队成绩的方差是2,乙队成绩的方差是3,说明甲队成绩比乙队成绩稳定C.明天下雨的概率是99%,说明明天一定会下雨D.一组数据4,6,7,6,7,8,9的中位数和众数都是67.(3分)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2 B.y1>y2C.y1=y2D.y1、y2的大小不确定8.(3分)如图,已知正△ABC的边长为6,⊙O是它的内切园,则图中阴影部分的面积为()A.3﹣πB.2π﹣2C.3﹣D.4﹣2π9.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米10.(3分)如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3 B. C. D.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知a满足|2019﹣a|+=a,则a﹣20192的值是.12.(3分)因式分解:(2x+y)2﹣(x+2y)2=.13.(3分)菱形的对角线是一元二次方程2x2﹣15x+5=0的两根,则该菱形的面积为.14.(3分)在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b 且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为.15.(3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是.16.(3分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D在BC上,已知∠CAD=32°,则∠B=度.17.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=18.(3分)如图所示,半圆O的直径AB=10cm,弦AC=6cm,弦AD平分∠BAC,AD的长为cm.三.解答题(共10小题,满分64分)19.(5分)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°;20.(5分)解不等式组:,并把它的解集在数轴上表示出来.21.(5分)先化简后求值:已知:x=﹣2,求分式1﹣的值.22.(6分)如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.23.(8分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).24.(8分)甲、乙两公司各为“希望工程”捐款2019元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?25.(8分)如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣<0的x的取值范围;(3)求△AOB的面积.26.(9分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG 交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC 上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD 为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.28.如图,抛物线y=﹣x2+bx+c与直线y=x+3交x轴负半轴于点A,交y轴于点C,交x轴正半轴于点B.(1)求抛物线的解析式;(2)点P为抛物线上任意一点,设点P的横坐标为x.①若点P在第二象限,过点P作PN⊥x轴于N,交直线AC于点M,求线段PM关于x的函数解析式,并求出PM的最大值;②若点P是抛物线上任意一点,连接CP,以CP为边作正方形CPEF,当点E落在抛物线的对称轴上时,请直接写出此时点P的坐标.。

2019年苏州市中考数学第一次模拟试卷及答案

2019年苏州市中考数学第一次模拟试卷及答案

2019年苏州市中考数学第一次模拟试卷及答案一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,02.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .25.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个6.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94 B .95分C .95.5分D .96分7.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥128.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :3x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .129.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 210.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .811.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .12.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( ) A . B .C .D .二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 15.已知62x =,那么222x x -的值是_____.16.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).17.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.18.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.19.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB=22.故选C.5.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质6.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.9.D解析:D【解析】由题意得:1212k k y y x x ==-=- ,故选D. 10.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键11.D解析:D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .12.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h =≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率 解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=x=,∴(22∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.16.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 17.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD=2xCF=3x∴∴tan∠DCF=故答案为:【点【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD=.故答案为:5.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.(1)证明见解析;(2)2 【解析】 【分析】 (1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴BN=2. 考点:三角形的中位线定理,勾股定理. 23.(1)(-8,0)(2)k=-19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】【分析】(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,∴OB=4,在Rt △AOB 中,tan ∠BAO=12OB OA =, ∴OA =8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。

2019年江苏省苏州市中考数学模拟试题及答案解析一

2019年江苏省苏州市中考数学模拟试题及答案解析一

最新江苏省苏州市中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.2.下列运算正确的是()A.a3+a4=a7 B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a43.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的众数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,34.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态 B.度C.决 D.切5.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.7.使有意义的x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤18.计算(2a2)3的结果是()A.2a5B.2a6C.6a6D.8a69.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④10.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把恰好落在∠BCD 的平△BAE沿BE向矩形内部折叠,当点A的对应点A1的长为()分线上时,CA1A.3或4B.4或3C.3或4 D.3或4二、填空题(本大题共8小题,每小题3分,共24分,请在答题卡指定区域内作答.)11.2013年,太仓市实现地区生产总值1002.28亿元,用科学记数法表示1002.28亿元为元.(保留2个有效数学)12.分解因式:a3﹣4a= .13.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= .14.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= .15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.17.某体育馆的圆弧形屋顶如图所示,最高点C到弦AB的距离是20m,圆弧形屋顶的跨度AB是80m,则该圆弧所在圆的半径为m.18.如图,A、B是反比例函数y=图象上关于原点O对称的两点,BC⊥x轴,垂足为C,连线AC过点D(0,﹣1.5).若△ABC的面积为7,则点B的坐标为.三、解答题(本大题共10小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.化简:(1)﹣4cos30°+(2)+()﹣2﹣(2016)0.20.解不等式组:.21.先化简,再求值:(1﹣)÷,其中x=﹣1.22.端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.24.如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.25.如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.26.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.27.已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,CB为半径的圆交x轴于M,N两点(M在N的左侧).(1)求此二次函数的表达式;(2)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN的长;(3)当△ABM与△ABN相似时,求出M点的坐标.28.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB 于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.【考点】相反数.菁优网版权所有【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列运算正确的是()A.a3+a4=a7 B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.菁优网版权所有【分析】根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.【解答】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.【点评】本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.3.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:1 2 3 4 5每天使用零花钱(单位:元)人数 1 3 6 5 5则这20名同学每天使用的零花钱的众数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】众数;中位数.菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:因为3出现的次数最多,所以众数是:3元;因为第十和第十一个数是3和4,所以中位数是:3.5元.故选B.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错4.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态 B.度C.决 D.切【考点】专题:正方体相对两个面上的文字.菁优网版权所有【专题】应用题.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°【考点】圆周角定理.菁优网版权所有【分析】首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC的度数,然后利用圆周角定理求解,即可求得答案.【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∴∠A=∠BOC=48°.故选B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.【考点】勾股定理;等腰三角形的判定与性质;矩形的性质;锐角三角函数的定义.菁优网版权所有【分析】首先根据以B为圆心BC为半径画弧交AD于点E,判断出BE=BC=5;然后根据勾股定理,求出AE的值是多少,进而求出DE的值是多少;再根据勾股定理,求出CE的值是多少,再根据BC=BE,BF⊥CE,判断出点F是CE的中点,据此求出CF、BF的值各是多少;最后根据角的正切的求法,求出tan∠FBC的值是多少即可.【解答】解:∵以B为圆心BC为半径画弧交AD于点E,∴BE=BC=5,∴AE=,∴DE=AD﹣AE=5﹣4=1,∴CE=,∵BC=BE,BF⊥CE,∴点F是CE的中点,∴CF=,∴BF==,∴tan∠FBC=,即tan∠FBC的值为.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰三角形的判定和性质的应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确一个角的正弦、余弦、正切的求法.(4)此题还考查了矩形的性质和应用,以及直角三角形的性质和应用,要熟练掌握.7.使有意义的x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式有意义的条件.菁优网版权所有【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,可得答案.【解答】解:要使有意义,得x﹣1≥0.解得x≥1,故选:B.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.8.计算(2a2)3的结果是()A.2a5B.2a6C.6a6D.8a6【考点】幂的乘方与积的乘方.菁优网版权所有【分析】根据即的乘方法则,即可解答.【解答】解:(2a2)3=23•a6=8a6,故选:D.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方法则.9.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【考点】平行四边形的性质.菁优网版权所有【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.10.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把恰好落在∠BCD 的平△BAE沿BE向矩形内部折叠,当点A的对应点A1的长为()分线上时,CA1A.3或4B.4或3C.3或4 D.3或4【考点】翻折变换(折叠问题).菁优网版权所有【分析】如图,过点A′作A′M⊥BC于点M.设CM=A′M=x,则BM=7﹣x.在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2.由此求得x的值;然后在等腰Rt△A′CM中,CA′=A′M.【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故答案是:3或4.【点评】本题考查了矩形的性质,翻折变换(折叠问题).解题的关键是作出辅助线,构建直角三角形△A′MB和等腰直角△A′CM,利用勾股定理将所求的线段与已知线段的数量关系联系起来.二、填空题(本大题共8小题,每小题3分,共24分,请在答题卡指定区域内作答.)11.2013年,太仓市实现地区生产总值1002.28亿元,用科学记数法表示1002.28亿元为 1.0×1011元.(保留2个有效数学)【考点】科学记数法与有效数字.菁优网版权所有【分析】根据有效数字的定义求解即可求得答案.【解答】解:1002.28亿元≈1.0×1011(元).故答案为:1.0×1011.【点评】此题考查了科学记数法与有效数字的知识.注意科学记数法a×10n(1≤a<10,n是正整数)表示的数的有效数字应该有首数a来确定,首数a中的数字就是有效数字.12.分解因式:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.菁优网版权所有【专题】计算题.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= ﹣2 .【考点】反比例函数图象上点的坐标特征.菁优网版权所有【分析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,﹣3)代入即可得出m的值.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= 2.【考点】菱形的性质.菁优网版权所有【分析】由题可知,在直角三角形BOA中,∠ABO=30°,AO=AC=1,根据勾股定理可求BO,BD=2BO.【解答】解:在菱形ABCD中,AC、BD是对角线,设相交于O点.∴AC⊥BD,∵AC=2,∴AO=2.∵∠ABC=60°,∴∠ABO=30°.由勾股定理可知:BO=.则BD=2.故答案为:2.【点评】本题考查了菱形的性质,同时还考查了直角三角形的边角关系及勾股定理的灵活运用,熟悉菱形对角线互相垂直平分和对角线平分一组对角是解决问题的关键.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2 .【考点】抛物线与x轴的交点.菁优网版权所有【分析】先由交点式求出二次函数的解析式,再由方程的根的情况得出判别式△>0,解不等式即可得出k的取值范围.【解答】解:根据题意得:二次函数的图象与x轴的交点为:(1,0)、(3,0),设二次函数y=a(x﹣1)(x﹣3),把点(2,2)代入得:a=﹣2,∴二次函数的解析式为:y=﹣2(x﹣1)(x﹣3)即y=﹣2x2+8x﹣6;∵方程﹣2x2+8x﹣6=k有两个不相等的实数根,∴﹣2x2+8x﹣6﹣k=0,△=82﹣4×(﹣2)×(﹣6﹣k)>0,解得:k<2;故答案为:k<2.【点评】本题考查了抛物线与x轴的交点、二次函数解析式的求法、不等式的解法;熟练掌握二次函数图象的有关性质,并能进行推理计算是解决问题的关键.16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6﹣2.【考点】正多边形和圆.菁优网版权所有【分析】如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE 是等腰直角三角形,求得△ABC的高和底即可求出阴影部分的面积.【解答】解:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,∴BF=OB=2,∴△BFO的高为;,CD=2(2﹣)=4﹣2,∴BC=(2﹣4+2)=﹣1,=4×()•=6﹣2.∴阴影部分的面积=4S故答案为:6﹣2.【点评】本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.17.某体育馆的圆弧形屋顶如图所示,最高点C到弦AB的距离是20m,圆弧形屋顶的跨度AB是80m,则该圆弧所在圆的半径为50 m.【考点】垂径定理的应用;勾股定理.菁优网版权所有【分析】先设出圆弧形屋顶所在圆的半径为O,所在圆的半径为r,过O 作OD⊥AB交⊙O于点C,再利用勾股定理可得问题答案.【解答】解:设圆弧形屋顶所在圆的半径为O,所在圆的半径为r,过O作OD⊥AB交⊙O于点C.由题意可知CD=20m,在Rt△BOD中,B02=OD2+BD2,r2=(r﹣20)2+402,得r=50.故答案为50.【点评】本题考查垂径定理.解题思路:有关弦的问题常作弦心距,构造直角三角形利用勾股定理解决.在解题过程中要注意列方程的方法.18.如图,A 、B 是反比例函数y=图象上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,﹣1.5).若△ABC 的面积为7,则点B 的坐标为 (,3) .【考点】反比例函数与一次函数的交点问题.菁优网版权所有【分析】设B 的坐标是(m ,n ),则A 的坐标是(﹣m ,﹣n ),因为S△OBC =OC •BC=mn ,S △AOC =OC •|﹣n|=mn ,S △AOD =OD •|﹣m|=m ,S △DOC =OD •OC=m ,根据S △AOC =S △AOD +S △DOC =m+m=m ,得出mn=m ,从而求得n 的值,然后根据S △OBC +S △AOC =mn+mn=7得出mn=7,即可求得m 的值.【解答】解:设B 的坐标是(m ,n ),则A 的坐标是(﹣m ,﹣n ),∵S △OBC =OC •BC=mn ,S △AOC =OC •|﹣n|=mn ,S △AOD =OD •|﹣m|=m ,S △DOC =OD •OC=m∴S △AOC =S △AOD +S △DOC =m+m=m ,∴mn=m ,∴n=3,∵△ABC 的面积为7,∴S △OBC +S △AOC =mn+mn=7,即mn=7,∴m=,∴B (,3); 故答案为(,3).【点评】本题考查反比例函数和一次函数的交点问题,根据图象找出面积的相等关系是解题的关键.三、解答题(本大题共10小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.化简:(1)﹣4cos30°+(2)+()﹣2﹣(2016)0.【考点】二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.菁优网版权所有【专题】计算题.【分析】(1)先对原式化简,再合并同类项即可解答本题;(2)先对原式化简,再合并同类项即可解答本题.【解答】解:(1)﹣4cos30°+===;(2)+()﹣2﹣(2016)0=3+4﹣1=6.【点评】本题考查二次根式的混合运算、零指数幂、负整数指数幂、特殊角的三角函数值,解题的关键是明确它们各自的计算方法.20.解不等式组:.【考点】解一元一次不等式组.菁优网版权所有【分析】分别求出两个不等式的解集,求其公共解.【解答】解:由①得x≤2,由②得x>.所以,原不等式组的解集为<x≤2.【点评】本题是考查不等式组的解法,比较简单,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.先化简,再求值:(1﹣)÷,其中x=﹣1.【考点】分式的化简求值.菁优网版权所有【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=﹣1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?【考点】分式方程的应用.菁优网版权所有【分析】设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,根据甲粽子比乙种粽子少用100元,可得甲粽子用了300元,乙粽子400元,根据共购进甲、乙两种粽子260个,列方程求解.【解答】解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100(个),乙粽子为:=160(个).答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.【考点】列表法与树状图法.菁优网版权所有【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小张同学两科都抽到准备得较好的实验题目的情况,再利用概率公式即可求得答案;(2)首先由(1)中的树状图求得小明同学两科都抽到准备得较好的实验题目的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有9种等可能结果,他两科都抽到准备得较好的实验题目的有4种情况,∴他两科都抽到准备得较好的实验题目的概率为:;(2)∵小明同学两科都抽到准备得较好的实验题目的有3种情况,∴他两科都抽到准备得较好的实验题目的概率为:=.故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.【考点】切线的判定;扇形面积的计算.菁优网版权所有【专题】计算题.【分析】(1)根据圆周角定理,由=得到∠BAD=∠ACD,再根据圆内接四边形的性质得∠DCE=∠BAD,所以∠ACD=∠DCE;(2)连结OD,如图,利用内错角相等证明OD∥BC,而DE⊥BC,则OD⊥DE,于是根据切线的判定定理可得DE为⊙O的切线;(3)作OH⊥BC于H,易得四边形ODEH为矩形,所以OD=EH=2,则CH=HE﹣CE=1,于是有∠HOC=30°,得到∠COD=60°,然后根﹣S 据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S扇形OCD进行计算.△OCD【解答】(1)证明:∵=,∴∠BAD=∠ACD,∵∠DCE=∠BAD,∴∠ACD=∠DCE,即CD平分∠ACE;(2)解:直线ED与⊙O相切.理由如下:连结OD,如图,∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:作OH⊥BC于H,则四边形ODEH为矩形,∴OD=EH,∵CE=1,AC=4,∴OC=OD=2,∴CH=HE﹣CE=2﹣1=1,在Rt△OHC中,∠HOC=30°,∴∠COD=60°,∴阴影部分的面积=S扇形OCD ﹣S△OCD=﹣•22=π﹣.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形的计算.25.如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为 6 ;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【考点】反比例函数综合题.菁优网版权所有【专题】计算题;压轴题;数形结合.【分析】(1)将A坐标代入反比例解析式求出k的值即可;(2)由k的值确定出反比例解析式,将x=3代入反比例解析式求出y的值,确定出M坐标,设直线AM解析式为y=ax+b,将A与M坐标代入求出a与b的值,即可确定出直线AM解析式;(3)由MP垂直于x轴,AB垂直于y轴,得到M与P横坐标相同,A与B纵坐标相同,表示出B与P坐标,分别求出直线AM与直线BP斜率,由两直线斜率相等,得到两直线平行.【解答】解:(1)将A(1,6)代入反比例解析式得:k=6;故答案为:6;(2)将x=3代入反比例解析式y=得:y=2,即M(3,2),设直线AM解析式为y=ax+b,把A与M代入得:,解得:a=﹣2,b=8,∴直线AM解析式为y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,理由为:当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,∵A(1,6),M(m,n),且mn=6,即n=,∴B(0,6),P(m,0),∴k直线AM====﹣=﹣,k直线BP==﹣,即k直线AM =k直线BP,则BP∥AM.【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,以及两直线平行与斜率之间的关系,熟练掌握待定系数法是解本题第二问的关键.26.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.【考点】切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质.菁优网版权所有【专题】几何综合题.【分析】(1)连接OC,由∠ABC+∠BAC=90°及CM是⊙O的切线得出∠ACM+∠ACO=90°,再利用∠BAC=∠ACO,得出结论,(2)连接OC,得出△AEC是直角三角形,△AEC的外接圆的直径是AC,利用△ABC∽△CDE,求出AC,【解答】(1)证明:如图,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,又∵CM是⊙O的切线,∴OC⊥CM,∴∠ACM+∠ACO=90°,∵CO=AO,∴∠BAC=∠ACO,∴∠ACM=∠ABC;(2)解:∵BC=CD,∠ACB=90°,∴∠OAC=∠CAD,∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠CAD,∴OC∥AD,又∵OC⊥CE,∴AD⊥CE,∴△AEC是直角三角形,∴△AEC的外接圆的直径是AC,又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,∴△ABC∽△CDE,∴=,⊙O的半径为3,∴AB=6,∴=,∴BC2=12,∴BC=2,∴AC==2,∴△AEC的外接圆的半径为AC的一半,故△ACE的外接圆的半径为:.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.解题的关键是找准角的关系.27.已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,CB为半径的圆交x轴于M,N两点(M在N的左侧).(1)求此二次函数的表达式;(2)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN的长;(3)当△ABM与△ABN相似时,求出M点的坐标.【考点】二次函数综合题.菁优网版权所有【分析】(1)设抛物线的表达式为y=a(x﹣2)2,然后将(0,1)代入可求得a的值,从而可求得二次函数的表达式;(2)过点C作CH⊥x轴,垂足为H,连接BC、CN,由勾股定理可知HC2=CN2﹣CH2=BC2﹣CH2,依据两点间的距离公式可求得HN=2,结合垂径定理可求得MN的长;。

江苏省2019中考一模数学试卷含答案

江苏省2019中考一模数学试卷含答案

初三一模数学模拟试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列数中,与﹣2的和为0的数是( )A .2B .﹣2C .21D .21-2.下列调查中,适宜采用普查方式的是( )A .了解一批圆珠笔的寿命B .了解全国九年级学生身高的现状C .检查一枚用于发射卫星的运载火箭的各零部件D .考察人们保护海洋的意识3.从下列不等式中选择一个与12x +≥组成不等式组,使该不等式组的解集为1x ≥,那么这个不等式可以是( )A .1x >-B .2x >C .1x <-D .2x <4.如图是小刘做的一个风筝支架示意图,已知BC ∥PQ ,:2:5AB AP =, AQ =20cm ,则CQ 的长是( )A .8 cmB .12 cmC .30 cmD .50 cm5.如图,在五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC的外角,则∠1+∠2+∠3等于( )A .90°B .180°C .210°D .270°(第4题) ( 第5题 ) (第6题)6.如图,已知点A ,B 的坐标分别为(-4,0)和(2,0),在直线 y =21-x +2上取一点C ,若△ABC 是直角三角形,则满足条件的点C 有( )A . 1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分)7.计算:(3a 3)2= .8.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是 .9.分解因式:ab 2-a = .10.已知a ,b 是一元二次方程220x x --=的两根,则a b += .11.计算:﹣= .12.已知扇形的圆心角为45°,半径长为12 cm ,则该扇形的弧长为 cm .13.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是cm3.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3yx的图像经过A,B两点,则菱形对ABCD的面积为.第12题第14题15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.CFD(第15题)16.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC 的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值为 .三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:(13)0+27 +| -3 |.18.(本题满分6分)2112x x x x x ⎛⎫++÷- ⎪⎝⎭,再从1、0、2中选一个你所喜欢的数代入求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省苏州市太仓2019年中考数学一模试卷及答案注意事项:1.本试卷共三大题,28小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题(作图可用铅笔); 4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.实数3的相反数是 A .3B .3-C .13D .13-2.已知3a b =,则代数式a ba b+-的值等于 A .2B .2-C .12D .12-3.在一次科技作品制作比赛中,参赛的八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.则这组数据的中位数是 A .7.5B .8C .8.5D .94.下列计算一定正确的是 A .325a a a += B .32a a a -=C .326a a a ⋅=D .32a a a ÷=5. 已知23x y =⎧⎨=⎩ 与32x y =⎧⎨=⎩是二元一次方程5mx ny +=的两组解,则m n +的值为 A .1B .2C .3D .46.将边长大于5(cm)的正方形的一边增加5(cm),另一边缩短5(cm),则得到的长方形的面积与原来正方形的面积相比 A .保持不变 B .增加25(cm 2) C .减少25(cm 2)D .不能确定大小关系7.已知一次函数(0)y kx b k =+≠的图像如图所示, 则不等式1kx b +>的解集为A .0x <B .0x >C .2x <D .2x >(第7题图)12y xOFEDCBA(第8题图) EDyxCBA O(第9题图)8.如图,在边长为2的菱形ABCD 中,60A ∠=︒,DE AB ⊥,DF BC ⊥,则D E F ∆的周长为 A .3 B.6D.9.如图,在平面直角坐标系xOy 中,O 为坐标系原点,A(3,0),B(3,1),C(0,1),将O A B ∆沿直线OB 折叠,使得点A 落在点D 处,OD 与BC 交于点E ,则OD 所在直线的解析式为 A .45y x = B .54y x = C .34y x = D .43y x =10.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是①x=1是二次方程ax 2+bx +c=0的一个实数根; ②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②B .①③C .①④D .③④二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.函数y =x 的取值范围是 ▲ .12.据统计,2016年度太仓市国民生产总值(GDP)为11550000(万元).数据11550000用科学记数法表示为 ▲ . 13.因式分解:33a b ab -= ▲ .14.一个不透明的盒子中装有7个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验2000次,其中有600次摸到白球,由此估计盒子中的白球大约有 ▲ 个.15.已知扇形AOB 的半径为4cm ,圆心角的度数为90︒,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为 ▲ cm .16.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上 一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为 ▲ . 17.将边长为2的等边△OAB 按如图位置放置,AB 边与y 轴的交点为C ,则OC= ▲ .18.已知△ABC 中, AB=4,AC=3,当∠B 取得最大值时,BC的长度为 ▲ .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分421()3-︒.(第20.(本题满分5分)先化简,再求值: 21x x -÷111x ⎛⎫+ ⎪-⎝⎭,其中1x =.21.(本题满分6分)解不等式组62263212x x x x ->-++>⎧⎪⎨⎪⎩,并写出它的整数解.22.(本题满分6分)某校举办演讲比赛,对参赛20名选手的得分m (满分10分)进行分组统计,统计结果如表所示: (1)求a 的值;(2)若用扇形图来描述,求分值在8≤m<9范围内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,现从第一组和第四组中随机选取2名选手进行座谈,用树状图或列表法列出所有可能结果,并求第一组至少有1名选手被选中的概率.23.(本题满分6分)如图,在ABC D 中,4AC =,D 为BC 边上的一点,CD=2,且A D C ∆与ABD ∆的面积比为1:3.(1)求证:ADC ∆∽BAC ∆; (2)当8AB =时,求AD 的长度.24.(本题满分9分)某文具用品商店销售A 、B 两种款式文具盒,已知购进1个A 款文具盒比B 款文具盒便宜5元,且用300元购入A 款文具盒的数量比购入B 款文具盒的数量多5个.(1)购进一个A 款文具盒、一个B 款文具盒各需多少元?(2)若A 款文具盒与B 款文具盒的售价分别是20元和30元,现该文具用品商店计划用不超过1000元购入共计60个A 、B 两种款式的文具盒,且全部售完,问如何安排进货才能使销售利润最大?并求出最大利润.25.(本题满分8分)如图,已知点 A(−2,m+4),点B(6,m)在反比例函数k y =(0k ≠)的图像上.(1) 求m ,k 的值;(2)过点M(a ,0)(0a <)作x 轴的垂线交直线AB 于点P ,交反比例函数k y x =(0k ≠)于点Q ,若PQ=4QM ,求实数a 的值.26.(本题满分10分)如图,AB 是半圆O 的直径,D 为BC 的中点,延长OD 交弧BC于点CDAE ,点F 为OD 的延长线上一点且满足∠OBC=∠OFC. (1)求证:CF 为⊙O 的切线;(2)若DE=1,30ABC ∠=︒.①求⊙O 的半径;②求sin ∠BAD 的值. (3)若四边形ACFD 是平行四边形,求sin ∠BAD 的值.27.(本题满分10分)如图,四边形中ABCD ,//AB CD ,BC AB ⊥,8AD CD ==(cm),12AB =(cm),动点M 从A 出发,沿线段AB 作往返运动(A-B-A ),速度为3(cm/s),动点N 从C 出发,沿折线段C-D-A 运动,速度为2(cm/s),当N 到达A 点时,动点M 、N 运动同时停止.已知动点M 、N 同时开始运动,记运动时间为t(s) .(1)当t=5(s)时,则M 、N 两点间距离等于 ▲ (cm);(2)当t 为何值时,MN 将四边形ABCD 的面积分为相等的两个部分?(3)若线段MN 与AC 的交点为P ,探究是否存在t 的值,使得:1:2AP PC =,若存在,请求出所有t 的值;若不存在,请说明理由.28.(本题满分12分)如图1,已知ABC ∆的三顶点坐标分别为(1,1)A --,(3,1)B -,(0,4)C -,二次函数y = ax 2+ bx+c 恰好经过A 、B 、C 三点. (1)求二次函数的解析式;(2)如图1,若点P 是ABC ∆边AB 上的一个动点,过点P 作PQ ∥AC ,交BC 于点Q ,连接CP ,当CPQ ∆的面积最大时,求点P 的坐标; (3)如图2,点M 是直线y x =上的一个动点,点N 是二次函数图像上的一动点,若 CM N ∆构成以CN 为斜边的等腰直角三角形,直接写出所有满足条件的点N 的横坐标.参考答案一、选择题(每小题3分,共30分)11.1x ≥ 12.1.155×10713.()()ab a b a b -+14.315.1 16.17.18三、解答题(共11大题,共76分)19.(本题共4分)解:原式= 2+9-1 ························· 3分=10 ···························· 4分20.(本题共5分)解:原式=211x xx x ÷-- ························ 1分=1(1)(1)x x x x x-⋅+- ······················ 2分=11x + ··························· 3分 当1时,原式····················· 4分·························· 5分 21.(本题共6分)解:由①式得:x <3. ························ 2分(图1) (图2)由②式得:x 13>. ······················· 4分 ∴不等式组的解集为:133x <<. ··············· 5分∴不等式组的整数解为:1,2. ················ 6分22.(本题满分6分)(1)8 ······························· 1分 (2)144︒ ····························· 3分 (3) 树状图或列表法略. ······················ 5分第一组至少有1名选手被选中的概率为56. ············· 6分23.(本题共6分)(1)证明:∵CD=2,且AD C ∆与ABD ∆的面积比为1:3.∴BD=3DC=6 ····· 1分∴在ADC ∆与ABD ∆中,2BC ACAC BD==,∠BCA=∠ACD . ······ 3分∴ADC ∆∽BAC ∆. ······················ 4分(2)解:∵ADC ∆∽BAC ∆,∴AD DC =ABAC,又∵8AB =,4,2AC CD ==.∴.AD=4 ························· 6分24.(本题共9分)解:(1)设A 款文具盒单价为x 元,则B 公司为x+5元. ········· 1分由题意得:30030055x x =++. ···················· 2分 解之得:x=15. ························· 3分 经检验:x=15是方程的根. ···················· 4分 ∴购进一个A 款文具盒、一个B 款文具盒分别需要15元和20元. (2)设购入A 款文具盒为y 个,则购入B 款文具盒为60−y 个. 由题意得:1520(60)1000y y +-≤. ···················· 5分解之得:40y ≥. ························ 6分 又∵售完60个文具盒可获得利润为S=510(60)6005y y y +-=- ····· 7分 ∴当40y =时,S 可取得最大值为400. ··············· 8分 答:应购入40个A 款文具盒和20个B 款文具盒可使销售利润最大,最大利润为400元. ························· 9分25.(本题共8分)解:(1) ∵点 A(−2,m+4),点B(6,m)在反比例函数ky x=的图像上.∴426k m k m ⎧+=-⎪⎪⎨⎪=⎪⎩. ······················· 1分∴解得:m=−1,k=−6. ····················· 3分 (2)设过A 、B 两点的一次函数解析式为y=ax+b .∵A(−2,3),B(6,−1),∴2361k b k b -+=⎧⎨+=-⎩.解得:122k b ⎧=-⎪⎨⎪=⎩. ∴过A 、B 两点的一次函数解析式为122y x =-+. ········· 5分∵过点M(a ,0)作x 轴的垂线交AB 于点P ,∴点P 的纵坐标为:122a -+.又∵过点M(a ,0)作x 轴的垂线交6y x -=于点Q ,∴点Q 的纵坐标为:6a-. ∴16|2|2PQ a a =-++ ,6||||QM a=-.又∵PQ=4QM 且a<0,∴162422a a a-++=-. ··········· 7分∴24600a a --=.∴6a =-或10a =. ∵0a <.∴实数a 的值为−6. ················· 8分26.(本题共10分)解:(1) 连接CO .∵D 为BC 的中点,且OB=OC ,∴OD ⊥BC . ················ 1分∵OB=OC ,∴∠OBC=∠OCB .又∵∠OBC=∠OFC ,∴∠OCB=∠OFC . ·············· 2分 ∵OD ⊥BC ,∴∠DCF+∠OFC=90︒.∴∠DCF+∠OCB=90︒.即OC ⊥CF ,∴CF 为⊙O 的切线. ······· 3分(2) ①设⊙O 的半径为r .∵OD ⊥BC 且∠ABC=30︒.∴OD=12OB=12r .又∵DE=1,且OE=OD+DE .∴112r r =+,解得:r=2.4分 ②作DH ⊥AB 于H,在RT △ODH 中,∠DOH=60︒,OD=1.∴OH=12.在RT △DAH 中,∵AH=AO+OH=52,∴由勾股定理:∴sin DH BAD AD ∠===. ····················· 6分 (3)设⊙O 的半径为r .∵O 、D 分别为AB 、BC 中点,∴AC=2OD .又∵四边形ACFD 是平行四边形,∴DF=AC=2OD .∵∠OBC=∠OFC ,∠CDF=∠ODB=90︒,∴△ODB ∽△CDF . ∴OD BD CD DF =,∴2OD BDBD OD=,解得:BD =. ········ 8分 ∴在Rt △OBD 中,OB=r ,∴,OD BD ==.∴1,3OH r DH ==.∴在RT △DAH 中,∵AH=AO+OH=43r ,∴由勾股定理:.∴1sin 3DH BAD AD ∠===. ················· 10分27.(本题共10分)解:(1)···························· 2分 (2) ∵四边形中ABCD ,//AB CD ,BC AB ⊥,8AD CD ==,12AB =.则BC =ABCD S 四边形1︒ 当04t ≤≤时. 如图,则BM=12−3t ,CN=2t .∴1(12))2BCNM S t t =-⋅-四边形.∵MN将四边形的面积分为相等的两个部分,∴)t -= ··· 3分 ∴t=2. ···························· 4分 2︒ 当48t <≤时, 如图,则AM=24−3t ,AN=16-2t∴2AMN 1=(243)(162))2S t t t -⋅--三角形. ·········· 5分∵MN2)t -=∴t=8±48t <≤,∴t=8. 综上所述:2t =或t=8.(3) 1︒当04t ≤≤时, 如图,则AM=3t ,CN=2t .∵//AB CD ,则3122AP AM PC CN ==≠. ∴不存在符合条件的t 值. ··················· 7分 2︒ 当48t <≤时,如图,分别延长CD 、MN 交于点Q . 则AM=24−3t ,AN=16−2t ,DN=2t −8.∵//AB CD ,则283(4)243162QD DN DQ t DQ t AM AN t t-=⇒=⇒=--- ······ 8分 ∴34CQ t =-. ∵//AB CD ,则2431523429AM AP t t CQ PC t -=⇒=⇒=-. 综上可知:存在实数529t =使得:1:2AP PC =成立. ········· 10分 28.(本题共12分)解:(1)224y x x =--. ······················· 3分(2)设点(t,1)P -(13t -≤≤),则AP=t+1,BP=3−t ,三角形ABC 的面积为6.∵//PQ AC ,∴BPQ BAC ∆~∆.∴223()()4BPQ BACS BP t S BA ∆∆-==, ∴2233()(3)48BPQ BAC t S S t ∆∆-=⋅=- 5分 又∵133(3)22PCB S BP t ∆=⋅⋅=-.∴2233933(1)84882PCQ PBC PBQ S S S t t t ∆∆∆=-=-++=--+. 8分∴t=1时,PCQ S ∆最大,此时点(1,1)P -. ·············· 9分(3) 所有满足条件的点N 的横坐标为4,1- ········· 12分。

相关文档
最新文档