高中文科数学公式大全(精华版)

合集下载

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式: log b a N b a N =⇔=(0,1,0)a a N >≠>. .对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a ≠, 0N >). 常见的函数图象二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

高中文科数学知识点全总结

高中文科数学知识点全总结

高中文科数学知识点全总结1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,备注:韦达定理。

(5)判别式1)b2-4a=0,备注:方程存有成正比的两实根。

2)b2-4ac\ue0,注:方程有一个实根。

3)b2-4ac\uc0,备注:方程存有共轭复数根。

2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。

(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。

(完整版)文科高中数学公式大全(超全完美)

(完整版)文科高中数学公式大全(超全完美)

、函数、导数1.元素与集合的关系 : x A x C U A , x C U Ax A . ? A A集合 {a 1,a 2,L ,a n } 的子集个数共有 2n 个;真子集有 2n 1个;非空子集有 2n 1个;非空的真子集有 2n 2个 .2. 真值表5. 函数的单调性pq非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假假常见结论的否定形式;原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有 n 个 至多有( n 1)个 小于不小于至多有 n 个至少有( n 1)个对所有 x ,成立存在某 x ,不成立p 或q p 且 q 对任何 x ,不成立 存在某 x ,成立p 且qp 或 q四种命题的相互关系 ( 下图 ): (原命题与逆否命题同真同假;逆命题与否命题同真同假 原命题 互逆 逆命题 若p则q 若q则p .)否命题 若非p则非q 3. 充要条件(记 逆否命题若非q则非互逆 p 表示条件, q 表示结论) q ,则 p 是 q 充分条件 . p ,则 p 是 q 必要条件 . q ,且 q p ,则 p 是 q 充要条件 .则乙是甲的必要条件;反之亦然若p 若q若p( 1)充分条件: ( 2)必要条件: ( 3)充要条件: 注:如果甲是乙的充分条件,4. 全称量词 表示任意,表示存在; 的否定是的否定是 。

2 例: x R,x 2x 12 0 的否定是 x R,x 2互逆逆 逆否否互 否(2) 设函数 y f (x)在某个区间内可导,若 f (x) 0,则 f(x) 为增函数;若 f (x) 0,则 f (x) 为减函数 .6. 复合函数 y f[g(x)] 单调性判断步骤:(1)先求定义域(2)把原函数拆分成两个简单函数 y f (u)和 u g(x)( 3)判断法则是同增异减( 4)所求区间与定义域做交集7. 函数的奇偶性(1) 前提是定义域关于原点对称。

高中数学公式大全 高考文科必背数学公式整理

高中数学公式大全 高考文科必背数学公式整理

千里之行,始于足下。

高中数学公式大全高考文科必背数学公式整理高中数学是一门基础科学课程,内容丰富,有很多重要的公式需要记忆和把握。

下面我整理了一些高考文科必背的数学公式,期望对您有所挂念。

1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2) b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n, n)a^0 b^n2. 幂的运算:a^m * a^n = a^(m+n)(a^m)^n = a^(mn)a^m / a^n = a^(m-n)3. 对数与指数的关系:a^x = b 等价于 x = loga(b)4. 对数运算:loga(mn) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^p) = p*loga(m)loga1 = 0 (任何数以自身为底数取对数等于0)logaa = 1 (底数与真数相等时,对数等于1)5. 三角函数和三角恒等式:sin^2x + cos^2x = 11 + tan^2x = sec^2x1 + cot^2x = cosec^2x第1页/共2页锲而不舍,金石可镂。

sin(90° - x) = cosx,cos(90° - x) = sinxtan(90° - x) = cotx,cot(90° - x) = tanxsin2x = 2sinxcosxcos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2xtan2x = (2tanx) / (1 - tan^2x)6. 平面坐标和距离公式:点P(x₁, y₁)与点Q(x₂, y₂)之间的距离公式:d = sqrt((x₂-x ₁)^2 + (y₂-y₁)^2)7. 二次函数相关公式:抛物线顶点坐标:(h, k),其中 h = -b/(2a),k = f(h) = f(-b/(2a)) 抛物线开口朝上时,对称轴为x = h;开口朝下时,对称轴为 y = k抛物线的焦点坐标:(h, k+p),其中 p = 1/(4a)焦点到顶点的距离:|p| = 1/(4|a|)抛物线与x轴交点:x₁ = h - |p|,x₂ = h + |p|8. 函数导数和微分公式:(cf(x))' = c(f(x))',其中c为常数(f(x) + g(x))' = f'(x) + g'(x)(f(x) - g(x))' = f'(x) - g'(x)(f(x) * g(x))' = f'(x)g(x) + f(x)g'(x)(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/(g(x))^2(f(g(x)))' = f'(g(x))*g'(x)(f(g(x)))'' = f''(g(x))*(g'(x))^2 + f'(g(x))*g''(x)在x=a处的高阶导数:f(a) = f'(a) = f''(a) = ... = f^n(a)这里只列举了一些高考文科必背的数学公式,还有很多公式和定理没有列出。

高中文科数学公式总结大全

高中文科数学公式总结大全

高中文科数学公式总结大全高中文科数学相对理科数学来说是比较简单的,但是其中的公式还是有许多。

为了节省同学们整理文科数学公式的时间。

下面是由小编为大家整理的“高中文科数学公式总结大全”,仅供参考,欢迎大家阅读。

高中文科数学公式总结大全一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb)tan(a-b)=(tana-tanb)/(1+tana*tanb)高中数学知识点速记口诀1.《集合与函数》内容子交并补集,还有幂指对函数。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(0x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((00x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x'=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x是极小值.指数函数、对数函数分数指数幂 (1)m n m naa =(0,,a m n N *>∈,且1n >). (2)11m n m n m na a a -==(0,,a m n N *>∈,且1n >). 根式的性质(1)当n 为奇数时,n n a a =;当n 为偶数时,,0||,0n n a a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a>0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式: log b aN b a N =⇔=(0,1,0)a a N >≠>..对数的换底公式 :log log log m a mN N a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a N a N =(0a >,且1a ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a ≠, 0N >).常见的函数图象k<0k>0y=kx+boyxa<0a>0y=ax 2+bx+coyx-1-212y=x+1xo yx0<a<1a>11y=a xoyx0<a<1a>11y=log a xoyx二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.分数指数幂(1)mna=0,,a m n N *>∈,且1n >).(2)1m nm na a-==(0,,a m n N *>∈,且1n >)..根式的性质(1)n a=(2)当n当n(1) r sa a⋅=(2) ()r sa a=(3)()r rab a=注:若a>0数指数幂都适用..0,1,0)a a N>≠>..1≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,(即:左增右减),那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,(即:左减右增),那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

(2)对数的换底公式 :log log log m a m NN a=.( 3)对数恒等式:①log log n a a b n b =; ②log log m na a nb b m=; ③log a N a N =; ④log 10a =; ⑤log 1a a = 11、常见的函数图象12、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .13、正弦、余弦的诱导公式诱导公式一: sin(2k π+α)=sin α; cos(2k π+α)=cos α tan(2k π+α)=tan α 诱导公式二: sin(πα+)=-sin α; cos(πα+)=-cos α; tan(πα+)=tan α. 诱导公式三: sin (α-)=-sin α; cos (α-)=cos α; tan (α-)=-tan α. 诱导公式四: sin(πα-)=sin α; cos(πα-)=-cos α; tan(πα-)=-tan α. 诱导公式五: sin(2πα-)=cos α; cos(2πα-)=sin α; 诱导公式六: sin(2πα+)=cos α;cos(2πα+)=-sin α[上面六组诱导公式,最好用口诀:奇变偶不变,符号看象限记忆,但要理解其含义] 14、和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=m ;tan tan tan()1tan tan αβαβαβ±±=m .sin cos a b αα+)αϕ+;(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).15、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=16、三角函数的周期函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期2||T πω=,最大值为|A|;函数tan()y A x ωϕ=+(2x k ππ≠+)的周期||T πω=.17.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径).2sin ,2sin ,2sin a R A b R B c R C ⇔=== ::sin :sin :sin a b c A B C ⇔=18.余弦定理:2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.19.面积定理111sin sin sin 222S ab C bc A ca B ===.20、三角形内角和定理在△ABC 中,有A B C π++= ()C A B dx π⇔=-+ 222C A B π+⇔=- 222()C A B π⇔=-+.21、三角函数的性质22、a 与b 的数量积:a ·b =|a |⋅|b |cos θ. 23、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--uu u r uu u r uu r(2)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (3)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.(6)设a =),(y x ,则22y x a +=24、两向量的夹角公式:cos a ba bθ⋅==⋅r r r r ;(a =11(,)x y ,b =22(,)x y ).25、平面两点间的距离公式:,A B d =||AB uu ur=26、向量的平行与垂直: 设a =11(,)x y ,b =22(,)x y ,则a ∥b ⇔b =λa 12210x y x y ⇔-=. a ⊥b ⇔a ·b=012120x x y y ⇔+=. 27、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩;( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).28、等差数列的通项公式11(1)n a a n d dn a d =+-=+-;29、等差数列其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+. 30、等差数列的性质:①等差中项:2n a =1n a -+1n a +; ②若m+n=p+q ,则m a +n a =p a +q a ;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m 项的和,则m S ,2m S -m S ,3m S -2m S 成等差数列。

31、等比数列的通项公式 11n n a a q -=; 32、等比数列前n 项的和公式为11(1),11,1n n a q q q s na q ⎧-≠⎪-=⎨⎪=⎩ 或 11,11,1n n a a q q q s na q -⎧≠⎪-=⎨⎪=⎩.33、等比数列的性质: ①等比中项:2n b =11n n b b -+⋅; ②若m+n=p+q ,则m n b b ⋅=p q b b ⋅;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m 项的和,则m S ,2m S -m S ,3m S -2m S 成等比数列。

34、常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).35、直线的三种方程 :(1)点斜式:11()y y k x x -=-; (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式:y kx b =+;(b 为直线l 在y 轴上的截距). (3)一般式:0Ax By C ++=;(其中A 、B 不同时为0). 另外,还有两点式和截距式方程,请你自己补上! 36、两条直线的平行和垂直若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠且; ②12121l l k k ⊥⇔⋅=-.37、点到直线的距离d =; (点00(,)P x y ,直线l :0Ax By C ++=).38、 圆的两种方程:(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.39、点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外; d r =⇔点P 在圆上; d r <⇔点P 在圆内. 40、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:其中22BA C Bb Aa d +++=0d r >⇔⇔∆<相离方程组无解:;0d r =⇔⇔∆=相切方程组有唯一解:;0d r <⇔⇔∆>相交方程组有两个解:.41、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质①椭圆:22221(0)x y a b a b +=>>,焦点(±c,0),222b c a =-,离心率2=2a ce c a ==焦距长轴,参数方程是cos sin x a y b θθ=⎧⎨=⎩.②双曲线:12222=-by a x (a>0,b>0),焦点(±c,0),222b a c =-,离心率2=2a c e c a ==焦距长轴,渐近线方程是x ab y ±=.③抛物线:px y 22=,焦点)0,2(p ,准线2px -=。

相关文档
最新文档