高考数学基本不等式

合集下载

2023届高考数学一轮复习讲义:第5讲 基本不等式

2023届高考数学一轮复习讲义:第5讲 基本不等式

第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当 时取等号.(3)其中 称为正数a ,b 的算术平均数, 称为正数a ,b 的几何平均数. 2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当 时,x +y 有最小值是 .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当 时,xy 有最大值是 .(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15D .⎝⎛⎦⎤-∞,15 [举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C.已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+ D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥C D .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________. 8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b 不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是( ) A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()22x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____.➢考点4 基本不等式与其他专题综合[名师点睛]有关函数最值的实际问题的解题技巧1.根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. 2.解应用题时,一定要注意变量的实际意义及其取值范围.3.在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解. [典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件336a ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .2【答案】D【解析】因为33ba b ++≥33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2 故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥∴1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;(22224m ⎡⎤+≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n ++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15 D .⎝⎛⎦⎤-∞,15 [答案] A [解析] 由x >0,x x 2+3x +1=1x +1x +3,令t =x +1x,则t ≥2x ·1x=2, 当且仅当x =1时,t 取得最小值2. x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40 B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694. 故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222,当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确; 对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()2112212331212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎪⎣⎦++++⎝⎭()21212++=++x x y x x y,即1==x y时,等号成立,所以32x y +≥+C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥ CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确; 对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥记u =0u >,所以21111336u ab b =+++++≤+=,所以0u <≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误. 故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________. 【答案】 6-3【解析】a ,b 为正实数, 且2a b +=,222221111a b b a a b a b +-+∴+=++++2111a b a b =++-++2111a b =+++ ()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331ba ab ⎛⎫+=+++ ⎪+⎝⎭ (1133≥++=当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-38.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________. 【答案】9 【解析】()()()()41414411911x y x y x y x y x y xy yx y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++ ⎪⎢⎥---⎣⎦⎝⎭≥, 当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n+≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________. 【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭. 因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-+≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23. 故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++ 222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(3)24≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274.➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++. 【解】(1)()()2222244a b ab c abc a b ac ab bc abc ++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥, 当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝ ()19322222=+++=, 当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++. [举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++. 【解】(1)因为24a a+24=322a a a ++≥,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立 2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>, 又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++ 当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号. 即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值. 【解】(1)111abc abc abcbc ac ab a b c a b c++=++=++ 222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立. (2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=b c =时等号成立. 所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号. 又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a b c a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a xx >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞ B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x ==++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭; 故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥⎪--⎝⎭, ()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=+-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a b a b b c --=++≥++--故得到211,n n N +∈则n 的最大值是4.故选:C. [举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫- ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++, 当a b =时,不等式恒成立;当ab时,222aba b a b ab a bλ+≥=+-+12=,a b =时等号成立,a b12=,故12λ≥. 故选:C.3.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y x m m k x y+>-++恒成立,则k 的取值可能是( )A .2-B .1-C .1D .2【答案】AB【解析】因为0x >,0y >,所以222y x x y +≥=,当且仅当2x y =时,等号成立. 因为()222111m m k m k k -++=--++≤+.若2222y xm m k x y+>-++恒成立,则12k +<,解得1k <. 故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________. 【答案】1 【解析】因为222222212222xy yz xy yz xy yz x y z x y y z xy yz +++==++++++≤,当x y z ==时取等号,所以 2222xy yz x y z +++的最大值是12,即211122a a +-≥, 解得112a -≤≤,所以a 的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________. 【答案】2【解析】解:因为0,0x y >>,则()2220x xy y x y xy -+=-+>, 则()2222x y a x xy y +-+≤,即2222x y a x xy y+-+≤, 又22222211x y xy x xy y x y +=-+-+, 因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+, 即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭, 所以2a ≥,即实数a 的最小值是2. 故答案为:2.6.(2022·全国·高三专题练习)若不等式()2x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____. 【答案】2【解析】()()22222=22x x y a x y x x y x x y x y +≤+∴+≤+++,当且仅当=2x y 时取等号,0,0x y >>0x y ∴+>()22x x y a x y +≤+max2x ya y ⎫∴≥⎪⎪⎝⎭ 22222x x y x yx y x y ++≤=++max2=2x y a y ⎫∴≥⎪⎪⎝⎭,a ∴的最小值为2 故答案为:2➢考点4 基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________. 【答案】[ 【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin sin 33a x x ≤+, 当sin 0x =时,则203≤成立,R a ∈, 当sin 0x >时,42sin 33sin a x x ≤+,而42214sin (2sin )233sin 3sin 3x x x x +=+≥, 当且仅当12sin sin x x=,即2sin 2x 时取“=”,则有423a ≤, 当sin 0x <时,42sin 33sin a x x ≥+,而42214sin [(2sin )]233sin 3sin 3x x x x +=--+≤--, 当且仅当12sin sin x x -=-,即2sin 2x =-时取“=”,则有423a ≥-, 综上得,424233a -≤≤所以实数a 的取值范围是4242[,]33-. 故答案为:4242,33⎡⎤-⎢⎥⎣⎦2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.[答案] 1 [解析] 由题意知x >0,∴(x 2 018+1)(1+x 2+x 4+…+x 2 016)≥ 2x 2 018·1×12(21·x 2 016+2x 2·x 2 014+…+2x 2 016·1)=2 018x 2 017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米.故选:C. [举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+23060≥=⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立. 所以f (Q )的最小值是60. 故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=, 两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误. 故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】 4 48 【解析】解:设BM x =,则34x x AN =+,则123AN x=+, 则()12484843324232448AMPN S x x x x x x ⎛⎫=++=++⋅= ⎪⎝⎭, 当且仅当483x x=,即4x =时等号成立,故矩形花坛的AMPN 面积最小值为48. 即当4BM =时,矩形花坛的AMPN 面积最小,最小面积为48. 故答案为:4;48.。

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高考数学一轮复习 基本不等式课件

高考数学一轮复习 基本不等式课件

4abcd.故原不等式得证,等号成立的条件是a2=b2
且c2=d2且ab=cd.
1.已知a、b、c∈R+且a+b+c=1,
求证:(11)(11)(11)≥8. abc
证明:∵a、b、c∈R+且a+b+c=1,
(11)(11)(11) abc
当且仅当a=b=c= 时取等号.
1.利用基本不等式求最值需注意的问题 (1)各数(或式)均为正; (2)和或积为定值; (3)等号能否成立,即“一正、二定、三相等”,这三个条件 缺一不可.
三、算术平均数与几何平均数
设a>0,b>0,则a,b的算术平均数为
,几何平均
数为 ,基本不等式可叙述为:两个正数的算术平均数
不小于它们的几何平均数 .
四、利用基本不等式求最值
设x,y都是正数. (1)如果积xy是定值P,那么当 x=y 时,和x+y有
最小值
.
(2)如果和x+y是定值S,那么当 x=y 时积xy有最大
x 1 (x1) 1;1=3 答案:C
4.已知
+=2(x>0,y>0),则xy的最小值是
.
解析:2=
,所以xy≥15,当且仅当
时等号成立.所以xy的最小值是15.
答案:15
5.某公司一年购买某种货物400吨,每次都购买x吨,运费为4
万元/次,一年的总存储费用为4x万元,要使一年的总运费
4.基本不等式的几种变形公式 对于基本不等式,不仅要记住原始形式,而且还要掌握它 的几种常见的变形形式及公式的逆运用等,如:
2ab≤ ab≤ ab≤ a2b2(a0,b0).
ab
2
2
求下列各题的最值. (1)已知x>0,y>0,lgx+lgy=1,求z= (2)x>0,求f(x)= +3x的最小值. (3)x<3,求f(x)= +x的最大值.

基本不等式 高考数学满分秘诀

基本不等式 高考数学满分秘诀

高考数学秘诀-基本不等式【知识梳理】12a b +≤(1)基本不等式成立的条件:0,0a b ≥≥.(2)等号成立的条件:当且仅当a b =时取等号.(3)其中2a b+称为正数a ,b a ,b 的几何平均数.2、几个重要的不等式(1)222222a b a b ab ab ++≥⇒≤,当且仅当a =b 时取等号.(2)2()2a b a b ab ++≥≤,当且仅当a =b 时取等号.(3)222()22a b a b ++≤.(4)熟悉一个重要的不等式链:211a b+2a b+≤≤≤222b a +总结:基本不等式重点就是体现一个“定”的思想,所以在学习过程中要感悟配凑技巧。

拓展:若+∈R c b a ,,,3a b c ++≥c b a ==时等号成立;【技巧大全】技巧1:直接法技巧2:“添项”配凑法技巧3:“系数”配凑法技巧4:常数代换法技巧5:待定系数法技巧6:涉及a b +和ab 的处理方法技巧7:一次、二次问题处理方法技巧8:齐次化法技巧9:化为单变量法技巧10:整体配凑法【典例分析】--部分摘录技巧1:直接法例1、已知,x y R +∈,且满足134x y+=,则xy 的最大值为________。

【答案】3【解析】因为x >0,y>0,所以34x y +≥(当且仅当34x y =,即x=6,y=8时取等号),于1≤, 3.xy ∴≤,故xy 的最大值3.例2、已知+∈R y x ,若16=xy ,求11x y+的最小值.并求y x 、的值【答案】12【解析】1112x y +≥=,当且仅当4==y x 时等号成立例3、若实数,a b 满足221ab+=,则a b +的最大值是.【答案】-2当1a b ==-时取等号。

例4、若实数a ,b满足12a b+=,则ab 的最小值为__________.【答案】由题意可知可以利用基本不等式,12a b =+≥=,当且仅当122b a a b =⇒=时取等号,化简后可得:ab =145422a b ⎧=⎪⎨⎪=⎩技巧2:“添项”配凑法例1、已知函数1(0)y x x x=+>,求y 的最小值.【答案】2例2、已知函数3(2)2y x x x =+>-,求y 的最小值.【答案】2+例3、已知54x <,求函数14245y x x =-+-的最大值。

高考数学一轮复习第一章第五讲基本不等式及其应用课件

高考数学一轮复习第一章第五讲基本不等式及其应用课件

(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,

当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤

2023年高考_基本不等式知识点高考数学

2023年高考_基本不等式知识点高考数学

2023年基本不等式知识点高考数学2023年基本不等式知识点高考数学11.不等式的定义:a-bb, a-b=0a=b, a-b0a①其实质是运用实数运算来定义两个实数的大小关系。

它是__的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1) abb(2) acac (传递性)(3) ab+c (cR)(4) c0时,abcc0时,abac3.运算性质有:(1) ada+cb+d。

(2) a0, c0acbd。

(3) a0anbn (nN, n1)。

(4) a0N, n1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的`推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

4. 关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

2023年基本不等式知识点高考数学2基本不等式是不等式的重要内容,也是历年高考重点考查的知识之一。

它的应用几乎涉及高中数学的所有的章节,高考命题的重点是大小判断、求最值、求范围等.大多为填空题,试题的难度不大,近几年的高考试题中也出现了不少考查基本不等式的实际应用问题。

【例2】心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量y?1=4x+4;若在t(t0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y?2随时间变化的曲线恰好为直线的一部分,其斜率为a(t+4)?2(?a(1) 若a=-1,t=5,求二次复习最佳时机点(2) 若出现了二次复习最佳时机点,求a的取值范围。

2024年新高考版数学专题1_2.2 基本不等式及不等式的应用

2024年新高考版数学专题1_2.2   基本不等式及不等式的应用

x2
x
b
,则
x
2
x
b
≥1,由b>0得b≤x-x2,
即b≤
(
x
x
2
)
max
,∵x-x2=-
x
1 2
2
+
1 4
,x∈
1 4
,
3 4
,∴x=
1 2
时,(x-x2)max=
1 4
,则b≤
1 4
.
故0<b≤ 1 .
4
答案
0<b≤
1 4
例3
已知函数f(x)=x2,g(x)=
1 2
x
-m,若对任意x∈[1,2],都有f(x)≥g(x),则实
2.几个重要不等式
1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
4.双变量的恒成立与存在性问题 1)若∀x1∈I1、∀x2∈I2 ,f(x1)>(≥)g(x2)恒成立,则f(x)min>(≥)g(x)max. 2)若∀x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)min>(≥)g(x)min. 3)若∃x1∈I1,∀x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)max. 4)若∃x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)min. 5)已知f(x)在区间I1上的值域为A,g(x)在区间I2上的值域为B,若∀x1∈I1,∃x2 ∈I2,使得f(x1)=g(x2)成立,则A⊆B.

第2节 基本不等式--2025年高考数学复习讲义及练习解析

第2节  基本不等式--2025年高考数学复习讲义及练习解析

第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学基本不等式
第6章 第3课时
(本栏目内容,在学生用书中以活页形式分
册装订!)
一、选择题
1.已知f (x )=x +1x -2(x <0),则f (x )有( )
A .最大值为0
B .最小值为0
C .最大值为-4
D .最小值为-4
解析: ∵x <0,∴-x >0,
∴x +1x -2=-⎝
⎛⎭⎪⎪⎫-x +1-x -2≤-2-x ·1-x
-2=-4, 当且仅当-x =1-x
,即x =-1时等号成立. 答案: C
2.若x +2y =4,则2x +4y 的最小值是( )
A .4
B .8
C .2 2
D .4 2
解析: ∵2x +4y ≥2·2x ·22y =2·2x +2y
=2·24=8,
当且仅当2x =22y ,即x =2y =2时取等号, ∴2x +4y 的最小值为8.
答案: B
3.已知x >1,y >1,且14ln x ,14
,ln y 成等比数列,则xy ( )
A .有最大值e
B .有最大值 e
C .有最小值e
D .有最小值 e
解析: ∵x >1,y >1,且14ln x ,14
,ln y 成等比数列,
∴ln x ·ln y =14≤⎝ ⎛⎭
⎪⎪⎫ln x +ln y 22,
∴ln x+ln y≥1⇒xy≥e. 答案: C
4.函数y=x2+2
x-1
(x>1)的最小值是()
A.23+2 B.23-2 C.2 3 D.2
解析:∵x>1,∴x-1>0,
∴y=x2+2
x-1

x2-2x+2x+2
x-1
=x2-2x+1+2(x-1)+3
x-1
=(x-1)2+2(x-1)+3
x-1
=x-1+3
x-1
+2
≥2·(x-1)·3
x-1
+2=23+2,
当且仅当x-1=3
x-1
,即x=1+3时,取等号.
答案: A
5.(2011·北京东城联考)要设计一个矩形,现只知道它的对角线长度为10,则在所有满足条件的设计中,面积最大的一个矩形的面积为()
A.50 B.25 3
C.50 3 D.100
解析:设矩形的长和宽分别为x、y,则x2+y2=100.
于是S=xy≤x2+y2
2
=50,当且仅当x=y时
等号成立.
答案: A
6.(2011·东北三校第一次联考)已知正项等
比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,
a n 使得a m a n =4a 1,则1m +4n 的最小值为( )
A.32
B.53
C.256 D .不存在
解析: 设正项等比数列{a n }的公比为q , 由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2. 由a m a n =4a 1,得2m +n -2=24,即m +n =6.
故1m +4n =16(m +n )⎝ ⎛⎭⎪⎪⎫1m +4n =56+16⎝ ⎛⎭
⎪⎪⎫4m n +n m ≥56+46=32
,当且仅当n =2m 时等号成立. 答案: A
二、填空题
7.若2y +4x =xy (x >0,y >0),则xy 的最小值为________.
解析:22y·4x≤2y+4x=xy(x>0,y>0),∴xy≥32.
答案:32
8.(2011·南京模拟)若log m n=-1,则3n+m的最小值是________.
解析:∵log m n=-1,∴m-1=n,
∴mn=1,∵n>0,m>0且m≠1,
∴3n+m≥23mn=2 3.
答案:2 3
9.已知函数f(x)=x+
p
x-1
(p为常数,且p
>0),若f(x)在(1,+∞)上的最小值为4,则实数p的值为________.
解析:由题意得x-1>0,f(x)=x-1+
p
x-1
+1≥2p+1,当且仅当x=p+1时,取
等号,则2p+1=4,解得p=9
4.
答案:9 4
三、解答题
10.(1)求函数y=x(a-2x)(x>0,a为大于2x的常数)的最大值;
(2)当点(x,y)在直线x+3y-4=0上移动时,求表达式3x+27y+2的最小值.
【解析方法代码108001077】解析:(1)∵x>0,a>2x,
∴y=x(a-2x)=1
2×2x(a-2x)
≤1
2×⎣⎢
⎢⎡
⎦⎥
⎥⎤
2x+(a-2x)
2
2=a
2
8

当且仅当x=a
4
时取等号,故函数的最大值为
a2
8.
(2)由x+3y-4=0得x+3y=4,
∴3x +27y +2=3x +33y +2
≥2·3x ·33y +2=2·3x +3y +2
=2·34+2=20,
当且仅当3x =33y 且x +3y -4=0,即x =2,y =23
时取等号成立. 11.已知lg(3x )+lg y =lg(x +y +1).
(1)求xy 的最小值;
(2)求x +y 的最小值.
【解析方法代码
108001078】
解析: 由lg(3x )+lg y =lg(x +y +1) 得⎩⎪⎨⎪⎧ x >0y >0
3xy =x +y +1
(1)∵x >0,y >0,
∴3xy =x +y +1≥2xy +1,
∴3xy -2xy -1≥0,
即3(xy )2-2xy -1≥0,
∴(3xy +1)(xy -1)≥0, ∴xy ≥1,∴xy ≥1,
当且仅当x =y =1时,等号成立. ∴xy 的最小值为1.
(2)∵x >0,y >0,∴x +y +1=3xy ≤3·⎝ ⎛⎭
⎪⎪⎫x +y 22,
∴3(x +y )2-4(x +y )-4≥0,
∴[3(x +y )+2][(x +y )-2]≥0,
∴x +y ≥2,
当且仅当x =y =1时取等号,
∴x +y 的最小值为2.
12.某房地产开发公司计划
在一楼区内建造一个长方形公园
ABCD,公园由长方形的休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4 000平方米,人行道的宽分别为4米和10米(如图).
(1)若设休闲区的长和宽的比A1B1
B1C1=x,求公
园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
解析:(1)设休闲区的宽B1C1为a米,则其长A1B1为ax米.
∴a2x=4 000,得a=2010
x

∴S=(a+8)(ax+20)=a2x+(8x+20)a+160
=4 000+(8x +20)·2010x
+160 =8010⎝
⎛⎭⎪⎫2x +5x +4 160(x >1). (2)S ≥1 600+4 160=5 760,当且仅当2x =5x
, 即x =2.5时取等号,
即当x =2.5时,公园所占面积最小.
此时a =40,ax =100,即休闲区A 1B 1C 1D 1的长为100米,宽为40米.。

相关文档
最新文档