排列组合公式及恒等式推导证明word版
排列组合讲义

排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排; 合理分类与分步; 先选后排解混合; 正难则反用转化; 相邻问题来捆绑; 间隔插空处理法; 定序需要用除法; 分排问题直接法; 集团问题先整体; 有的问题选模型。
○1排列数公式 m n A=)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. ○2排列恒等式 (1)11m m n n A nA--=;(2)11m m m n n nAA mA-+=+.○3会推以下恒等式 (1)1(1)mm nnA n m A -=-+; (2)1m mnn n A A n m-=-; (3)11nn n nn n nA A A ++=-; (4)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.○1组合数公式 mn C =m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). ○2组合数的两个性质 (1)m n C =m n n C - ; (2)m n C +1-m n C =m n C 1+. 注:规定10=n C . 1.分类计数原理(加法原理) 12n N m m m =+++ 2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯m mn n A m C =⋅!. (1)0111()......n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++ *()n N ∈ (2)1k n k k k n T C a b -+= (3)∑=nr rnC=n2(4)13502412n n n n n n n C C C C C C -+++=+++=.解决排列组合一般思路: 1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识排列组合是高中数学教学内容中的重要组成部分,在高考试卷中排列组合的占分比越来越高,且出现的形式多种多样。
下面店铺给你分享高中数学排列组合公式大全,欢迎阅读。
高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
数学排列组合公式

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用1 / 13(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!2 / 13这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
排列组合公式

排列组合公式[编辑本段]定义公式P是指排列,从N个元素取R个进行排列(即排序)。
(P是旧用法,现在教材上多用A,Arrangement)公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
[编辑本段]符号常见的一道题目C-组合数P-排列数(现在教材为A)N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5*4*3*2*1=120C-Combination 组合P-Permutation排列(现在教材为A-Arrangement)一些组合恒等式组合恒等式排列组合常见公式排列组合常见公式[编辑本段]历史1772年,旺德蒙德以[n]p表示由n个不同的元素中每次取p个的排列数。
而欧拉则于1771年以及于1778年以表示由n个不同元素中每次取出p个元素的组合数。
至1872年,埃汀肖森引入了以表相同之意,这组合符号(Signs of Combinations)一直沿用至今。
1830年,皮科克引入符号Cr以表示由n个元素中每次取出r个元素的组合数;1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。
按此法,nPn便相当於现在的n!。
1880年,鲍茨以nCr及nPr分别表示由n个元素取出r个的组合数与排列数;六年后,惠特渥斯以及表示相同之意,而且,他还以表示可重复的组合数。
至1899年,克里斯托尔以nPr及nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。
1904年,内托为一本百科辞典所写的辞条中,以表示上述nPr之意,以表示上述nCr之意,后者亦同时采用了。
这些符号也一直用到现代。
[编辑本段]组合数的奇偶对组合数C(n,k) (n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数。
组合数的奇偶性判定方法为:结论:对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。
(word完整版)排列组合和排列组合计算公式.

排列组合公式/排列组合计算公式排列 P--—--—和顺序有关组合 C ——-—-—-不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法。
"排列”把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n—1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n—m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,。
..nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)。
(n—m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008—07-08 13:30公式P是指排列,从N个元素取R个进行排列。
高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识排列组合是高中数学教学内容中的重要组成部分,在高考试卷中排列组合的占分比越来越高,且出现的形式多种多样。
下面店铺给你分享高中数学排列组合公式大全,欢迎阅读。
高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
(完整word版)排列组合1.

(完整word版)排列组合1.专题⼆⼗三排列组合知识概要P-Probability 排列 C-Combination 组合排列公式m n P 是指,从n 个元素取m 个进⾏排列(即有次序排序)。
组合公式mn C 是指,从n 个元素取m 个,不进⾏排列(即⽆次序分别,不排序)。
C —组合数; P —排列数; n —元素的总个数;m —参与选择的元素个数;!—阶乘,如5!=5×4×3×2×1=120 ;3!=3×2×1=6。
m n P =n ×(n-1)×(n-2)×…×(n -m +1)m n C =mn P ÷m!排列组合知识,⼴泛应⽤于实际,掌握好排列组合知识,能帮助我们在⽣产⽣活中,解决许多实际应⽤问题。
同时排列组合问题历来就是⼀个⽼⼤难的问题。
因此有必要对排列组合问题的解题规律和解题⽅法作⼀点归纳和总结,以期充分掌握排列组合知识。
排列组合解题策略排列组合问题的⼀般解题规律: 1)使⽤“分类计数原理”还是“分步计数原理”。
要根据我们完成某件事时采取的⽅式⽽定,可以分类来完成这件事时⽤“分类计数原理”(加法原理),需要分步来完成这件事时就⽤“分步计数原理”(乘法原理);那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何⼀类均可独⽴完成所给的事件,⽽“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成⼀件事情的⼏类办法互不⼲扰,相互独⽴,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺⼀不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步⽤什么⽅法不影响后⾯的步骤采⽤的⽅法。
2)排列与组合定义相近,它们的区别在于是否与顺序有关。
3)复杂的排列问题常常通过试验、画 “树图 ”、“框图”等⼿段使问题直观化,从⽽寻求解题途径,由于结果的正确性难于检验,因此常常需要⽤不同的⽅法求解来获得检验。
常用排列组合公式

常用排列组合公式2. 组合公式n 个相异物件取 r 个( 1 \leq r \leq n )个的不同组合总数,为C_r^n = \binom{n}{r} = \frac{P_r^n}{r!} =\frac{n!}{r!(n-r)!} = \frac{n(n-1) \cdots (n-r+1)}{r!}\\当 r=0 时,按 0!=1 的约定,算出 \binom{n}{0} = 1,这可看作一个约定。
只要 r 为非负整数,n 不论为任何实数,都有意义。
故 n 可不必限制为自然数。
例如:\binom{-1}{r} = (-1)(-2) \cdots (-r) / r! = (-1)^r\\ 3. 组合系数与二项式展开的关系组合系数 \binom{n}{m} 又常称为二项式系数,因为它出现在下面熟知的二项式展开的公式中:(a+b)^n = \sum_{i=0}^n \dbinom{n}{i}a^i b^{n-i}\\利用这个关系式,可得出许多有用的组合公式。
例如,令a=b=1,得\dbinom{n}{0} + \dbinom{n}{1} + \cdots + \dbinom{n}{n} = 2^n\\令 a = -1,b = 1 ,则得:\dbinom{n}{0} - \dbinom{n}{1} + \dbinom{n}{2} - \cdots + (-1)^n\dbinom{n}{n} = 0\\另一个有用的公式是\dbinom{m+n}{k} =\sum_{i=0}^{k}\dbinom{m}{i}\dbinom{n}{k-i}\\它是由恒等式 (1+x)^{m+n} = (1+x)^m(1+x)^n 即\sum_{j=0}^{m+n} \dbinom{m+n}{j} x^j = \sum_{j=0}^{m} \dbinom{m}{j} x^j \sum_{j=0}^{n} \dbinom{n}{j}x^j \\比较两边的 x^k 项的系数得到的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合公式及恒等式推导、证明(word 版)说明:因公式编辑需特定的公式编辑插件,不管是word 还是pps 附带公式编辑经常是出错用不了。
下载此word 版的,记得下载MathType 公式编辑器哦,否则乱码一堆。
如果想偷懒可下截同名的截图版。
另外,还有PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。
一、排列数公式:!(1)(2)(1)()!mn n A n n n n m n m(1)(1)321n n A n n n推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数原理分步进行:第一步,排第一位: 有 n 种选法; 第二步,排第二位: 有(n-1) 种选法; 第三步,排第三位: 有(n-2) 种选法; ┋第m 步,排第m 位: 有(n-m+1)种选法; ┋最后一步,排最后一位:有 1 种选法。
根据分步乘法原理,得出上述公式。
二、组合数公式:(1)(2)(1)!!!()!m m n nm mA n n n n m n CA m m n m1nn C推导:把n 个不同的元素任选m 个不排序,按计数原理分步进行:第一步,取第一个: 有 n 种取法; 第二步,取第二个: 有(n-1) 种取法; 第三步,取第三个: 有(n-2) 种取法; ┋第m 步,取第m 个: 有(n-m+1)种取法; ┋最后一步,取最后一个:有 1 种取法。
上述各步的取法相乘是排序的方法数,由于选m 个,就有m!种排排法,选n 个就有n!种排法。
故取m 个的取法应当除以m!,取n 个的取法应当除以n!。
遂得出上述公式。
证明:利用排列和组合之间的关系以及排列的公式来推导证明。
将部分排列问题m n A 分解为两个步骤:第一步,就是从n 个球中抽m 个出来,先不排序,此即定义的组合数问题m n C ;第二步,则是把这m 个被抽出来的球全部排序,即全排列mm A 。
根据乘法原理,m m m n n m A C A 即:(1)(2)(1)!!!()!m m n nm mA n n n n m n CA m m n m组合公式也适用于全组合的情况,即求 C(n, n)的问题。
根据上述公式,C(n, n) = n!/n!(n-n)! = n! / n!0! = 1。
这一结果是完全合理的,因为从n 个球中抽取所有n 个出来,当然只有1种方法。
三、重复组合数公式:重复组合定义:从n 个不同的元素中每次取一个,放回后再取下一个,如此连续m 次所得的组合。
重复组合数公式:1m m n n m R C (m 可小于、大于、等于n,n ≥1)推导:可以把该过程看作是一个“放球模型”:n 个不同的元素看作是n 个格子,其间一共有(n-1)块相同的隔板,用m 个相同的小球代表取m 次;则原问题可以简化为将m 个不加区别的小球放进n 个格子里面,问有多少种放法;这相当 于m 个相同的小球和(n-1)块相同的隔板先进行全排列:一共有(m+n-1)!种排法,再由于m 个小球和(n-1)块隔板是分别不加以区分的,所以除以重复的情况:m !*(n-1)! 1(1)!!(1)!m n m m n C m n四、不全相异的全排列1(1)mnn mA右边=!!(1)(1)!()!m nn n nmA nm n m 左边=右边1mmnn n A A nm证明:右边=(1)!(1)!()!m nnn n A nmn m n m左边=右边11mm n n A nA证明:右边=(1)!!()!()!mnnn n A n m n m②③左边=右边11n n nn n n nA A A证明:右边=11(1)!!(1)!!!n n nnn n A A n n n n n n n nA右边=左边11m mmn nnA A mA证明:右边=1!!(1)!!(1)!()!(1)!(1)!(1)!m n n n n m n m n n mA n m n m n m n m1!22!33!!(1)!1n n n证明:左边=(2-1)1!+(3-1)2!+(4-1)3!+…(n+1-1)n!=2!-1!+3!-2!+4!-3!…(n+1)!-n! =(n+1)!-1! =右边 六、组合恒等式的证明首先明弄清组合的两个性质公式:④⑤⑥互补性质:取出有多少种,剩下就有多少种mnmn n C C 11m m mn n n C C C根据分类计数原理:要么含有新加元素要么不含新加元素1111m mnnm n m C C n mm证明:111(1)!!()(1)!(1)!!()!11!!(1)!(1)!!()!mmnn mmnn m m n n C C n mn m m n m m n m n m n m n n C C mm m n m m n m证明:右边=1(1)!!!(1)!!()!mmn n n nn n CC n mn m m n m m n m证明:右边= (1)!!(1)!()!!()!m nn n n C m m n m m n m=左边证明:根据组合性质,左边各式可写成:1n n Cnm11m n n C m⑤1121r r r r r rr r nn C CCCC111112111232113431111111r r r r r rr r r r rr rr r r r r r r r r r rrn n n rr rn n n C C C C C C C C C C C C C C C C C左右两边相加即得:1121r r r r r r r r n n C C C C C证明:用数学归纳法证明。
1)当n=1时,0111122C C 所以等式成立。
2)假设n=k 时,(k ≥1,k ∈N*)时等式成立。
即:0122kkk k k k C C C C当n=k+1时,0121111110011211110120121()()()()()222kk k kk k k kk k k k k k k k k k k k k k k k k k k k k kC C C C C C C C C C C C C C C C C C C C C∴等式也成立由1)、2)得,等式对n ∈N*都成立。
⑥12n nnnnC CC也可用二项式定理证明(略)证明:用归纳法同上(略) 也可利用上述结论证明(略) 本课件尽量避开用二项式定理,但这比较简单,暂且用一下: 设13524n n nnnna C C Cb C C C由(1+1)n 可得:a+b=2n =2×2n-1 由(1-1)n 可得a-b=0 ∴a=b=2n-1 (不懂的去学学二项式定理)证明: 由11m mm n n C nC 可得:(还记得这个恒等式吗,不记得就回过头去看③的证明)左边012311111101231111111=n n n n n n()n 2n n n n n n n n n n n n n C C C C C C C C C C注:同时利用了⑥的结论。
⑦ 13502412n nnnnnnCCCCCC⑧ 1231232n n nnnnC CCnCn用二项式定理证明太麻烦了。
能偷懒就不要太勤快了。
观察左边的每一项,发现均是分别从m 个不同素和n 个不同元素中取r 个元素的一个组合,其各项之和就是所有取法,即所有组合数。
其所有组合数当然等于右边。
还是用偷懒法:根据第⑨的结论并结合组合的互补性质,若r=m=n 即得些结论。
⑨ 0110r r r r m nm nm nn mC CC CC CCr ≤min{m,n}⑩ 021222()()()n n n n n nC C C C。