人教版高中数学全套教案导学案142正弦余弦函数的性质

合集下载

人教版高中数学全套教案导学案高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4

人教版高中数学全套教案导学案高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4

1.4.2 正弦函数、余弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路 1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次.②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明.②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c为常数,x∈R)是周期函数,所有非零实数T都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f(x+T)=f(x),那么T就不是f(x)的周期.例如,分别取x 1=2k π+4π(k∈Z ),x 2=6π,则由sin(2k π+4π+2π)≠sin(2k π+4π),sin(6π+2π)≠sin 6π,可知2π不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x 都有f(x+120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2k π(k∈Z ,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f(x)的周期,那么对于任意的k∈Z ,k≠0,kT 也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c 为常数,x∈R),所有非零实数T 都是它的周期,由于T 可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T 是f(x)的周期,那么2T 、3T 、…呢?怎样求?实际上,由于T 是f(x)的周期,那么2T 、3T 、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.讨论结果:①略.②定义法、公式法和图象法.应用示例思路1例1 求下列函数的周期:(1)y=3cosx,x∈R ;(2)y=sin2x,x∈R ; (3)y=2sin(2x -6π),x∈R . 活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx≠3cosx,所以π不是周期.(2)教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π). 所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π;(2)周期为π;(3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f(x+T)=f(x)中,T 是相对于自变量x 而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0,x∈R )的周期为T=ωπ2.可以按照如下的方法求它的周期:y=Asin(ωx+φ+2π)=Asin [ω(x+ωπ2)+φ]=Asin(ωx+φ). 于是有f(x+ωπ2)=f(x),所以其周期为ωπ2.例如,在第(3)小题,y=2sin(21x-6π),x∈R 中,ω=21,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y=sinx 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T=ωπ2=4π.这是求简单三角函数周期的最基本方法,即公式法.变式训练1.已知f(x)是周期为5的周期函数,且f(1)=2 007,求f(11).解:因为5是函数f(x)在R 上的周期,所以f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2 007.2.已知奇函数f(x)是R 上的函数,且f(1)=2,f(x+3)=f(x),求f(8).解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x),所以f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.思路2例1 判断函数f(x)=2sin 2x+|cosx |,x∈R 的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f(x+π)=2sin 2(x+π)+|cos(x+π)|=2sin 2x+|cosx |=f(x).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x 以x+π代替后看看函数值变不变.为此需将π, 2π等都代入试一试.实际上,在f(x)=2sin 2x+|cosx |,x∈R 中,学生应看到平方与绝对值的作用是一样的,与负没有关系.因而π肯定是原函数的一个周期.变式训练1.求函数y=2sin31(π-x)的周期. 解:因为y=2sin 31(π-x)=-2sin(31x-3π), 所以周期T=6π.2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π.由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T 是正弦函数的周期,且0<T<2π,那么根据周期函数的定义,当x 取定义域内的每一个值时,都有sin(x+T)=sinx.令x=2π, 代入上式,得sin(2π+T)=sin 2π=1, 但sin(2π+T)=cosT,于是有cosT=1. 根据余弦函数的定义,当T∈(0,2π)时,cosT<1.这说明上述cosT=1是不可能的.于是T 必须等于2π,即正弦函数的最小正周期是2π.同理可证,余弦函数的最小正周期也是2π.知能训练课本本节练习解答:1.成立.但不能说12°是正弦函数的一个周期,因为此等式不是对x 的一切值都成立. 例如sin(20°+120°)≠sin20°.点评:理解周期函数概念中“当x 取定义域内每一个值时”的“每一个值”的含义. 2.(1)38π; (2)2π; (3)2π; (4)6π. 点评:利用周期函数的图象和定义求周期,体会周期与自变量x 的系数有关.3.可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域.点评:了解如何利用函数的周期性来认识周期函数的其他性质.可让学生课堂讨论,然后归纳总结.课堂小结由学生回顾本节所学的数学知识有哪些?〔周期函数的概念,最小正周期的定义,正弦、余弦函数的周期性,y=Asin(ωx+φ)(ω>0)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点)作业1.课本习题 A 组3,B 组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.(设计者:郑吉星)第2课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx,y=cosx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么;③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么;由值域又能得到什么;④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时的给予点拨、指导. 在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R 〔或(-∞,+∞)〕. 对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sinx |≤1,|cosx |≤1,即-1≤sinx≤1,-1≤cosx≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y=sinx(x∈R ),(1)当且仅当x=2π+2k π,k∈Z 时,取得最大值1. (2)当且仅当x=-2π+2k π,k∈Z 时,取得最小值-1. 对于余弦函数y=cosx(x∈R ),(1)当且仅当x=2k π,k∈Z 时,取得最大值1.(2)当且仅当x=(2k+1)π,k∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-2π,23π](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4这个变化情况也可从下表中显示出来: x-2π … 0 … 2π … π … 23π sinx -1↗ 0 ↗ 1 ↘ 0 ↘ -1 就是说,函数y=sinx ,x∈[-2π,23π].当x∈[-2π,2π]时,曲线逐渐上升,是增函数,sinx 的值由-1增大到1; 当x∈[2π,23π]时,曲线逐渐下降,是减函数,sinx 的值由1减小到-1. 类似地,同样可得y=cosx,x∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5引导学生列出下表: x-π … -2π … 0 … 2π … π cosx -1 ↗ 0 ↗ 1 ↘ 0 ↘ -1 结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k-1)π,2k π](k∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k+1)π](k∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y=sinx 为奇函数,y=cosx 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x)=-sinx,cos(-x)=cosx,∴y=sinx 为奇函数,y=cosx 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=2π对称,余弦曲线还关于点(2π,0)对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1 数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y=cosx+1,x∈R ;(2)y=-3sin2x,x∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y=cosx+1,x∈R 取得最大值的x 的集合,就是使函数y=cosx,x∈R 取得最大值的x 的集合{x|x=2k π,k∈Z };使函数y=cosx+1,x∈R 取得最小值的x 的集合,就是使函数y=cosx,x∈R 取得最小值的x 的集合{x|x=(2k+1)π,k∈Z }.函数y=cosx+1,x∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令Z =2x,使函数y=-3sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =-2π+2k π,k∈Z }, 由2x=Z =-2π+2k π,得x=-4π+k π. 因此使函数y=-3sin2x,x∈R 取得最大值的x 的集合是{x|x=-4π+k π,k∈Z }. 同理,使函数y=-3sin2x,x∈R 取得最小值的x 的集合是{x|x=4π+k π,k∈Z }. 函数y=-3sin2x,x∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B 的函数,一般通过变量代换(如设Z =ωx+φ化归为y=Asin Z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2 函数的单调性,比较下列各组数的大小: (1)sin(-18π)与sin(-10π);(2)cos(523π-)与cos(417π-). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为2π-<10π-<18π-<0,正弦函数y=sinx 在区间[2π-,0]上是增函数,所以sin(18π-)>sin(10π-). (2)cos(523π-)=cos 523π=cos 53π,cos(417π-)=cos 417π=cos 4π. 因为0<4π<53π<π,且函数y=cosx,x∈[0,π]是减函数,所以cos 4π>cos 53π,即cos(523π-)<cos(417π-). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符不同的情况,以便快速解题,如本例中,cos4π>0,cos 53π<0,显然大小立判. 例3 函数y=sin(21x+3π),x∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向: 把21x+3π看成Z ,这样问题就转化为求y=sin Z 的单调区间问题,而这就简单多了. 解:令Z =21x+3π.函数y=sin Z 的单调递增区间是 [2π-+2k π,2π+2k π]. 由-2π+2k π≤21x+3π≤2π+2k π,得35π-+4k π≤x≤3π+4k π,k∈Z . 由x∈[-2π,2π]可知,-2π≤35π-+4k π且3π+4k π≤2π,于是121-≤k≤125,由于k∈Z ,所以k=0,即35π-≤x≤3π,而[35π-,3π][-2π,2π], 因此,函数y=sin(2x +3π),x∈[-2π,2π]的单调递增区间是[35π-, 3π]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1 求下列函数的定义域: (1)y=xsin 11+;(2)y=cosx . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sinx≠0,得sinx≠-1,即x≠23π+2k π(k∈Z ). ∴原函数的定义域为{x |x≠23π+2k π,k∈Z }. (2)由cosx≥0,得2π-+2k π≤x≤2π+2k π(k∈Z ). ∴原函数的定义域为[2π-+2k π,2π+2k π](k∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2 在下列区间中,函数y=sin(x+4π4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 活动:函数y=sin(x+4π)是一个复合函数,即y=sin[φ(x)],φ(x)=x+4π,欲求y=sin(x+4π)的单调增区间,因φ(x)=x+4π在实数集上恒递增,故应求使y 随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+4π看成一个整体,其道理是一样的. 解:∵φ(x)=x+4π在实数集上恒递增,又y=sinx 在[2k π-2π,2k π+2π](k∈Z )上是递增的,故令2k π-2π≤x+4π≤2k π+2π. ∴2k π-43π≤x≤2k π+4π. ∴y=sin(x+4π)的递增区间是[2k π-43π,2k π+4π]. 取k=-1、0、1分别得[411π-,47π]、[43π-,4π]、[45π,49π], 对照选择肢,可知应选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断.变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=2π B.T=1,θ=π C.T=2,θ=π D.T=1,θ=2π 解:T=ππ2=2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sin θ,要使上式取得最大值,可取θ=2π. 答案:A。

【新导学案】高中数学人教版必修四:142《正弦函数余弦函数的性质》.doc

【新导学案】高中数学人教版必修四:142《正弦函数余弦函数的性质》.doc

1.4.2《正弦函数余弦函数的性质》导学案【学习目标】:会根据图象观察得出止弦函数、余弦函数的性质;会求含有sin x, cos x 的三角式的性质;会应用正、余弦的值域來求函数y = asm x + b (a 主0)和函数y = a cos 2x + bcosx + c (a 主0) 的值域。

【重点难点】止弦函数和余弦函数的性质及简单应用。

【学法指导】探究正弦函数、余弦函数的周期性,周期,最小正周期;会比较三角函数值的大小,会求 三角函数的单调区间.【知识链接】 1. _____________________________________________________________________________ 叫做周 期函数, . • ________________________________ 叫这个函数的周期.2. ________________________________________ 叫做函数的最小正周期.3. 正弦函数,余弦函数都是周期函数.,周期是________________________ ,最小正周期是 _____________ .4. 由诱导公式 -可知正弦函数是奇函数.由诱导公式____________________________ 可知,余弦函数是偶函数.5. 止眩函数图象关于 _______________________ 对称,止弦函数是 ________________ .余弦函数图象关于 _________________ 对称,余弦函数是 _________________________ ・6. __________________________________ 正眩甬数在每一个闭区间 上都是增函数,其值从一1增大到1;在每一个闭区间 __________________ 上都是减函数,其值从1减少到一1.7. __________________________________ 余弦函数在每一个闭区间 上都是增函数,其值从一1增大到1;在每一个闭区间 _______________ 上都是减函数,其值从1减少到一 1.&正弦函数当且仅当x= ________________ 时,取得最大值1,当且仅当庐 ________________________ 时取得最 小值一1.9. 余弦函数当且仅当x= _______________ 时取得最大值1;当且仅当沪 _______________ 时取得最小值一 1.10. __________________________________________________ 正弦函数y = 3sinx 的周期是 . ]1.余弦函数y = cos2x 的周期是 ____________________________________ .12. ________________________________ 函数尸sinx^X 的最大值是 ___ ,最小值是 ,7=-3COS 2*的最大值是_______________ ,最小值是 .13. 尸-3cos2才取得最大值吋的自变量x 的集合是 _____________________________ .14. _______________________________________________________ 把下列三角函数值从小到大排列起来为: ____________________________________________________________ . ____________ 9 4 sin —龙 55 , 一 cos —兀 4 .32 sin —兀 5 5 COS ——71 12 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下而的表格屮【学习过程】例1、求函数尸sin(2x+彳)的单调增区间. 解:变式训练1.求函数y=sin(・2x+兰)的单调增区间3解:例2:判断函数/(x) = sin(-x + —)的奇偶性解:变式训练2. f(x) = lg(sinx +V1 + sin2 x) 解:例3••比较sin250\ sin260°的大小解:变式训练g罟®罟解:【学习反思】1、数学知识:2、数学思想方法:【基础达标】一、选择题1.函数^ = V2sin2x的奇偶数性为()•A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数jr2.下列函数在[亍,兀]上是增函数的是()A. y=sinxB. y=cosxC. y=sin2xD. >—cos2x3•下列四个函数中,既是0,—上的增函数,又是以兀为周期的偶函数的是().\ L)A. y = |sin x\B. y = sin 2x|C. y = |cosxD. y = cos 2x|二、填空题4.把下列各•等式成立的序号写在后面的横线上。

高一数学人教A版必修4学案:142正弦函数、余弦函数的性质二含答案1.doc

高一数学人教A版必修4学案:142正弦函数、余弦函数的性质二含答案1.doc

1.4.2正弦函数、余弦函数的性质(二)[学习目标]1•掌握y=sin x, y=cos x的最大值与最小值,并会求简单三角函数的值域和最值2掌握j;=sinx, j/=cosx的单调性,并能利用单调性比较大小.3.会求函数y=Asin(^x+(p)及y=A cos(ex+卩)的单调区间.戸预习导学全挑战自我,点点落实______________________________________________________________[知识链接]1.怎样求函数fix)=Asin(cox+(/))(或./(x)=/cos(亦+卩))的最小正周期答由诱导公式一知:对任意xGR,都有Asin[(a)x+(p) + 2TI]=Asin(cox+(p),所以./W=A sin(cox+(p)(co0)是周期函数,方就是它的一个周期.由于兀至少要增加两个单位,/(X)的函数值才会重复出现,因此,两是函数/(x)=/sin(ex+°)的最小正周期.同理,函数/(x)=/cos(砂+卩)也是周期函数,最小正周期也是壽.2.观察正弦曲线和余弦曲线,正弦、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?答正弦、余弦函数存在最大值和最小值,分别是1和一1.[预习导引]正弦函数、余弦函数的性质函数y=sinx y=cosx图象-i-TT \J/定义域R R值域[-1,11[-1,11对称性对称轴:兀=航+畝WZ);对称中心:伙兀,0)伙EZ)对称轴:x=k7t(k^Z);对称中心:仏+号’0)所以Asin=Asin(cox+(p),(©)奇偶性 奇函数 偶函数 周期性最小正周期:2兀最小正周期:2K单调性JTTT在[一㊁+2ht,㊁+2加]伙GZ )上单调递增;在奇+2fac,夢+在[—TT +2E, 2E ]伙WZ )上单调递增;在[2/CTT , n + 2/m ] 伙WZ )上单调递减最值71 当 X —2 + 2加伙GZ)时,Jniax =1;当x=—号+2加伙丘Z)时'J^min — — 1当x=2刼伙WZ)时,亦=1;当 X = 7t + 2kjt(k^Z)时,加n =-1歹课堂讲义 /重点难点,个个击破 _____________________________________________________________要点一 求正弦、余弦函数的单调区间兀 则y =—2si n z .因为z 是x 的一次函数,所以要求y=-2sinz 的递增区间, 即求sinz 的递减区间, 即2航+号壬冬2加+守伙丘2). TT兀 3TT•: 2A TT +,W X —玄冬2航十㊁伙G Z ),3兀 7兀 2£兀+才WxW2加十才伙G Z ),求函数y=2sin卜x)的单调递增区间. 例1 的递增区间为2&兀+乎,2£兀+晋伙UZ).规律方法用整体替换法求函数y=Asin(cox+(p)或y=Acos(ojx+(p)的单调区间时,如果式子中X的系数为负数,先利用诱导公式将兀的系数变为正数再求其单调区间.再将最终结果写成区间形式.跟踪演练1求下列函数的单调递增区间:(l”=l+2sin(£-";(2)尹=lo#cos x.令u=x-^则根据复合函数的单调性知,所给函数的单调递增区间就是^=sin U 的单调递 减区间,即2加+㊁尹仇GZ),ITJr3兀亦即2刼+㊁Wx —&W2A TT +亍伙WZ).2 S 亦即2£兀+尹冬兀冬2加+尹伙丘乙),故函数y=l+2sin(?—x)的单调递增区间是2加+|兀,2刼+刍:伙WZ). 兀 兀 (2)由 cosx>0,得 2«兀一㊁<x<2hr+㊁,k^Z.・・・*< 1,・・・函数尸log|cos X 的单调递增区间即为 w = cosx, x^\2kit —y 2航+办圧Z)的递减区间,故函数J*=log|cosx 的单调递增区间为2H, 2加+引伙GZ).要点二正弦、余弦函数的单调性的应用例2利用三角函数的单调性,比较下列各组数的大小.(2)sin 196。

必修四 1.4.2 正弦函数、余弦函数的性质 导学案

必修四 1.4.2 正弦函数、余弦函数的性质 导学案

1.4.2正弦函数、余弦函数的性质【课标要求】1.了解三角函数的周期性,会求一些三角函数的周期.2.借助图象理解正弦函数、余弦函数的性质,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【考纲要求】【学习目标叙写】1.通过自主学习,会求一些三角函数的周期2.通过合作交流,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【使用说明及方法指导】1.限时10—15分钟,独立完成预习案内容,书写规范。

2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑。

【预习案】1.sin(α+2kπ)=______,cos(α+2kπ)=_______.(k∈Z)2.正弦函数y=sin x,x∈[0,2π]的五个关键点为___________________________________.3.余弦函数y=cos x,x∈[0,2π]的五个关键点为【探究案】探究一:正、余弦函数的周期性研究正、余弦函数的周期性,可根据定义f(x+T)=f(x),T一般为最小正周期例一求下列函数的周期:(1)y=sin 2x+3; (2)y=2cos(13x-π4); (3)y=|sin x|.探究二:正、余弦函数的奇偶性正、余弦函数的奇偶性,要根据奇偶函数的定义、性质和三角诱导公式来判定.例二判断下列函数的奇偶性:(1)y=sin x+tan x;(2)f(x)=sin(3x4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x; (4)f (x )=1-cos x +cos x -1.【拓展1】 若本例(4)改为f (x )=1-cos x ,其奇偶性如何?探究三:正、余弦函数的单调性要结合正、余弦函数的图象和周期性,求解单调区间.例三 求函数y =2sin(π4-x )的单调区间.【拓展1】 求函数y =2sin(x +π4)的单调区间.探究四:正、余弦函数的定义域、值域及最值此类问题主要利用它们的有界性:|sin x |≤1,|cos x |≤1(x ∈R).例四 (1)求函数y =2sin(x +π3),x ∈[π6,π2]的值域;(2)求函数y =11+sin x的定义域、值域和最值.【拓展1】 求函数y =cos2x +2sin x -2,x ∈R 的值域.【二次备课】。

人教版数学必修四1.4.2《正弦、余弦函数的性质》教案

人教版数学必修四1.4.2《正弦、余弦函数的性质》教案

1.4.2正弦、余弦函数的性质一、教材分析1、教材的地位和作用本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,结合正弦、余弦函数图象对三角函数又一深入探讨。

周期性是三角函数的一个重要性质,是研究三角函数的其它性质的基础,是函数性质的重要补充,通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础。

所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用。

2、教学重点和难点重点:周期函数的定义和正弦、余弦函数的周期性.难点:周期函数定义及运用定义求函数的周期.二、目标分析学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性;2.会求一些简单三角函数的周期。

(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sinx图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sinx的周期性,通过类比研究余弦函数y=cosx的周期性。

(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力。

四、教学过程附:板书设计1.4.2正弦、余弦函数的性质小组成员: 发言人: 协作探究1:(分四人一组进行讨论) 判断下列各题是否正确,并说明理由:1.因为sin()sin 424πππ+=,所以2π是sin y x =的周期.判断: 分析:2.周期函数的周期唯一. 判断: 分析:3.函数f(x)=5是周期函数. 判断: 分析:4.余弦函数y=cosx 是周期函数,最小正周期是π4. 判断: 分析:协作探究2:(分四人一组进行讨论)(1)分别画出下列函数的图象并求函数的最小正周期T 。

[教案精品]新课标高中数学人教a版必修四全册教案142正弦、余弦函数的性质(2).doc

[教案精品]新课标高中数学人教a版必修四全册教案142正弦、余弦函数的性质(2).doc

1.4. 2 (2)正弦、余弦函数的性质(二)教学目的:知识目标:要求学生能理解三角函数的奇、偶性和单调性;能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。

德育目标:激发学生学习数学的兴趣和枳极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事 求是的科学学习态度和勇于创新的精神。

教学重点:正、余弦函数的奇、偶性和单调性;教学难点:正、余弦函数奇、偶性和单调性的理解与应用教学过程:一、 复习引入:偶函数、奇函数的定义,反映在图彖上,说明函数的图彖有怎样的对称性呢?二、 讲解新课:1. 奇偶性请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数的图形当自变量取一对相反数时,函数y 取同一值。

7T \ 7T \ 7T 7T例如:f (- — ) = —, f (—)=—,即 f (- 一 )=f (—); .............. 由于 COS (―X )二COSX f (-X )= f (x). 3 2 3 2 3 3以上情况反映在图象上就是:如果点(x,y)是函数 尸cosx 的图象上的任一点,那么,与它关于y 轴的对称点(-x, y)也在函数y 二cosx 的图象上,这时,我们说函数y=cosx 是偶惭数。

(2)正弦函数的图形观察函数y=sinx 的图象,当自变量取一对相反数吋,它们对应的函数值有什么关系? 这个事实反映在图象上,说明函数的图象有怎样的対称性呢?函数的图象关于原点对称。

也就是说,如果点(x, y)是函数y=sinx 的图象上任一点,那么与它关于原点对称的点(-x, -y) 也在函数y 二sinx 的图象上,这时,我们说函数y 二sinx 是奇函数。

2. 单调性从-咲圧[誇乎]的图象上可看出:7T 7T当E--,-]时,曲线逐渐上升,sinx 的值由一1增大到1. 2 27T 3兀 当圧[-9二丝]时,曲线逐渐下降,siM 的值由1减小到一1. 2 2结合上述周期性可知:rr -+2A7T ] (&WZ)上都是增函数,其值从一1增大到1; 27T S7T3* 亍+切](心)上都是减函数,其值从】减小到72斤兀](WWZ)上都是增函数,其值从一1增加到1;在每一个闭区间[2&乃,(2R+1)乃](Aez)上都是减函数,其值从1减小到一1. 3. 有关对称轴观察正、余弦函数的图形,可知jr 正弦函数在每一个闭区间[一一+2&乃, 2 在每一个闭区间 余弦函数在每一个闭区间[(2«—1)兀y二sinx的对称轴为x=k兀——kez y二cosx的对称轴为x= k7l2练习lo (1)写出函数y = 3sin2x的对称轴;(2) y = sin(x + —)的一条对称轴是(C )7T(A) x 轴,(B) y 轴,(C)直线x = l, (D)直线兀二一4思考:P46面11题。

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(1)导学案 新人教A版必修4(2

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(1)导学案 新人教A版必修4(2

高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)导学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)导学案新人教A版必修4的全部内容。

1。

4。

2 正余弦函数的性质(1)【学习目标】1.了解周期函数及最小正周期的概念。

2.会求一些简单三角函数的周期.【学习重点】理解周期函数的意义会求周期函数的周期【基础知识】函数 x x k y sin )2sin(=+=π,说明当自变量x 的值增加π2的整数倍时,函数的值重复出现,数学上用周期来刻画这一变化规律.1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x+T)=f (x),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

问题:(1)对于函数sin y x =,x R ∈有2sin()sin 636πππ+=,能否说23π是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)(3)若函数()f x 的周期为T ,则kT ,*k Z ∈也是()f x 的周期吗?为什么?(是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+)2.一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠)的周期2||T πω= 说明:①周期函数x定义域M ,则必有x+T M , 且若T>0则定义域无上界;T<0则定义域无下界; ②“每一个值”只要有一个反例,则f (x)就不为周期函数(如f (x 0+t)f (x 0)) ③T 往往是多值的(如y=sinx 2,4,…,—2,—4,…都是周期)周期T 中最小的正数叫做f(x)的最小正周期(有些周期函数没有最小正周期)y=sinx, y=cosx 的最小正周期为2 (一般称为周期)从图象上可以看出sin y x =,x R ∈;cos y x =,x R ∈的最小正周期为2π;判断:是不是所有的周期函数都有最小正周期? (()f x c =没有最小正周期)3.求周期的方法:(1)公式法:一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠)的周期2||T πω= (2)定义法:f (x+T )=f (x )(3)图像法:如果函数的图像有一定的变化规律,在某一范围内函数图像重复出现,并且图像一方(左或者右)无限延伸。

高中数学必修四1.4.2正弦函数、余弦函数的性质(一)导学案

高中数学必修四1.4.2正弦函数、余弦函数的性质(一)导学案

高中数学必修四1.4.2正弦函数、余弦函数的性质(一)导学案1.4.2正弦函数、余弦函数的性质(一)【学习目标】1.理解周期函数、周期和最小正周期的定义;2.掌握三角函数的奇偶性和对称性问题.预习课本P34---36页的内容,完成下列问题【新知自学】知识回顾:1、函数的性质包括:定义域、值域、解析式、单调性、奇偶性、等等2、正弦函数的定义:余弦函数的定义:新知梳理:1.周期函数定义:一般地,对于函数f(x),如果存在一个___________,使得当x取定义域内的每一个值时,都有:____________,那么函数f(x)就叫做_________,非零常数T叫做这个函数的_______.讨论展示:①对于函数,,有,能否说是它的周期?②若函数的周期为,则(其中也是的周期吗?为什么?③最小正周期:在周期函数所有的周期中,如果存在一个______________,这个_____________就叫做这个周期函数的最小正周期;并不是所有的周期函数都有最小正周期。

④正弦函数y=sinx,余弦函数y=cosx都是周期函数()是他们周期,是最小正周期。

2.奇偶性:①函数奇偶性的概念:②由知,正弦函数y=sinx是奇函数;由知,余弦函数y=cosx是偶函数;3.对称性:由正弦函数的奇偶性知道,正弦函数y=sinx的图像关于________成中心对称图形,除此之外,y=sinx的图像关于每一个点_______________都成中心对称;关于每一条直线_____________成轴对称;由余弦函数的奇偶性知道,余弦函数y=cosx的图像关于________成中心对称图形,除此之外,y=cosx的图像关于每一个点_______________都成中心对称;关于每一条直线_____________成轴对称;对点练习:1.下列函数为奇函数的是()A.y=x2B.y=sinxC.y=cosxD.y=|sinx|2.函数的周期是_______________.3.函数的定义域:4.指出下列函数的周期(1);【合作探究】典例精析:例1.写出下列函数的周期:(1)变式练习1:设是R上的奇函数,且,当时,,=变式练习2:定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,当时,,=;例2.下列直线中,是函数的对称轴的是()(A)(B)(C)(D)变式练习3:函数的图象的一条对称轴方程是()A.B.C.D.规律总结:结论:如果函数对于,那么函数的周期T=2k;如果函数对于,那么函数的对称轴是例3.已知函数的定义域是,求的定义域【课堂小结】【当堂达标】1.函数y=sin(x+3π2)的图象是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x=-32π对称2.函数的最小正周期为.3.判断函数的奇偶性:(1)f(x)=3sin2x;(2)f(x)=sin().4.求函数的定义域【课时作业】1.下列函数中,周期为的是()A.B.C.D.2.下列函数中是奇函数的是()A.y=-|sinx|B.y=sin(-|x|)C.y=sin|x|D.y=xsin|x|3.已知函数的最小正周期为,则该函数的图象()A.关于点对称B.关于直线对称C.关于点对称D.关于直线对称函数4.函数的定义域是______.5.的最小正周期为,则=______.6.函数的定义域是__________.7.给出下列命题:①存在实数x,使sinxcosx=1;②存在实数x,使sinx+cosx=3;③是偶函数;④()是y=tanx的对称中心其中正确的是______.【延伸探究】1、函数的最小正周期为()(C)(D)2、已知函数的最小正周期满足,求正整数的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.2正弦、余弦函数的性质教学目标: 1、知识与技能掌握正弦函数和余弦函
数的性质. 2、过程与能力目标通过引导学生观察正、余弦函数的图像,从而发现正、余弦函数的性质,加深对性质
的理解.并会求简单函数的定义域、值域、最小正周期和单调区间. 3、情感与态度目标渗透数形结合思想,培养学生辩证唯物主义观点.
、偶性和单调性。

教学重点:正、余弦函数的周期性;正、余弦函数的奇正、余弦函数周期性的理解与应用;正、余弦函数奇、偶性和单调性的理解与应教学难点:用。

)正弦、余弦函数的性质(一
教学过程:一、复习引入:1.问题:(1)今天是星期一,则过了七天是星期几?过了十四天呢?……
2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?(2.观察正(余)弦函数的图象总结规律:
?3???3自变量???????02?2x2222:][来源函数值00000111??1xsin y
–1
x?????????52?2?5O ?221?–
,Z,X,X,K][科来源学f(x)?sinx性质如下:正弦函数
(观察图象) 1?正弦函数的图象是有规律不断重复出现的;
2?规律是:每隔2?重复出现一次(或者说每隔2k?,k?Z重复出现)
3?这个规律由诱导公式sin(2k?+x)=sinx可以说明来:ZXXK]结论:象这样一种函数叫做周期函数。

文字语言:正弦函数值按照一定的规律不断重复地取得;
???Zk?2k x)?sinx?2?kf(x)x?2xf(?k)sin(.时,)总有增加符语言:当(?k2x时,正弦函数
的值又重复出现;增加)当自变量1(也即:
?x)?sin2kxsin(x?恒成立。

,(2)对于定义域内的任意余弦函数也具有同样的性质,这种性质我们就称之为周期性。

二、讲解新课:
f x),如果存在一个非零常数T,使得当x1.周期函数定义:对于函数取定义域内的每(f xf xf x)就叫做周期函数,非零常数(T)那么函数一个值时,都有:叫做这个(+T)=(函数的周期。

????22Rx?)?sin(?sinx?siny,有,能否说问题:(1)对于函数是它的周期?
3663?x?Rk2k?Z xsiny?是不是周期函数,如果是,,)正弦函数周期是多少?(,(2k?0)且*kT Z?kf()x)f(x T的周期,则吗?为什么?,的周期为(3)若函数也是
f(x)?f(x?T)?f(x?2T)??f(x?kT))(是,其原因为:
2、说明:1?周期函数x?定义域M,则必有x+T?M, 且若T>0则定义域无上界;T<0则定义域无下界;
f xf xf x))?)就不为周期函数(如 ( 2?“每一个值”只要有一个反例,则((+t)00 3?T 往往是多值的(如y=sinx 2?,4?,…,-2?,-4?,…都是周期)周期T中最小f x)的最小正周期(有些周期函数没有最小正周期)( 的正数叫做y=sinx, y=cosx的最小正周期为2?(一般称为周期)
?2Rx?x?R x?sinyxcosy?;;的最小正周期为,,从图象上可以看出
f(x)?c没有最小正周期)(判断:是不是所有的周期函数都有最小正周期?
3、例题讲解
?1)??2sin(xyx2sincosxy??y3,)②(求下列三角函数的周期:例1 ①362x?R.
?)?23cosx3cos(x?,解:(1)∵?x?2Rx?xxy?3cos的值才能重复出现,,∴自变量只要并且至少要增加到,函数
?2Rx?x3cosy?.所以,函数,的周期是
??)?sin?2x2(sin(2x?2)?sinx,2()∵?x?R x?x xsiny?2的值才能重复出现,,,函数只要并且至少要增加到∴自变量
?Rx?x2?siny.的周期是,所以,函数
???111??)?]?2sin(x?2sin(x?2sin[(x??)?2),)∵(3
626226?x?R x?x x?sin2y的值才能重复出现,,∴自变量,只要并且至少要增加到函数
?Rx?xsin2y?.的周期是,所以,函数练习1。

求下列三角函数的周期:
??x) 2? y=cos2x 3?1? y=sin(x+ y=3sin(+)
253? 2 (z) f??+z)=sinz 即:f+z)=解:1?令z= x+( 而 sin(23?? 2)?[(x++
∴周期T=2? ]=ff(x+) 33f x)=cos2x=cosz=cos(z+2?)=cos(2x+2?()=cos[2(x+?)]
z=2x 2?令∴f xf x) ∴T=?)=?即:(( +[来源:]??xx x)=3sinz=3sin(z+2?)=3sin(+(+2?+ 则:f) 令 3?z=2255??4x?f x+4?=3sin() ∴T=4?)= (?25思考:从上例的解答过程中归纳一下这些函数的周期与解析式中的哪些量有关?
??????x?R,x?cos(,)y?Asin(?xA)y?A(其中及函数一般结论:说明:(1)函数,?2?0?0?A?T;)
的周期为常数,且,??1?x0?R?)?2sin(?xy?)?2xy?sin()?xy?3cos(.;②,(2)若;,
如:①③26则这三个函数的周期又是什么??2R?x?????T)xAy?cos(y?Asin(x??),的周期及函数一般结论:函数?||??)+2cos(3x-) 2?y=|sinx| 1思考:求下列函数的周期:?y=sin(2x+46???2) 最小正周期T=? y=2cos(3x-) 最小正周期y解:1? =sin(2x+ T= 2121436∴T为T ,T的最小公倍数2?∴T=2?
? T=?作图
21 2
-面P36三、巩固与练习
四、小本节课学习了以下内容:结:周期函数的定义,周期,最小正周期
五、课后作业:
正弦、余弦函数的性质(二)
教学过程:
一、复习引入:
偶函数、奇函数的定义,反映在图象上,说明函数的图象有怎样的对称性呢?
二、讲解新课:
1.奇偶性
请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?
(1)余弦函数的图形
当自变量取一对相反数时,函数y取同一值。

????11)=,f()= ,即f(-例如:f(-)=f();……由于cos(-x)=cosx ∴
333322(x).
ff(-x)=,,那么x,y)是函数y=cosx的图象上的任一点以上情况反映在图象上就是:如果点(是偶y=cosxy=cosx的图象上,这时,我们说函数轴的对称点与它关于y(-x,y)也在函数函数。

(2)正弦函数的图形
的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?观察函数y=sinx说明函数的图象有怎样的对称性呢?函数的图象关于原点对这个事实反映在图象上,称。

那么与它关于原点对称的点也就是说,如果点(x,yy=sinx的图象上任一点,)是函数的图象上,这时,我们说函数y=sinx是奇函数。

y=sinx(-x,-y)也在函数
2.单调性??3,xxy]的图象上可看出:∈[-从sin=,22??xx的值由-1增大到,]时,曲线逐渐上升,sin当∈[-1. 22??3xx的值由1减小到-]时,曲线逐渐下降,sin当1.
∈[,22结合上述周期性可知:
??kkk∈Z)](π,+正弦函数在每一个闭区间[-2上都是增函数,其值从-+2π
22??3kkk∈Z)上都是减函数,π]+在每一个闭区间[2(π,+2;1增大到122其值
从1减小到-1.
kkk∈Z)上都是增函数,其值从-1增加到([余弦函数在每一个闭区间(21)-π,2π]1;kkk减小到1上都是减函数,其值从Z)∈(]π1)+(2,π2在每一个闭区间[
-1.
3.有关对称轴
观察正、余弦函数的图形,可知
???k?k k∈Z
∈y=sinx的对称轴为x=Z y=cosx的对称轴为x= k2y?3sin2x的对称轴;)写出函数练习1。

(1?)x?y?sin(的一条对称轴是( C (2))4????x?x直线(A) x轴,(B) y轴, (C) 直线, (D) 44
题。

11思考:P46面
例题讲解4.判断下列函数的奇偶性例1
1?sinx?cosx2);?sinx)?lg(sinx?1(fx;?(fx) (1) (2)
cosxsinx?1?
例2 函数f(x)=sinx图象的对称轴是;对称中心是.
例3.P38面例3
例4 不通过求值,指出下列各式大于0还是小于0;
??2317??)?cos()??cos()sin(sin(?)??①②510418?1)??y2sin(x 例5 求函数的单调递增区间;32?1??]????ysin(x)x[2,2思考:你能求的单调递增区间吗?23
:习练2P40面的练习,Z,X,X,K],:[来源学科
正弦、余弦函数的性质结:本节课学习了以下内容:三、小
1.单调性
2.奇偶性
3.周期性
四、课后作业:。

相关文档
最新文档