最新1.4.2正弦函数、余弦函数的性质导学案

合集下载

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。

正弦函数、余弦函数性质二

正弦函数、余弦函数性质二

1.4.2 正弦函数、余弦函数的性质(二)【一、学习目标】1、了解周期函数的概念;2、掌握正、余弦函数的性质,会求正、余弦函数的周期、奇偶性、单调性、最值等。

【二、学法指导】1、熟读教材P34-40,用红笔勾画,并对重要部分二次阅读,并回答提出的问题;2、限时完成导学案中合作探究部分,书写规范;3、激情投入,高效学习,培养良好的学习思维品质。

【三、问题导学】1. sin y x =和cos y x =的对称轴,对称中心分别是什么?_____________________________________________________________________________________2.如何把函数sin()y A x ωϕ=+平移成奇函数或偶函数?_____________________________________________________________________________________【四、尝试训练】1.求函数4cos()3y x π=+的对称轴及对称中心。

2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A .关于点0π⎛⎫ ⎪3⎝⎭,对称 B .关于直线x π=4对称C .关于点0π⎛⎫ ⎪4⎝⎭,对称D .关于直线x π=3对称 3.把函数4cos()3y x π=+的图象向左平移ϕ个单位,所得的函数为偶函数,则ϕ的最小值是( ) A .3π4 B .3π2 C .3π D .3π5 4.设函数x b x a x f cos sin )(-=图象的一条对称轴方程为4x π=, 则,a b 满足( ) A . 0a b += B . 0a b -= C .1ab = D .1ab =-【五、例题分析】例1、 判断下列函数的奇偶性 )sin 1lg(sin )3(1sin 1cos )2(sin )1(22x x y x x y x x y ++=--==例2、求下列函数的最值,并求出相应的自变量的x 集合 )3cos(2)3(2sin 3)2(1cos )1(π---=-=+=x y x y x y例3、求下列函数的值域 3sin 3sin )3(5cos cos )2(cos log )1(25+-=+-==x x y x x y xy例4、利用三角函数的单调性,比较下列各组数的大小 )417cos()523cos()2()10sin()18sin()1(ππππ----与与例5、求下列函数的单调区间 )431cos(log )3()6cos(21)2()24sin()1(21πππ+=--=-=x y x y x y的值。

必修四 1.4.2 正弦函数、余弦函数的性质 导学案

必修四 1.4.2 正弦函数、余弦函数的性质 导学案

1.4.2正弦函数、余弦函数的性质【课标要求】1.了解三角函数的周期性,会求一些三角函数的周期.2.借助图象理解正弦函数、余弦函数的性质,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【考纲要求】【学习目标叙写】1.通过自主学习,会求一些三角函数的周期2.通过合作交流,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【使用说明及方法指导】1.限时10—15分钟,独立完成预习案内容,书写规范。

2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑。

【预习案】1.sin(α+2kπ)=______,cos(α+2kπ)=_______.(k∈Z)2.正弦函数y=sin x,x∈[0,2π]的五个关键点为___________________________________.3.余弦函数y=cos x,x∈[0,2π]的五个关键点为【探究案】探究一:正、余弦函数的周期性研究正、余弦函数的周期性,可根据定义f(x+T)=f(x),T一般为最小正周期例一求下列函数的周期:(1)y=sin 2x+3; (2)y=2cos(13x-π4); (3)y=|sin x|.探究二:正、余弦函数的奇偶性正、余弦函数的奇偶性,要根据奇偶函数的定义、性质和三角诱导公式来判定.例二判断下列函数的奇偶性:(1)y=sin x+tan x;(2)f(x)=sin(3x4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x; (4)f (x )=1-cos x +cos x -1.【拓展1】 若本例(4)改为f (x )=1-cos x ,其奇偶性如何?探究三:正、余弦函数的单调性要结合正、余弦函数的图象和周期性,求解单调区间.例三 求函数y =2sin(π4-x )的单调区间.【拓展1】 求函数y =2sin(x +π4)的单调区间.探究四:正、余弦函数的定义域、值域及最值此类问题主要利用它们的有界性:|sin x |≤1,|cos x |≤1(x ∈R).例四 (1)求函数y =2sin(x +π3),x ∈[π6,π2]的值域;(2)求函数y =11+sin x的定义域、值域和最值.【拓展1】 求函数y =cos2x +2sin x -2,x ∈R 的值域.【二次备课】。

1.4.2正弦函数、余弦函数的性质(1)(第二课时)09

1.4.2正弦函数、余弦函数的性质(1)(第二课时)09
2015-2016 长丰一中 高一数学必修 4 导学案
编号:09
班级:
小组:
姓名:
组内评价:
教师评价:
1.4.1 正弦函数、余弦函数的性质(1)
编制人:沈晶 牛大超 罗有柱
【使用说明及学法指导】 1.先精读一遍教材 P34—P35,用红色笔进行勾画,再针对导学案“预习自学”部分二次阅读教材 并回答提出的问题,时间不超过 50 分钟; 2.限时、认真、 独立完成合作探究设置的问题, 对加★部分的题目为选做题, 没加★的题目都要做。 3.在预习,做练习过程中找出自己的疑惑和需要讨论的问题准备课堂上讨论质疑。 【学习目标】 1、 了解周期现象,进一步理解周期函数与最小正周期的含义; 2、 能熟练地求简单三角函数的周期;会求简单抽象函数的周期; 【学习重点】周期函数的定义以及利用定义求简单函数的周期 【学习难点】理解周期函数的概念以及抽象函数求周期 一、预习自学 1、现实生活中的许多变化都是有循环往复、周而复始的现象,这种现象称之为周期现象。例如单 摆运动、四季变化等,你还能举出几个例子吗? 2、判断下列现象是否是周期现象,若不是说说理由: (1)十字路口交通信号灯的变化 (2)某同学每天早晨上学的时间 (3)地球上很多地区发生的地震 (4)钟表的分针的运动
③通过阅读课本,你应该知道正弦函数和余弦函数都是周期函数,但课本上只说明了正弦函数 为什么是周期函数,而没有说明余弦函数为什么是周期函数,你能说明下吗? ④正弦函数和余弦函数的周期分别是 、 。
⑤等式 sin(30º+120º)=sin30º是否成立?如果这个等式成立, 能否说 120º是正弦函数 y sin x ,
3、已知周期函数 f ( x) 是奇函数,6 是 f ( x) 的一个周期,且 f (1) 1 ,求 f (5) 的值。

1.4.2 正弦函数、余弦函数的性质(二)

1.4.2 正弦函数、余弦函数的性质(二)

跟踪训练
2.判断下列函数的奇偶性: 2x+5π; (1)f(x)= 2sin 2 (2)f(x)= 2sin x-1.
解析: (1)∵函数的定义域为(-∞,+∞),即定义域关于 原点对称, 2x+5π= 2cos 2x, 且 f(x)= 2sin 2 显然有 f(-x)= 2cos(-2x)= 2cos 2x=f(x), 2x+5π是偶函数; ∴函数 f(x)= 2sin 2
-π+2kπ,π+2kπ ,(k∈Z) 增函数 2 2 (k∈Z) 减函数 增函数 减函数
π+2kπ,3π+2kπ, 2 2
思考应用 1.正弦函数、余弦函数是单调函数吗?能否说“正弦
函数在第一象限是增函数”?
解析:正弦函数、余弦函数都不是定义域上的单调函
数.“正弦函数在第一象限是增函数”也是错误的,因为
2.使 y=sin x 和 y=cos x 均为减函数的一个区间是( 0,π π,π A. B. 2 2 π,3π 3π,π C. D. 2 2
)
解析:由y=sinx,x∈[0,2π]
与y=cos x,x∈[0,2π]的图象知:y
=sin x和y=cos x的均为减函数的
三角函数的奇偶性 判断下列函数的奇偶性:
(1)f(x)=sin4x-cos4x+cos 2x;
1-sin x-cos x (2)f(x)= . 1+sin x+cos x
分析:本题考查函数的奇偶性问题. 解析: (1)∵函数的定义域为(-∞,+∞),即定义域关 于原点对称, 且f(-x)=sin4(-x)-cos4(-x)+cos(-2x)=sin4x-cos4x +cos 2x=f(x),
基础梳理 一、正弦函数和余弦函数的单调性

1.4.2 正弦、余弦函数的性质(一)

1.4.2 正弦、余弦函数的性质(一)
2) y = sin 2 x 1
2π T= = 4π 3) y = 2 sin( x − ), x ∈ R 1 2 6 2 函数y = A sin(ω x + ϕ )及y = A cos(ω x + ϕ ), x ∈ R 2π ( A, ω , ϕ为常数, A ≠ 0, ω > 0)的周期T = ω
π
2π T= =π 2
课堂小结: 课堂小结:
1. 定义法 公式法: 2. 公式法:
周期求法
一般地, 一般地,函数 y=Asin(ωx+φ) 及 y=Acos(ωx+φ) (其中A ,ω,φ为常数, 为常数, 的周期是: 且 A≠0, ω≠0 )的周期是:
T= 2π
ω
(ω ≠ 0)
1、求下列函数的周期或函数值 、
利用正弦函数和余弦函数的图象, 例2.利用正弦函数和余弦函数的图象, 利用正弦函数和余弦函数的图象 求满足下列条件的x的集合 的集合: 求满足下列条件的 的集合:
2 (2) cos x ≤ 1 ,x ∈ (0, 5π ) (1) sin x ≥ 2 2 2
例3.求下列函数的定义域: 3.求下列函数的定义域: 求下列函数的定义域
π
2
,1 )
最低点: 最低点: ( 3π
2
,−1)
轴的交点: 与x轴的交点: (0, 0) (π , 0) (2π , 0) 轴的交点
y
-
y = cos x
x ∈ [0, 2π ]
1-
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
的图象上,关键点: 在函数 y = cos x, x ∈ [0, 2π ] 的图象上,关键点: 最高点: 最高点: (0,1) (2π ,1) 轴的交点: 与x轴的交点: ( 轴的交点 最低点: 最低点:

1.4.2正余弦函数的性质学案

1.4.2正余弦函数的性质学案

2012——2013学年度数学必修四导学案 制作人:数学组 班级: 姓名:共 1 页§1.4.2正弦函数、余弦函数的性质【学习目标】1、 理解正弦函数、余弦函数的奇偶性、单调性;2、 会判断正余弦函数的奇偶性,会求三角函数的单调区间;3、 能利用函数单调性比较三角函数值的大小. 阅读课本37——40页, 完成导学案.【自主学习】一、探究正余弦函数的奇偶性1.sin()_______,x -= ∴正弦函数sin y x =是________(填“奇”或“偶”)函数. 2.cos()_______,x -= ∴余弦函数cos y x =是________(填“奇”或“偶”)函数. 练习:判断下列函数的奇偶性(1) 2 ( )y x = (2) 1cos ( )2xy =+(3) cos3 ([,]) ( )y x x ππ=∈- (4) s i n ((0,)) ( )3x y x π=∈二、探究正余弦函数的单调性1. 用“五点法”画函数sin y x =,cos y x =在[0,2]π上的图象.2.sin ([0,2])y x xπ=∈的单调递增区间是_______ 和________ ,单调递减区间是______.3sin ([,])22y x x ππ=∈-的单调递增区间是____________ ,单调递减区间是______.sin ()y x x R =∈的单调递增区间是_______________ ,单调递减区间是______________.3.cos ([0,2])y x x π=∈的单调递增区间是_________ ,单调递减区间是__________. cos ()y x x R =∈的单调递增区间是______________ ,单调递减区间是______________. 【师生互动】课本39页例5、求下列函数的单调递增区间. (1)⎪⎭⎫⎝⎛+=32sin πx y []ππ2,2-∈x知识迁移:(2)⎪⎭⎫⎝⎛-π=2x 3cos y (3))sin(4π+-=x y课本例4、利用三角函数的单调性,比较下列各组数的大小:(1));sin()sin(1018ππ--与 (2))cos()cos(417523ππ--与【练习】:1、写出下列函数的单调递增区间(1)x sin 3y = (2)x y cos 2-1= (3) )3sin(6π+=x y2、比较大小(1)4sin ___3sinππ (2)57sin ___56sin ππ (3)4cos ___3cos ππ (4)57cos ___56cosππ3、将下列三角函数值按从小到大的顺序排列.45325sin, cos ,sin , cos54512ππππ-【作业】课本41页5、6及课本46页4.。

1.4.2正弦函数余弦函数的性质1[教学设计]

1.4.2正弦函数余弦函数的性质1[教学设计]

1.4.2(1)正弦、余弦函数的性质(教学设计)教学目的:知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义; 能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。

德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。

教学重点:正、余弦函数的周期性教学难点:正、余弦函数周期性的理解与应用 授课类型:新授课教学模式:启发、诱导发现教学. 教学过程:一、创设情境,导入新课:1.现实生活中的“周而复始”现象:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)现在下午2点30,那么每过24小时候是几点? (3)路口的红绿灯(贯穿法律意识)2.数学中是否存在“周而复始”现象,观察正(余)弦函数的图象总结规律正弦函数()sin f x x =性质如下:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;–– π 2π 2π- 2π 5π π- 2π- 5π- O x y 1 1-2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 可以说明结论:象这样一种函数叫做周期函数。

文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。

余弦函数也具有同样的性质,这种性质我们就称之为周期性。

二、师生互动,新课讲解:1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习-----好资料
§ 142正弦函数、余弦函数的性质导学案
般结论:函数y = As in (,x亠门)及函数y=Acos(・x亠仃),x•二R的
周期T = 2:
【学习目标】
1、掌握正弦函数、余弦函数的周期性,周期,最小正周期。

2、掌握正弦函数,余弦函数的奇偶性、单调性。

3、会比较三角函数值的大小,会求三角函数的单调区间。

【学习过程】
一、自主学习(一)知识链接:作出函数y=sinx与y=cosx , x€ R的图象,图象的分布有什么特点?(二)自主探究:(预习教材P34-P40)
1、 ___________________________________________________ 正弦函数,余弦函数都是周期函数,周期是,最小正周期是 _________________________________________ 。

2、由诱导公式 _______________________________ 可知正弦函数是奇函数;由诱导公式
__________________________ 可知,余弦函数是偶函数。

3、正弦函数图象关于直线 _______________ 轴对称,关于点 _________________ 中心对称;余弦函数图象关于直线 ________________ 轴对称,关于点 _________________ 中心对称。

4、正弦函数在每一个闭区间 __________________ 上都是增函数,其值从一1增大到1 ;在每一个闭区
间 _________________ 上都是减函数,其值从1减少到一1。

5、余弦函数在每一个闭区间 __________________ 上都是增函数,其值从一1增大到1 ;在每一个闭区
间 ______________ 上都是减函数,其值从1减少到一1。

6、正弦函数当且仅当x = ____________ 时,取得最大值1,当且仅当x= ___________________ 时取得最小值—1。

7、余弦函数当且仅当x = ________________ 时取得最大值1;当且仅当x= _________________ 时取得最小值—1。

二、合作探究
1 2兀 1 兀
1、求下列函数的周期:(1)y sin(3x ), (2)y = 2cos( x )
2 5 2 6 2、求出下列函数的最大值、最小值,并写出取最大值、最小值时自变量x的集合。

(1) y=1 sin 2x (2) y = -3cos 2x
3、禾U用三角函数的单调性,比较下列各组中两个三角函数值的大
小:
① sin(
54'

7 )与sin(
63

8
②cos举与cos理
8 9
1 7T
4、求函数y = 2sin(― x ')的单调区间。

2 3
更多精品文档。

相关文档
最新文档