恒成立与存在性问题地解题策略

合集下载

不等式恒成立存在性问题的解题方法

不等式恒成立存在性问题的解题方法

不等式恒成立、存在性问题的解题方法一、常见不等式恒成立问题解法1、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围; 解析:我们可以用变换主元的方法,将m 看作主变元,即将原不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x 所以x 的范围是231,271(++-∈x ; 2、利用一元二次函数判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有:1R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2R x x f ∈<在0)(上恒成立00<∆<⇔且a 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R,求m 的范围;解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0;1当m-1=0时,元不等式化为2>0恒成立,满足题意;201≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m ; 3、分离变量法若所给的不等式能通过恒等变换使参数与主元分别位于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围;这种方法本质也还是求最值,但它思路更清晰,操作性更强;一般地有:1为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔2为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔例3已知不等式022>++a x x 在),1[+∞∈x 时恒成立,求a 的取值范围;解:022>++a x x 在),1[+∞∈x 时恒成立,只要x x a 22-->在),1[+∞∈x 时恒成立;而易求得二次函数x x x h 2)(2--=在),1[+∞上的最大值为3-,所以3->a ; 例4.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围;解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立; 令xx x x g 24)(-=,则min )(x g a < 由144)(2-=-=xx x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞;注:分离参数后,思路清晰,方向明确,从而能使问题得到顺利解决;4、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化;例5.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围;分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题;解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立]1,1[-∈a ; 当2=x 时,可得0)(=a f ,不合题意;当2≠x 时,应有⎩⎨⎧>->0)1(0)1(f f 解之得31><x x 或;故x 的取值范围为),3()1,(+∞-∞ ;练习:1.已知a ax x x f -++=3)(2,若0)(],2,2[≤-∈x f x 恒成立,求a 的取值范围. 2.对于不等式1-mx 2+m-1x+3>01当| x | ≤2,上式恒成立,求实数m的取值范围;2当| m | ≤2,上式恒成立,求实数x的取值范围 .3;若不等式ax2-2x+2>0 对x∈1,4恒成立,求实数a的取值范围;二、存在性问题存在 x∈D,使得函数fx>a⇔fx max>a存在 x∈D,使得函数fx≤a⇔fx min≤a例6::已知函数fx=x2-ax+a,若存在x∈-1,2使得fx>0,试求实数a的取值范围; 解:法一:f1=1>0,所以对a∈R,均存在x∈-1,2使得fx>0.>0,即: f-1>0或f2>0法二:原题同解于:当x∈-1,2时,fxmax代入可得:1+2a>0或4-a>0得a>或a<4 ∴a∈R练习:1;已知3=ax-f,若存在(],2,1∈x使得()0xx(2+22)x成立,求a的取值范围.f<2.存在x∈R,使得不等式22->成立, 则a的取值范围是 .x x a三、有解问题不等式fx>a, x∈D有解解集非空⇔ fx max>a不等式fx<a, x∈D解集为空集⇔ fx min≧a方程fx=a, x∈D有解解集非空⇔ a∈{fx| x∈D}即)x时∈的值域;D(xf例7:方程x2-2x+2-a=0在区间0,3内有解,则实数a的取值范围是 ;解:原题同解于:a=x2-2x+2,x∈0,3的值域;a=x-12 +1∴a∈f1,f3即a∈1,5练习:1;22-≤解集不空, 则a的取值范围是 .x x a2.不等式22-≤解集为空集, 则a的取值范围是 .x x a。

恒成立与存在性问题的解题策略之欧阳与创编

恒成立与存在性问题的解题策略之欧阳与创编

“恒成立问题”与“存在性问题”的基本解题战略一、“恒成立问题”与“存在性问题”的基本类型恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立 另一转化办法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最年夜值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表示形式通常有:在给定区间上某关系恒成立;某函数的界说域为全体实数R;某不等式的解为一切实数;某表达式的值恒年夜于a等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想办法,有利于考查学生的综合解题能力,在培养思维的灵活性、创作创造性等方面起到了积极的作用。

高中数学x恒成立、存在性问题解决办法

高中数学x恒成立、存在性问题解决办法

恒成立、存在性问题解决办法总结1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m i n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m ax ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、简单型1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、更换主元法1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

恒成立与存在性问题的解题策略之欧阳索引创编

恒成立与存在性问题的解题策略之欧阳索引创编

“恒成立问题”与“存在性问题”的基本解题战略欧阳索引(2021.02.02)一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化办法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最年夜值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表示形式通常有:在给定区间上某关系恒成立;某函数的界说域为全体实数R;某不等式的解为一切实数;某表达式的值恒年夜于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想办法,有利于考查学生的综合解题能力,在培养思维的灵活性、创作创造性等方面起到了积极的作用。

恒成立问题及存在性问题的解题策略

恒成立问题及存在性问题的解题策略

x  ̄-
5 x4 -6 >0
将不 等式 恒成 立 问题 转 化 为 函数 求 最 值 问题 , 是

1 ( ) > 。 ,



3 3 z z +2 > o。 。

, 解得 解 得
解决 恒成 立 问题最 常用 的方 法. 一 般 的题 型 有 如 下 2 种: ① 不等式 - 厂 ( ) >A 在 区间 D 上 恒 成 立∞ 在 区间 D上 _ 厂 ( ) > A∞ 厂( z ) 的下 界 大 于 A;② 不 等 式
解 析 当z — o 时 , 厂 ( z ) 一 1 ≥ o 成 立, n E R . 当x E 恒成立问 题及存在性 Q
( 0 , +c x 3 ) 时, 厂 ( ) 一e z 一口 z ≥0成 立 , 即 E
+o o ) 时, 都有 / ’ ( z) ≥ 0成 立 , 求 实数 的取 值 范 围.
” 0 , 解得 z 一0或 一 或z : = . 对区间[ 一 一÷, , _ 去 I ] 分
2 种 情况讨 论 :
运 用这种 方 法解决 恒 成立 问题 的步骤 是 : 将参 数 与变量 分 离 , 化为 g ( ) ≥厂( z ) ( 或g ( ) ≤ 厂 ( ) ) 恒 成立 的形 式 ; 求. 厂 ( z ) 在 z∈D 上 的最 大 ( 或 最 小) 值; 解 不 等 式 g( ) ≥f ( z )( 或 g( ) ≤
z 一1 处取 得 最小值 g( 1 ) = = : e . 则 口 ≤e .
含 参 数 不等 式 的恒 成 立 问题 及 存 在 性 问 题 是 历
年 高考 的热点 , 特 别是 以导 数 为背 景 的题 型更 是 在 高

恒成立与存在性问题的解题策略之欧阳物创编

恒成立与存在性问题的解题策略之欧阳物创编

“恒成立问题”与“存在性问题”的基本解题战略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型 1、恒成立问题的转化:()a f x >恒成立⇒()maxa f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()mina f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化办法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最年夜值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表示形式通常有:在给定区间上某关系恒成立;某函数的界说域为全体实数R;某不等式的解为一切实数;某表达式的值恒年夜于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想办法,有利于考查学生的综合解题能力,在培养思维的灵活性、创作创造性等方面起到了积极的作用。

巧解含未知量不等式恒成立与存在性问题

巧解含未知量不等式恒成立与存在性问题简介不等式是数学中常见的一种表达式形式,它描述了数值之间的大小关系。

在解不等式时,我们会遇到含有未知量的情况,即未知量不等式。

对于含有未知量的不等式,我们常常关注两个问题:恒成立性和存在性。

恒成立性问题要求确定不等式中的未知量取值范围,使得不等式在该范围内恒成立。

而存在性问题则是探寻是否存在某个值,使得不等式成立。

本文将以简明的方式讨论巧解含未知量不等式恒成立与存在性问题的策略。

解决策略解决含未知量不等式的恒成立和存在性问题时,我们可以采用以下简单策略:1. 分类讨论:根据不等式的形式和性质,将其分为不同情况进行讨论。

例如,可以根据未知量的次数、不等式的系数等进行分类,以便更好地理解和解决问题。

2. 画图示意:对于某些复杂的不等式,可以通过画图示意的方式更好地理解问题。

通过观察图形,我们可以发现不等式的变化规律,判断恒成立性和存在性。

3. 代入法:对于一些特殊情况的不等式,可以尝试代入一些特定的值,验证不等式的成立性。

通过代入法,我们可以找出满足不等式的特殊解或取值范围。

4. 化简和转化:对于复杂的不等式,可以通过化简和转化的方式简化问题。

例如,可以利用不等式的性质进行变形,化简不等式的形式,从而更容易判断其恒成立性和存在性。

注意事项在解决含未知量不等式的恒成立和存在性问题时,我们需要注意以下事项:1. 确保解的合法性:在进行分类讨论或代入法时,需要注意避免出现不合法的解。

例如,在分母为零的情况下,不等式将无法成立。

2. 考虑边界情况:在判断不等式的恒成立和存在性时,需要考虑边界情况。

边界值通常是解不等式的关键,因为在边界处不等式的成立情况可能会有所改变。

3. 尽量化简不等式:在解决复杂的不等式问题时,尽量将不等式化简为简化的形式。

这样可以更好地理解和判断不等式的恒成立和存在性。

结论解决含有未知量的不等式的恒成立和存在性问题需要灵活运用各种策略,并考虑解的合法性和边界情况。

恒成立与存在问题解参数技巧(1)(1)

数学恒成立&存在问题解参数技巧一、分类讨论法:例如:函数,若恒成立,求的取值范围。

解析:根据题意,只需求时,的取值范围。

根据求导,讨论的取值,求出,并使其满足时,的取值即可。

此题求得。

二、构造函数法:1、构造一种函数法:仍以函数,若恒成立,求的取值范围为例。

解析:当时,在恒成立,当时,原试可化简为恒成立,故可构造,若使其恒成立,只需即可,即只需求出。

此题在上单调递增,由极限性得(洛必达法则解)。

2、构造函数和,数形结合解。

(这是一种技巧,解决选择填空题非常快捷,由于方法特殊,简答题不到万不得已时建议勿用,但可以用来检查简答题的正误。

)这里主要讲解该技巧的应用。

(1)、函数,若恒成立,求的取值范围。

解析:将原试写为,构造,,则题意等价于在时恒成立。

思维转换,可理解为时,的函数图像始终在的上方。

由于,由右图图像知,当与相切时,,当图像向上转动时,与图像在出现两个交点,即的图像在此区间不是始终在上方,不合题意。

当图像向下转动时,图像在,始终在上方,符合题意,故所求。

(2)、已知函数,若其在定义域内是单调递增函数,求参数的取值范围。

解析:根据题意知,在恒成立。

构造,,则题意等价于在恒成立,即的函数图像始终在的上方。

由图像知,当与相切时,与只有一个交点,设交点为,此时参数,则由切线性质可得到以下关系式:联立解得,,故当的函数图像始终在的上方时,所求。

(3)、设,若在处取得极大值,求实数的取值范围。

解析:右图为在1附近处的大致图像,由图知,若在处取得极大值,则存在1附近的值(),使得当时,恒成立,当时,恒成立。

即在与在时恒成立。

构造,则题意转换为:时,恒成立,且时,恒成立。

由图像知,当相切时,存在,使得,的图像在图像下方,由知,切点为,设此时,则,故。

当所求时,不存在,使得,恒成立,不合题意;当将切线向下旋转时,显然不符合题意;当将图像向上旋转移动时,存在,使得当,的函数图像上方,且存在,使得当,使得的函数图像在下方。

适合于高一学生的恒成立和存在性问题全解析




解 题 技 巧 与 方 法
始 瓣
. . _ _ 一・


一攀羹 J 凰 壁 薄褒J 题垒藤橇
◎李 伟 ( 湖 北省 十堰 市竹 溪县 一 中 4 4 2 3 0 0 )
恒 成 立 和 存 在 性 问 题 是 高 中 数 学 的 一 类 很 重 要 的 题 型, 如何清楚地 掌握 它 , 对 很 多 高 一 学 生 来 讲 是 比 较 困 难

2 . 如 果 两个 函数 的定 义 域 不 同 设函数, ( ) , g ( ) 对 任 意 ∈[ “ , b ] ,
_ 厂 ( ) ≥g ( ) 恒成立 , 则_ 厂 ( ) …. ≥g ( ) 即 可.
[ c , d ] 都 有
4≤ ~3≤1, 需 分 一4≤ 一3<0, 一3=0, 0≤ 一3<1三
需 F( ) … ≥0即可 . 例3 l , < ) = 一3 + 4 , g ( )= 2 x+m, 在 ∈[ 0, 3 ] j = f ( ) ≥g ( ) 恒成立 , 求 m 的范 围.
)= 一4 x+1 , 在 R 上 的值 不 恒 大 于
当 a< 0时 , 显然不恒成立 , 舍 去. 当 a >0时 , 只 需 △< 0即 可 , . ‘ . ( 2 a一 4 ) 一 4 a< 0,

) ≥g ( )


1<a<4 . 即 口∈( 1, 4) .
成立 , 则_ 厂 ( )一 g ( ) ≥0恒 成 立 , 令F ( )- - f ( )一g ( ) , 只
变 式 一 函数 厂 ( x )= + ( 。一4 ) + 4— 3 n在 R上 的 值恒大于 0 , 求 a的 取值 范 围.

求解有关恒成立、存在性问题的四种策略

求解有关恒成立、存在性问题的四种策略对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现。

如何突破这一难关呢?关键是细心审题及恰当地转化。

现就如何求解恒成立、存在性问题中的参数问题加以分析。

方法1:分离参数法例1.设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数。

若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围。

解:因为f`(x)=-a,g`(x)=ex-a,由题意得f`(x)≤0对x∈(1,+∞)恒成立,即a≥对x∈(1,+∞)恒成立,所以a≥1。

因为g`(x)=ex-a在x∈(1,+∞)上是单调增函数,所以g`(x)>g`(1)=e-a。

又g(x)在(1,+∞)上有最小值,则必有e-a<0,即a>e。

综上,可知a的取值范围是(e,+∞)。

点评:求解问题的切入点不同,求解的难度就有差异。

在恒成立问题中有时需要取交集,有时需要取并集,本题解法需要取交集。

一般而言:在同一问题中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集。

方法2:构造函数法例2.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()。

A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解:当x≤0时,|f(x)|≥axx2-(2+a)x≥0,对x≤0恒成立。

记g(x)=x2-(2+a)x=(x-)2-。

当<0即a<-2时,g(x)的最小值为-,不可能满足条件。

当≥0即a≥-2时,g(x)的最小值为0,满足题意。

当x>0时,|f(x)|≥axln(1+x)-ax≥0a≤,对x>0恒成立。

令θ(x)=,则θ`(x)=。

设t=x+1,则t>1。

记L(t)=-lnt,则L`(t)=<0,所以L(t)在t∈(1,+∞)上为减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A ⊂B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

因此也成为历年高考的一个热点。

恒成立问题在解题过程致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。

二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。

等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。

(一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。

这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。

(二)、赋值型——利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π- 对称,那么a=( ). A .1 B .-1 C .2 D . -2. 略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.例(备用).由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义映射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f :(4,3,2,1) → ( )A.10B.7C.-1D.0略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D(三)分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]恒有f(x)<0, 则有)(0)(<<n f m f例2.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可. 2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。

(1)若二次函数y=ax 2+bx+c(a≠0)大于0恒成立,则有00<∆>且a (2)若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解。

类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 (-∞ , α]上恒成立。

f(x)>0⇔a>0且∆<0或-b/2a>α且f(α)>0 f(x)<0⇔a<0且∆<0或-b/2a>α且f(α)<0类型4:设)0()(2≠++=a c bx ax x f 在区间 [α,+∞)上恒成立。

f(x)>0⇔a>0,∆<0或-b/2a<α且f(α)>0 f(x)<0⇔a<0,∆<0或-b/2a<α且f(α)<0 例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,数 a 的取值围. 分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a 综上所述,f(x)的定义域为R 时,]9,1[∈a例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值围. 分析:()y f x =的函数图像都在X 轴及其上方,如右图所示: 略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值围.解析一. (零点分布策略) 本题可以考虑f (x )的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(220f f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(220f f a ,即a 的取值围为[-7,2]. 解法二分析:(运用二次函数极值点的分布分类讨论)要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥ag 即可.略解:(分类讨论)22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a > a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <-74a ∴-≤<- 综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值围.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:(运用二次函数极值点的分布)⑴当22a -<-,即4a >时,()(2)732g a f a =-=-≥ ()54,3a ∴≤∉+∞ a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥, 222222-≤≤-a -2224-≤≤-∴a⑶当22a->,即4a <-时,()(2)72g a f a ==+≥, 5a ∴≥- 54a ∴-≤<-综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法(如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的围已知,另一个变量的围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。

相关文档
最新文档