自考高等数学公式

合集下载

自考高等数学全部公式

自考高等数学全部公式

自考高等数学全部公式为了简化回答,我将提供一些常用的高等数学公式。

由于高等数学的内容非常广泛,无法一一列举所有的公式。

以下是一些常见的高等数学公式分类,并附上一些例子:1.极限公式:- 孙子定理:$\lim_{x \to 0} \frac{\sin x}{x} = 1$- 自然对数的极限:$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$2.导数公式:-基本导数公式:- $\frac{d}{dx} (a) = 0$ 其中 a 是常数- $\frac{d}{dx} (x^n) = nx^{n-1}$ 其中 n 是常数- $\frac{d}{dx} (e^x) = e^{x}$- $\frac{d}{dx} (\ln x) = \frac{1}{x}$-导数的四则运算规则:- $\frac{d}{dx} (u + v) = \frac{du}{dx} + \frac{dv}{dx}$- $\frac{d}{dx} (uv) = u\frac{dv}{dx}+v\frac{du}{dx}$- $\frac{d}{dx} (\frac{u}{v})= \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$- 链式法则:$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$3.积分公式:-不定积分公式:- $\int (a) dx = ax + C$ 其中 a 是常数,C 是常数- $\int (x^n) dx = \frac{x^{n+1}}{n+1} + C$ 其中 n 是非零常数,C 是常数- $\int (e^x) dx = e^x + C$ 其中 C 是常数- $\int \frac{1}{x} dx = \ln ,x, + C$ 其中 C 是常数-定积分公式:- $\int_{a}^{b} f(x) dx = F(b) - F(a)$ 其中 F(x) 是 f(x) 的原函数4.级数公式:-等比数列的和:$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ 其中 a 是首项,r 是公比- 幂级数:$\sum_{n=0}^{\infty} c_n(x-a)^n$ 其中 $c_n$ 是常数系数,a 是中心点5.微分方程公式:- 一阶线性常微分方程:$\frac{dy}{dx} + p(x)y = q(x)$- 二阶齐次线性常微分方程:$\frac{d^2 y}{dx^2} +p(x)\frac{dy}{dx} + q(x)y=0$以上只是高等数学中的一小部分公式,还有很多其他公式如三角函数的和差化积、积化和差等。

(完整版)专升本数学公式大全

(完整版)专升本数学公式大全

专升本高等数学公式大全导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

自考高等数学公式大全

自考高等数学公式大全

自考高等数学公式大全(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《高等数学(工本)》公式第一章 空间解析几何与向量代数1. 空间两点间的距离公式21221221221)()()(z z y y x x p p -+-+-=2. 向量的投影3. 数量积与向量积: 向量的数量积公式:设},,{},,,{z y x z y x b b b a a a ==.2︒⊥的充要条件是:0=⋅向量的数量积公式:.3︒//的充要条件是0=⨯4. 空间的曲面和曲线以及空间中平面与直线平面方程公式: ),,(o o o o z y x M },,{C B A =点法式:0)()()(=-+-+-o o o z z C y y B x x A直线方程公式: },,{n m l S = ,),,(o o o o z y x M点向式:nz z m y y l x x o o o -=-=- 5. 二次曲面 第二章 多元函数微分学6. 多元函数的基本概念,偏导数和全微分偏导数公式:.2︒设),(),,(),,(y x v y x u v u f z ψϕ===.3︒设0),,(=z y x F FzFy y z Fz Fx x z -=∂∂-=∂∂ 全微分公式:设),,(y x f z =dy yz dx x z dz ∂∂+∂∂=7. 复合函数与隐函数的偏导数8. 偏导数的应用:二元函数极值9. 高阶导数第三章 重积分10. 二重积分计算公式:.1︒⎰⎰=DkA kd σ(A 为D 的面积) 11. 三重积分计算公式:.1︒利用直角坐标系计算,Ω为⎪⎩⎪⎨⎧≤≤≤≤≤≤b x a x y y x y y x z z y x z )()(),(),(2121 .2︒利用柱面坐标计算:Ω为⎪⎩⎪⎨⎧===z y r y r x ϑϑsin cos.3︒利用球面坐标计算:Ω为⎪⎩⎪⎨⎧===ϕϕϑϕϑcos sin sin sin cos r y r y r x12. 重积分的应用公式:.1︒曲顶柱体的体积:⎰⎰=Ddxdy y x f V ,),(曲面),(:y x f z =∑.2︒设V 为Ω的体积:⎰⎰⎰Ω=dv V.3︒设∑为曲面),(y x f z =曲面的面积为σd f f S Dy x ⎰⎰++=221第四章 曲线积分与曲面积分13. 对弧长的曲线积分 (1)若L :b x a x f y ≤≤=),(,则⎰⎰+=ba L dx x x x f dl y x f )(1)](,[),(2ϕϕ(2)若L :βαψϕ≤≤⎩⎨⎧==t t y t x ,)()( 则⎰⎰'+'=βαψϕψϕdx t t t t f dl y x f L )()()](),([),(22(3)当1),(=y x f 时,曲线L 由B 的弧长为⎰=Ldl S 。

自考高等数学一(微积分)常用公式表

自考高等数学一(微积分)常用公式表

高 数 常 用 公 式 表常用公式表(一)1、乘法公式(1) (a+b )²=a 2+2ab+b 2 (2) (a-b )²=a ²-2ab+b ² (3) (a+b)(a-b)=a ²-b ²(4) a ³+b ³=(a+b)(a ²-ab+b ²) (5) a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1) a 0=1 (a ≠0)(4) a m a n=am+n(7) (ab) n =a n b n1n(2) a一P= aP(a ≠0) (3) a m =m a nm(5) a m÷a n= a n=a m 一na a n(8) ( b ) n = b n(10) a 2 = |a| 3、指数与对数关系:(1)若a b=N ,则 b = log a N (2)若10b=N ,则b=lgN (3)若 e b =N ,则b=㏑N 4、对数公式:(1) log a a b = b , ㏑ e b=b (2) a log aN = N ,eln N=N(3) log a N =ln Nlna(4) a b = e bln a (5) ln MN=ln M +ln N(6) lnM= ln M 一 ln N (7) ln M n = nln M (8)㏑ n M = 1ln M N n5、三角恒等式:(1) (Sin α)²+ (Cos α)²=1 (2) 1+ (tan α)²=(sec α)²(3) 1+(cot α)²=(csc α)² (4)sin acosa = tan a (5) cosasina= cota(6) cot a =1tana (7) csc a = 1cosa (8) sec a =1cosaa(9) ( a ) (6) ( a m ) n=a=am n26、特殊角三角函数值:7.倍角公式:(1) sin 2a = 2sina cosa (2) tan2a =2tana1tan 2a(3) cos2a = cos 2 a sin 2 a = 2cos 2 a 1= 1 2sin 2 a8.半角公式(降幂公式):1 cosa 1+ cosa 1+ cosa sin a (1) ( sin a )2 = 2 (2) ( cos a ) 2 = 2 (3) tan a= sin a = 1+ cosa2 2 29、三角函数与反三角函数关系:(1)若x=siny ,则y=arcsinx (2)若x=cosy ,则y=arccosx (3)若x=tany ,则y=arctanx (4)若x=coty ,则y=arccotx 10、函数定义域求法:1(1)分式中的分母不能为0, ( a α≠0)(2)负数不能开偶次方, ( a α≥0) (3)对数中的真数必须大于 0, (log a N N>0)(4)反三角函数中arcsinx ,arccosx 的x 满足: (--1≤x ≤1) (5)上面数种情况同时在某函数出现时,此时应取其交集。

成考专升本高数公式大全

成考专升本高数公式大全

成考专升本高数公式大全高等数学是考研和专升本考试中必备的一门科目,掌握好高等数学的公式和定理对于高分通过考试非常重要。

下面是一些常用的高等数学公式和定理的汇总,供参考。

1.数列的常用公式:-等差数列通项公式:$a_n=a_1+(n-1)d$-等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)$-等比数列通项公式:$a_n=a_1 \cdot q^{n-1}$-等比数列前n项和公式:$S_n=\frac{a_1(q^n-1)}{q-1}$2.三角函数的基本公式:- 正弦函数的基本公式:$\sin(\alpha \pm \beta)=\sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$- 余弦函数的基本公式:$\cos(\alpha \pm \beta)=\cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$- 正切函数的基本公式:$\tan(\alpha \pm \beta)=\frac{\tan\alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$3.极限的常用公式:- 求和的极限公式:$\lim_{n \to \infty}\sum_{k=1}^{n}a_k = \lim_{n \to \infty}(a_1+a_2+...+a_n) = \lim_{n \to \infty}S_n$- 积分的定义公式:$\int_{a}^{b}f(x)dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n}f(\xi_i)\Delta x_i$4.微分的常用公式:- 导数的定义公式:$f'(x)=\lim_{\Delta x \to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$- 常见函数的导数公式:$(x^n)'=nx^{n-1}$,$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tan x)'=\sec^2 x$,$(e^x)'=e^x$,$(\lnx)'=\frac{1}{x}$- 导数的四则运算公式:$(u \pm v)'=u' \pm v'$,$(cu)'=cu'$,$(uv)'=u'v+uv'$,$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$5.积分的常用公式:- 基本积分公式:$\int{x^n}dx=\frac{1}{n+1}x^{n+1}+C$,$\int{\frac{1}{x}}dx=\ln,x,+C$,$\int{e^x}dx=e^x+C$- 三角函数的积分公式:$\int{\sin x}dx=-\cos x + C$,$\int{\cos x}dx=\sin x+C$,$\int{\tan x}dx=\ln,\sec x,+C$ - 分部积分公式:$\int{uv}dx=uv-\int{u'v}dx$。

专升本数学公式归纳总结

专升本数学公式归纳总结

专升本数学公式归纳总结数学是一门基础学科,它的公式是解决问题的关键。

对于专升本考生来说,数学公式的掌握至关重要。

本文将对专升本数学公式进行归纳总结,方便考生在备考过程中进行查阅和复习。

一、基本运算公式1. 加减乘除法则加法法则:a + b = b + a减法法则:a - b ≠ b - a乘法法则:a × b = b × a除法法则:a ÷ b ≠ b ÷ a2. 分配律左分配律:a × (b + c) = a × b + a × c右分配律:(a + b) × c = a × c + b × c二、代数公式1. 二次根式平方差公式:(a + b) × (a - b) = a^2 - b^2完全平方公式:(a + b)^2 = a^2 + 2ab + b^22. 二次方程一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)3. 指数与对数指数与对数互反性:a^loga(x) = x4. 三角函数正弦函数的平方与余弦函数的平方和为1:sin^2θ + cos^2θ = 1正切函数与余切函数互为倒数:tanθ × cotθ = 1三、几何公式1. 周长和面积矩形的周长:2 × (a + b)矩形的面积:a × b正方形的周长:4 × a正方形的面积:a^2圆的周长:2πr圆的面积:πr^22. 三角形三角形的周长:a + b + c三角形的面积(海伦公式):S = √(s × (s - a) × (s - b) × (s - c))其中,s为半周长,s = (a + b + c) / 23. 直角三角形勾股定理:c^2 = a^2 + b^2正弦定理:sinA / a = sinB / b = sinC / c余弦定理:c^2 = a^2 + b^2 - 2ab × cosC四、概率与统计公式1. 基本概率公式事件A发生的概率:P(A) = n(A) / n(S)事件A与事件B同时发生的概率:P(A ∩ B) = P(A) × P(B|A) 2. 统计学公式均值的计算公式:μ = (x1 + x2 + ... + xn) / n方差的计算公式:σ² = [(x1 - μ)² + (x2 - μ)² + ... + (xn - μ)²] / n 标准差的计算公式:σ = √σ²五、微积分公式1. 导数公式常用函数的导数公式:常数函数:(c)' = 0幂函数:(x^n)' = nx^(n-1)三角函数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x2. 积分公式不定积分:幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数三角函数积分:∫sinx dx = -cosx + C,∫cosx dx = sinx + C以上只列举了一部分常用的数学公式,希望能够对专升本考生在数学备考中有所帮助。

自考高等数学全部公式


变限求导公式
(1) [ f (t )dt ] f ( x) ;
a x
(2) [
b x
f (t )dt ] f ( x) ;
(3) [
(4) [
(5) [
(x)
a b
f (t )dt ] f [ ( x )] ( x ) ;
g( x)
f ( t )dt ] f [ g( x )] g( x ) ;
自由项 f ( x )
e x pm ( x )
方程 y ay by f ( x ) 的特解 y
(1) 不是特征根
(2) 是单特征根
y Qm ( x )e x
y x Qm ( x )e x
y x 2 Qm ( x )e x
(3) 是二重特征根
(1) α iβ 不是特征根
e
x
y ex [Ql ( x )cosx Rl ( x )sinx ]
y xex [Ql ( x )cosx
[ Pm ( x )cos x
Pn ( x )sin x ]
(2) α iβ 是特征根
Rl ( x )sinx] 其中lmax{ ,n} m
f ( x0 x ) f ( x0 ) f ( x ) f ( x0 ) y f ( x ) lim lim lim x 0 x x 0 x x0 x x x0
基本初等函数和常数的求导公式
(1)(c ) 0 ;
(2) ( x ) x 1 ;
1 1 x2 dx arcsinx C ;
(4)d(arctanx )
1 1 x 1
2
dx;
(5)d(arcsinx )

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

专升本数学公式总结

专升本数学公式总结
数学是一门重要且广泛应用的学科,掌握数学公式对于专升本考试来说至关重要。

以下是我对于专升本数学公式的总结:
1. 代数公式:
- 二项式定理:(a+b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ... + C(n, k)a^(n-k)b^k + ... + C(n, n)b^n
- 二次方程求根公式:x = [-b ± √(b^2-4ac)] / (2a)
- 一次方程组解法:通过消元法、代入法、等方法解得未知数的值
2. 几何公式:
- 圆的周长:C = 2πr
- 圆的面积:A = πr^2
- 三角形的面积:A = 1/2 * 底边长 * 高
3. 概率统计公式:
- 排列公式:P(n, m) = n! / (n-m)!
- 组合公式:C(n, m) = n! / (m!*(n-m)!)
4. 导数公式:
- 基本导数公式:常数函数导数为0,x^n的导数为nx^(n-1),e^x的导数为e^x,ln(x)的导数为1/x,sin(x)的导数为cos(x),cos(x)的导数为-sin(x) - 求复合函数的导数:根据链式法则求解
这些公式是专升本数学考试中经常使用的,掌握这些公式可以帮助我们在考试中更加高效地解题。

除了掌握公式外,还需要切实进行练习和理解,才能在考试中取得好成绩。

自考高等数学公式

高等数学公式大全1.导数公式:
2.两个重要极限:
3.倍角公式:; ;
4.空间解析几何和向量代数:
5.
6., 三点式
7.
8.多元函数微分法及应用
9.
10.微分法在几何上的应用:
(1)
(2)
11.方向导数与梯度:
12.多元函数的极值:
13.重积分及其应用:
14.柱面坐标和球面坐标:
15.曲线积分:
16.曲面积分:
(3)高斯公式:注意侧向!
17.常数项级数:
18.级数审敛法:
,满足
比较判别法的极限形式:
19.绝对收敛与条件收敛:
20.幂级数:
21.一些函数展开成幂级数:

22.傅立叶级数:
23.微分方程的相关概念:(1)
一阶线性微分方程:, 通解
全微分方程:
(2)二阶常系数齐次线性微分方程:
其特解:
大题目:1.求直线或平面;2.隐函数求导或求全微分dz;3。

复合函数求导;4.梯度或方向导数;5.交换积分次序;6.直(或极)角坐标系二重积分;7.两类曲线积分各一题,注意是否用格林公式或积分与路径无关;9两类曲面积分各一题,注意是否用高斯公式;11.一阶线性微分方程求解;12.收敛半径收敛区间;13.傅里叶级数an或bn;14.求空间曲面面积;15.函数的展开;16。

曲面的切平面、法线或曲线的切线、法平面;17.三重积分(直角、柱或球);18.判别级数敛散性(比较、根值或比值)或判别条件收敛还是绝对收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式大全1.导数公式:
2.两个重要极限:
3.倍角公式:; ;
4.空间解析几何和向量代数:
5.
6., 三点式
7.
8.多元函数微分法及应用
9.
10.微分法在几何上的应用:
(1)
(2)
11.方向导数与梯度:
12.多元函数的极值:
13.重积分及其应用:
14.柱面坐标和球面坐标:
15.曲线积分:
16.曲面积分:
(3)高斯公式:注意侧向!
17.常数项级数:
18.级数审敛法:
,满足
比较判别法的极限形式:
19.绝对收敛与条件收敛:
20.幂级数:
21.一些函数展开成幂级数:

22.傅立叶级数:
23.微分方程的相关概念:(1)
一阶线性微分方程:, 通解
全微分方程:
(2)二阶常系数齐次线性微分方程:
其特解:
大题目:1.求直线或平面;2.隐函数求导或求全微分dz;3。

复合函数求导;4.梯度或方向导数;5.交换积分次序;6.直(或极)角坐标系二重积分;7.两类曲线积分各一题,注意是否用格林公式或积分与路径无关;9两类曲面积分各一题,注意是否用高斯公式;11.一阶线性微分方程求解;12.收敛半径收敛区间;13.傅里叶级数an或bn;14.求空间曲面面积;15.函数的展开;16。

曲面的切平面、法线或曲线的切线、法平面;17.三重积分(直角、柱或球);18.判别级数敛散性(比较、根值或比值)或判别条件收敛还是绝对收敛。

相关文档
最新文档