马尔科夫相关性质马尔科夫随机场详解40页PPT
马尔可夫幻灯片新

2.3 马尔可夫理论发展
马尔可夫在1906年首先做出了这类过程。而将此一般化到 可数无限状态空间是柯尔莫果洛夫在1936年给出的。马尔 可夫链与布朗运动以及遍历假说这两个二十世纪初期物理 学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数 学动机,名义上是对于纵属事件大数法则的扩张。物理马 尔可夫链通常用来建模排队理论和统计学中的建模,还可 作为信号模型用于熵编码技术。隐蔽马尔可夫模型还被用 于生物信息学,用以编码区域或基因预测。
2.1 马尔可夫链定义
马克可夫链是随机变量 X1,X2,X3…的一个数列。这些 变量的范围,即他们所有可能取值的集合,被称为“状态 空间”,而Xn的值则是在时间n的状态。如果Xn+1对于过 去状态的条件概率分布仅是Xn的一个函数,则 P(Xn+1=x|X0,X1,X2,…,Xn)=P(Xn+1=x|Xn),这里x 为过程中的某个状态。上面这个恒等式可以被看做是马尔 可夫性质。之所以称为链是因为它所研究的随机变量之间 具有特定的相依性。
四 马尔可夫预测模型
S ( k 1) S ( 0) * P k 1 ( S1 S 2 P 11 P (0) (0) ( 0) ( S1 S 2 S n ) 21 Pn1
k 1 k 2 k 1
Sn
)
P Pn 12 1 P22 P2 n Pn 2 Pnn
4.周期性 若集合{n:n>=1,Piin>0}非空,则称他的最大公 约数d=d(i)为状态i的周期。若d>1,则称i是周期的;若 d=1,则称i是非周期的。若集合{n:n>=1,Piin>0}为 空集,则称i的周期为无限大。
2.5 有限时空中的马尔可夫链
马尔可夫过程ppt课件

例1 以图1所示模型为例,求解稳态概率。
故障(p)
S(η1)
1-p
F(η2)
1-q
修复(q)
图1 马尔可夫过程的状态转移图 18
设系统处于正常状态的稳态概率为η1和处于故障状 态的稳态概率为η2,则有
12
(1 (1
p)1 q)2
q2 p1
1 2 1
显然,前两个方程是线性相关的,可以删掉一个。解 方程组得:
系统在各状态的稳定概率通常有以下两种解法: 已知瞬态概率,求极限
Ai
lim
t
P{Si (t)}
式中 Si(t)--系统i状态的瞬态概率; Ai--i状态的稳态概率。
16
通常,稳态概率空间的表达式不易求出,该解 法适合于解决一些比较简单系统的稳态状态概率问 题。 同构法
当系统达到稳定状态以后,各种状态将持续转 移,但是每种状态出现的概率基本不变,从而形成 一个稳定的状态空间。求解状态空间方程组,就可 得到系统在各种状态的稳态概率。
马尔可夫过程
神和尧
1
2
马尔可夫过程简介
一类随机过程(数学基础是随机过程理论)。 原始模型马尔可夫链,由俄国数学家A.A.马尔可夫 于1907年提出。 该过程具有如下特性:在已知目前状态 (现在) 的条件下,它未来的演变 (将来)不依赖于它以往 的演变 ( 过去 ) 。 ④例如森林中动物头数的变化构成——马尔可夫过 程 。在现实世界中,有很多过程都是马尔可夫过程, 如液体中微粒所作的布朗运动、传染病受感染的人 数、车站的候车人数等,都可视为马尔可夫过程。
参数集T=[0, ∞],状态空间E={整数}
(3)时间离散、状态连续的马尔可夫过程——马尔可夫序列。 参数集T= {0,1,2,…},状态空间E= (-∞, +∞)
马尔科夫预测课件.ppt

以 p11 表示连续畅销的可能性,以频率代替概率,得:
p11
7 15 1
50%
??
分子 7 是表中连续出现畅销的次数,分母 15 是表中出现畅销的 次数,因为第24季度是畅销,无后续记录,故减1。
季度
销售 状态
1 2 3 4 5 6 7 8 9 10 11 12 畅畅滞畅滞滞畅畅畅滞畅滞 112122111212
7 p21 9 78% 分子 7 是表中由滞销转入畅销的次数,分母数 9 是表中出
现滞销的次数。
季度
销售 状态
1 2 3 4 5 6 7 8 9 10 11 12 畅畅滞畅滞滞畅畅畅滞畅滞 112122111212
季度
销售 状态
13 14 15 16 17 18 19 20 21 22 23 24 畅畅滞滞畅畅滞畅滞畅畅畅 112211212111
一、基本概念
它可能跳到第一张或者第三张荷叶,也可能在原地不动。 我们把青蛙在某个时刻所在的荷叶称为青蛙所处的状态, 这样,青蛙在未来处于什么状态,只与它现在所处的状 态有关,与它以前所处的状态无关,这种性质就是所谓 的“无后效性”。 上例中,青蛙所处的那张荷叶,称为青蛙所处的状态, 在经济系统的研究中,一种经济现象,在某一时刻 t 所 出现的某种结果,就是该系统在该时间t 所处的状态。
第三节 马尔可夫决策
一、基本概念
经济学中把这种现象称为“无后效性”,即 “系统在每一时刻的状态仅仅取决于前一时刻 的状态”。 例如,池塘里有三张荷叶,编号为1,2,3,假 设有个青蛙在荷叶上随机地跳来跳去,在初始 时刻 t0,它在第二张荷叶上。在时刻t1,
2
3 1
马尔可夫性质

泊松过程与排队论应用
01
泊松过程在排队论中的角色
泊松过程是一种重要的随机过程,在排队论中广泛应用于描述顾客到达
的规律。
02
排队系统的性能指标
排队系统的性能指标包括平均队长、平均等待时间、系统利用率等,这
些指标可以通过泊松过程和其他随机过程进行建模和分析。
03
排队论在实际应用中的价值
排队论在实际应用中具有广泛的价值,如电信网络中的呼叫中心、交通
03
序列生成与预测
利用马尔可夫模型对序列数据的建模 能力,结合深度学习等技术,可以实 现更加准确的序列生成和预测。
THANKS
感谢观看
稳态概率分布求解
对于非齐次、非遍历性马尔可夫模型,如何求解稳态概率分布是一 个重要的问题。
深度学习等新技术融合创新
01
深度学习与马尔可夫 模型融合
利用深度学习强大的特征提取和表示 学习能力,可以改进传统马尔可夫模 型的性能。
02
强化学习与马尔可夫 决策过程
将强化学习算法与马尔可夫决策过程 相结合,可以实现更加智能的决策和 控制。
马尔可夫性质
汇报人: 2024-02-06
目录 CONTENTS
• 马尔可夫性质概述 • 马尔可夫链基本概念 • 马尔可夫性质在随机过程中应用 • 马尔可夫性质在信息科学中应用 • 马尔可夫性质在金融领域应用 • 马尔可夫性质挑战与未来发展
01
马尔可夫性质概述
CHAPTER
定义与基本思想
马尔可夫性质是指在给定现在状 态下,过去的信息与未来状态无 关,即未来只依赖于现在,而与
非线性、非高斯问题
复杂系统往往呈现出非线性和非 高斯特性,这使得基于线性高斯 假设的马尔可夫模型不再适用。
随机过程课件-马尔可夫链

本课件将介绍随机过程中一种重要的模型——马尔可夫链。探讨马尔可夫链 的定义、特性、应用及改进方法,展望其未来发展。
什么是随机过程?
随机过程是一种数学模型,用于描述随机变量在时间上的演化。根据性质和分类不同,随机过程可分为多种类 型。
马尔可夫链的概念
定义
马尔可夫链是一种随机过程,具有马尔可夫性质,即未来状态仅与当前状态相关。
马尔可夫链的局限性和优缺点
马尔可夫链具有简单、易于实现的优点,但在某些情况下存在局限性。
马尔可夫链的未来发展方向
未来,马尔可夫链有望结合更多机器学习、深度学习技术,在更多领域得到应用和改进。
马尔可夫链的改进
局限性
马尔可夫链模型在某些情况下存 在局限性,如长期依赖性和大状 态空间问题。
改进方法
针对马尔可夫链的局限性,研究 者提出了多种改进方法,如隐马 尔可夫模型和条件随机场。
马尔可夫决策过程
马尔可夫决策过程是对马尔可夫 链进行扩展,引入了决策和奖励 机制,用于解决决策问题。
总结与展望
马尔可夫链的平稳分布
平稳分布是马尔可夫链在长期 运行后,状态分布稳定的概率 分布。
马尔可夫链的应用
1
模拟系统
2
马尔可夫链在模拟系统中用于模拟随机
事件和状态转移,如队列模型和流程模
3
型。
自然语言处理
马尔可夫链在自然语言处理中用于语言 模型、文本生成和机器翻译等。
金融领域
马尔可夫链在金融领域中用于风险评估、 投资组合优化和市场分析等。
特性
马尔可夫链具有无记忆性、状态空间有限、状态转移概率固定等特性。
状态转移图
马尔可夫链可用状态转移图表示,展示各状态之间的转移概率。
无向图模型(马尔科夫随机场)

19 无向图模型(马尔科夫随机场)19.1 介绍在第十章,我们讨论了图形化模型(DGMs),通常称为贝叶斯网。
然而,对于某些域,需要选择一个方向的边即(DGM), 例如,考虑建模一个图像。
我们可能会假设相邻像素的强度值是相关的。
我们可以创建一个DAG模型的2D拓扑如图19.1所示。
这就是所谓的因果MRF或马尔可夫网。
然而,它的条件独立性通常不好。
另一种方法是使用anundirected图形化模型(UGM),也称为马尔可夫随机场(MRF)或马尔可夫网络。
这些不需要我们指定边缘方向,在处理一些问题,如图像分析和空间统计数据时显得更自然。
例如,一个无向二维点阵显示(如图19.1(b));现在每个节点的马尔科夫Blanket只是最近邻节点,正如我们在19.2节所示的那样。
粗略地讲,在建立在DGMs上的UGMs的主要优点是:(1)它们是对称的,因此对某些领域更“自然”,如空间或关系数据;(2)Discriminativel UGMs(又名条件随机域,或CRFs),它定义了条件概率密度p(y|x),要比Discriminativel UGMs更好,我们在19.6.1节中解释原因。
相比于DGMs,UGMs的主要缺点是:(1)参数是可很难解释及模块化程度较差,我们在19.3节解释原因;(2)参数估计计算代价更高,原因我们在19.5节解释。
19.2 UGMs的条件独立性19.2.1UGMs通过简单的图分离定义CI关系如下:对于节点集的A,B,C,我们说X A ⊥G X B | X C,如果从在图G中把A从B中分离出来。
这意味着,当我们删除所有C 中的节,如果在A上没有任何连接的路径到B,那么CI 属性holds。
这就是所谓的UGMs的全局马尔可夫性质。
例如,在图19.2(b),有{ 1,2 }⊥{ 6、7 } | { 3、4、5 }。
图19.1节点的节点集呈现t有条件地独立于所有其他节点图为t的马尔科夫blanket;我们将表示通过mb(t)。
第17讲 马尔可夫与马尔可夫链ppt课件

时刻t0系统或过程所处的状态,可以决定系统或过程在时 刻t>t0所处的状态,而无需借助于t0以前系统或过程所处状
态的历史资料.
如研究一个商店的累计销售
额,如果现在时刻累计销售额已
知,则未来某一时刻的累计销售
额与现在时刻以前的任一时刻
累计销售额无关.
ppt课件
3
第19讲 马尔可夫过程 与马尔可夫链
一、马尔可夫过程
证 根据条件X(a)=0及随机变量相互独立性可知
X (tn) X (tn1) 与 X (ti ), i 1, 2, , n 1,
相互独立.
因此对任意的 x1, x2,, xn1 ,有
P{X (tn ) xn | X (t1) x1, X (t2 ) x2, , X (tn1) xn1)
P{Xmn a j | Xt1 ai1 , Xt2 ai2 , , Xtr air , Xm ai }
P{Xmn a j | Xm ai},
(11.1)
则称{Xn, nT1}为一个马尔可夫链.马尔可夫链也简称为
马氏链.
ppt课件
15
二、马尔可夫链
1.马尔可夫链的概念
尔可夫过程的研究。马尔可夫过程在自然科学、工程技术和公用事
业中有广泛的应用。他的主要著pp作t课有件 《概率演算》等。
1
第十一章 马尔可夫链
马尔可夫(Markoff)过程是无后效性的随机过程,
现已成为内容十分丰富,理论相当完整,应用十分广泛
的一门数学分支.由于马尔可夫过程的理论在近代物理、
生物学、分子遗传学、自动控制、管理科学、信息处理
以及数字计算方法等方面都有重要应用.使得现代科学
家及工程技术人员越来越重视马尔可夫过程的理论
马尔科夫相关性质、马尔科夫随机场详解分解

马尔科夫
马尔科夫随机过程就是,下一个时间点的状态只与当 前的状态有关系,而与以前的状态没有关系,即未来 的状态决定于现在而不决定于过去。 其未来由现在决定的程度,使得我们关于过去的知识 丝毫不影响这种决定性。这种在已知 “现在”的条件 下,“未来”与“过去”彼此独立的特性就被称为马 尔科夫性,具有这种性质的随机过程就叫做马尔科夫 过程
荷花池里有N张荷叶,在时刻Tn时,Xn为时刻Tn青蛙所处的状态。 P(Xn+1=j/Xn=i)=Pi,j , 其中,i,j=1,2,…N. 表示在Tn时刻青蛙在 第i张荷叶上。在下一个时刻Tn+1跳到第j张荷叶上的可能性,又 称为从状态i经一步转移到j的概率,简称为一步转移概率。 将这些 Pi,j依序排列起来,就构成一个矩阵,叫做转移概率矩阵 。 P11 P12 ... P1n P = [ P21 P22 ... P2n ] ... Pn1 Pn2 ... Pnn
马尔科夫过程
设有随机过程 i 0 , i1 , P{ X 就称
n 1
X n,n T ,若 对 于 任 意 正 整 数 n T 和 任 意 的
i0 , ,X in } P { X in 1 | X in }
, in 1 I , 条 件 概 率 满 足 in 1 | X
S(1)=S(0)*P=(0.54, 0.20, 0.26),这个月A,B,C电脑 的市场占有率为54%,20%,26% S(2)=S(1)*p=S(0)*P^2=(0.492, 0.248, 0.26),下个 月A,B,C电脑的市场占有率为49.2%,24.8%,26%
隐马尔科夫过程